Groups and Representations

Problem Sheet 2

Deadline: Fri, week 5, noon

1) (Lie-groups and their Lie-algebras)

- a) Derive the Lie-algebras of SO(4) and $SU(2) \times SU(2)$ and show that they are isomorphic. [6]
- b) Do the same for SO(6) and SU(4) (Hint: It is helpful to contruct a basis for the SU(4)Lie algebra starting with gamma matrices in six Euklidean dimensions - these are 8×8 matrices - and their antisymmetrized products.) [8]
- c) Show that the $2n \times 2n$ real matrices M satisfying $M^T \eta M = \eta$ where

$$\eta = \left(\begin{array}{cc} 0 & \mathbf{1}_n \\ -\mathbf{1}_n & 0 \end{array}\right)$$

form a group. This group is called the symplectic group Sp(2n). Find the Lie-algebra sp(2n) of Sp(2n) and its Cartan subalgebra. Further, determine $\dim(sp(2n))$ and $\operatorname{rk}(sp(2n)).[6]$

 $\left[5\right]$

2) (Relation between $SU(n) \times U(1)$ and U(n)) A map $f : SU(n) \times U(1) \to U(n)$ is defined by f((U, z)) = zU, where $U \in SU(n)$ and $z \in U(1)$.

- a) Show that this map f defines a group homomorphism.
- b) Work out $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$. [10]
- c) From the result in b), deduce the relation between $SU(n) \times U(1)$ and U(n). [5]

3) (The Lorentz group) A Dirac spinor ψ transforms in the representation $R_D = (1/2, 0) \oplus (0, 1/2)$ of the Lorentz group and can be written as

$$\psi = \left(\begin{array}{c} \chi_L \\ \chi_R \end{array}\right)$$

where χ_L and χ_R are left- and right-handed Weyl spinors. The representation matrices $R_D(M)$ acting on ψ are given by

$$R_D(M) = \left(\begin{array}{cc} R_L(M) & 0\\ 0 & R_R(M) \end{array}\right) \ .$$

Define the gamma matrices γ_{μ} by

$$\gamma_0 = \begin{pmatrix} 0 & \mathbf{1}_2 \\ \mathbf{1}_2 & 0 \end{pmatrix}, \qquad \gamma_i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}$$

a) Using the explicit expressions for $R_L(M)$ and $R_R(M)$, show that an infinitesimal transformation of ψ takes the form $\delta \psi = i \epsilon^{\mu\nu} \sigma_{\mu\nu} \psi$ where $\sigma_{\mu\nu} = \frac{i}{4} [\gamma_{\mu}, \gamma_{\nu}]$ and $\epsilon^{\mu\nu}$ are small parameters. [5]

- b) Show explicitly that the matrices $\sigma_{\mu\nu}$ form a representation of the Lorentz group Lie algebra. [5]
- c) Use the relation between the Lorentz group and SL(2, C) to show that $R_D(M)^{-1}\gamma_{\mu}R_D(M) = R_V(M)_{\mu}{}^{\nu}\gamma_{\nu}.$ [6]
- d) Proof that the Dirac equation for the spinor ψ with mass *m* is Lorentz-covariant by applying the result c). [4]
- 4) (SU(5), tensor methods and branching)
 - a) Find the Young-tableaux and associated tensors for the representations 1, 5, 5, 10, 15 and 24 of SU(5).
 - b) Show that

$$egin{array}{rll} 5 imes 5&=&1+24\ 5 imes 5&=&10+15\ ar{5} imes 10&=&5+45\ 10 imes 10&=&ar{5}+ar{45}+ar{50} \end{array}$$

using Young-tableaux.

c) Using the obvious embedding of $SU(3) \times SU(2)$ into SU(5), such that, $U_3 \in SU(3)$ and $U_2 \in SU(2)$ are embedded as

$$U = \left(\begin{array}{cc} U_3 & 0\\ 0 & U_2 \end{array}\right) \in SU(5) ,$$

work out the branching of the representations 5, $\overline{5}$ and 10 under $SU(3) \times SU(2)$. [4]

- d) Show that the unique U(1) sub-group of SU(5) which commutes with $SU(3) \times SU(2)$ (embedded into SU(5) as above) is given by the matrices diag $(e^{-2i\alpha}, e^{-2i\alpha}, e^{-2i\alpha}, e^{3i\alpha})$, where $\alpha \in \mathbb{R}$. For this U(1), work out the charges for all $SU(3) \times SU(2)$ representations which appear in the branchings worked out in c). [4]
- e) Using tensor methods, write down the SU(5) singlet in $\mathbf{5} \otimes \mathbf{10} \otimes \mathbf{10}$ and $\mathbf{5} \otimes \mathbf{5} \otimes \mathbf{10}$. Using the branchings from c), write these singlets in terms of $SU(3) \times SU(2)$ representations. [4]

5) (Relation between SU(n) and SO(2n)) Write matrices $U \in SU(n)$ as $U = U_R + iU_I$, where $U_R = \operatorname{Re}(U)$ and $U_I = \operatorname{Im}(U)$ and define the map $f : SU(n) \to Gl(\mathbb{R}^{2n})$ by

$$f(U) = \left(\begin{array}{cc} U_R & -U_I \\ U_I & U_R \end{array}\right)$$

a) Show that $\text{Im}(f) \subset SO(2n)$.

 $\mathbf{2}$

[5]

[4]

- b) Show that f is an injective group homomorphism. (Hence, it defines an embedding of SU(n) into SO(2n) and we can think of SU(n) as a sub-group of SO(2n).) [5]
- c) Show that the branching of the fundamental representation, $2\mathbf{n}$, of SO(2n) under the SU(5) sub-group in b) is given by $2\mathbf{n} \to \mathbf{n} \oplus \bar{\mathbf{n}}$, where \mathbf{n} is the fundamental of SU(n). [5]
- d) For n = 5, work out the branching of the adjoint of SO(10) under SU(5). [5]