
Groups and Representations

Problem Sheet 2

Deadline: Fri, week 5, noon

1) (Lie-groups and their Lie-algebras)

a) Derive the Lie-algebras of SO(4) and SU(2)×SU(2) and show that they are isomorphic. [6]

b) Do the same for SO(6) and SU(4) (Hint: It is helpful to contruct a basis for the SU(4)
Lie algebra starting with gamma matrices in six Euklidean dimensions - these are 8 × 8
matrices - and their antisymmetrized products.) [8]

c) Show that the 2n× 2n real matrices M satisfying MT ηM = η where

η =

(
0 1n
−1n 0

)
form a group. This group is called the symplectic group Sp(2n). Find the Lie-algebra
sp(2n) of Sp(2n) and its Cartan subalgebra. Further, determine dim(sp(2n)) and rk(sp(2n)).[6]

2) (Relation between SU(n)× U(1) and U(n)) A map f : SU(n)× U(1)→ U(n) is defined by
f((U, z)) = zU , where U ∈ SU(n) and z ∈ U(1).

a) Show that this map f defines a group homomorphism. [5]

b) Work out Ker(f) and Im(f). [10]

c) From the result in b), deduce the relation between SU(n)× U(1) and U(n). [5]

3) (The Lorentz group) A Dirac spinor ψ transforms in the representation RD = (1/2, 0) ⊕
(0, 1/2) of the Lorentz group and can be written as

ψ =

(
χL
χR

)
where χL and χR are left- and right-handed Weyl spinors. The representation matrices RD(M)
acting on ψ are given by

RD(M) =

(
RL(M) 0

0 RR(M)

)
.

Define the gamma matrices γµ by

γ0 =

(
0 12

12 0

)
, γi =

(
0 σi
−σi 0

)
.

a) Using the explicit expressions for RL(M) and RR(M), show that an infinitesimal trans-
formation of ψ takes the form δψ = iεµνσµνψ where σµν = i

4 [γµ, γν ] and εµν are small
parameters. [5]
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b) Show explicitly that the matrices σµν form a representation of the Lorentz group Lie
algebra. [5]

c) Use the relation between the Lorentz group and SL(2, C) to show thatRD(M)−1γµRD(M) =
RV (M)µ

νγν . [6]

d) Proof that the Dirac equation for the spinor ψ with mass m is Lorentz-covariant by
applying the result c). [4]

4) (SU(5), tensor methods and branching)

a) Find the Young-tableaux and associated tensors for the representations 1, 5, 5̄, 10, 15
and 24 of SU(5). [4]

b) Show that

5× 5̄ = 1 + 24

5× 5 = 10 + 15

5̄× 10 = 5 + 45

10× 10 = 5̄ + 45 + 50

using Young-tableaux. [4]

c) Using the obvious embedding of SU(3)× SU(2) into SU(5), such that, U3 ∈ SU(3) and
U2 ∈ SU(2) are embedded as

U =

(
U3 0
0 U2

)
∈ SU(5) ,

work out the branching of the representations 5, 5̄ and 10 under SU(3)× SU(2). [4]

d) Show that the unique U(1) sub-group of SU(5) which commutes with SU(3)×SU(2) (em-
bedded into SU(5) as above) is given by the matrices diag(e−2iα, e−2iα, e−2iα, e3iα, e3iα),
where α ∈ R. For this U(1), work out the charges for all SU(3)× SU(2) representations
which appear in the branchings worked out in c). [4]

e) Using tensor methods, write down the SU(5) singlet in 5⊗10⊗10 and 5̄⊗ 5̄⊗10. Using
the branchings from c), write these singlets in terms of SU(3)× SU(2) representations. [4]

5) (Relation between SU(n) and SO(2n)) Write matrices U ∈ SU(n) as U = UR + iUI , where
UR = Re(U) and UI = Im(U) and define the map f : SU(n)→ Gl(R2n) by

f(U) =

(
UR −UI
UI UR

)
.

a) Show that Im(f) ⊂ SO(2n). [5]
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b) Show that f is an injective group homomorphism. (Hence, it defines an embedding of
SU(n) into SO(2n) and we can think of SU(n) as a sub-group of SO(2n).) [5]

c) Show that the branching of the fundamental representation, 2n, of SO(2n) under the
SU(5) sub-group in b) is given by 2n→ n⊕ n̄, where n is the fundamental of SU(n). [5]

d) For n = 5, work out the branching of the adjoint of SO(10) under SU(5). [5]
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