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Preface

Symmetries have become a key idea in modern physics and they are an indispensable tool for
the construction of new physical theories. They play an important role in the formulation of
practically all established physical theories, from Classical/Relativistic Mechanics, Electrody-
namics, Quantum Mechanics, General Relativity to the Standard Model of Particle Physics.

The word “symmetry” used in a physics context (usually) refers to the mathematical structure
of a group, so this is what we will have to study. In physics, the typical problem is to con-
struct a theory which “behaves” in a certain defined way under the action of a symmetry, for
example, which is invariant. To tackle such a problem we need to know how symmetries act on
the basic building blocks of physical theories and these building blocks are often elements of
vector spaces. (Think, for example, of the trajectory r(t) of a particle in Classical Mechanics
which, for every time t, is an element of R3, a four-vector xµ(t) which is an element of R4 or the
electric and magnetic fields which, at each point in space-time, are elements of R3.) Hence, we
need to study the action of groups on vector spaces and the mathematical theory dealing with
this problem is called (linear) representation theory of groups. The translation between
physical and mathematical terminology is summarised in the diagram below.

physics mathematics

symmetry ∼= group

action on ↓ ↓ representation

building blocks ∼= vector spaces

Groups and their representations form a large area of mathematics and a comprehensive
treatment can easily fill two or three lecture courses. Our selection of material is guided by a
desire of at least a certain degree of mathematical consistency and rigour on the one hand and
by what is important for a theoretical physicist on the other hand. We have largely refrained
from presenting physicists’ treatments when it comes to developing the basic structure. The
subject has become such an established part of modern physics, that following the standard
mathematical route seems appropriate.

In the first chapter we review some basics of group theory and introduce the key idea of linear
representations. The first application of this idea is to finite groups, using the technique
of group characters. The remainder of these notes deals with Lie groups and Lie algebras
and their representations. After developing the basics, we discuss some of the most important
examples - orthogonal and unitary groups, the Lorentz group - in detail. The notes end
with the classification of semi-simple Lie algebras via Dynkin diagrams and the Dynkin
formalism to describe linear representations of these algebras.
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Chapter 1

Basics of groups and representations

The first part of this chapter is a lightning review of some basic group properties. For those
who have had a basic course on groups before this is nothing new. In this case, skip it or
consider it as a reminder. Then we introduce linear representations of groups and develop
some of their elementary properties. The chapter ends with two examples of the simplest
Abelian groups, Zn and U(1), and their representations.

1.1 Groups

Definition of group

We begin with the general definition of a group.

Definition 1.1. (Groups) A group G is a set together with a map · : G × G → G called
multiplication (in particular, G is closed under multiplication) which satisfies

(i) g1 · (g2 · g3) = (g1 · g2) · g3 ∀ g1, g2, g3 ∈ G (associativity)
(ii) ∃ e ∈ G : e · g = g ∀ g ∈ G (neutral or unit element)
(iii) ∀ g ∈ G, ∃ g′ ∈ G : g′ · g = e (left inverse)

The group is called Abelian if g1 · g2 = g2 · g1 ∀ g1, g2 ∈ G.

This definition looks somewhat asymmetrical since the unit and the inverse are only postulated
when acting from the left. However, this is not a problem due to the following remark.

Remark 1.1. The left inverse is unique (and is in the following denoted by g′ = g−1) and is
also the right inverse. The left unit element is unique and is also the right unit.

This implies that (g−1)−1 = g and (g1 · g2)−1 = g−1
2 · g−1

1

Exercise 1.1. Prove the statements in the previous remark (start by showing that the left-
inverse is also the right-inverse).

Note that the group multiplication is not in general commutative and many of our examples
will be non-Abelian groups. From now on we will usually drop the symbol · to indicate group
multiplication and simply write g1 · g2 = g1g2.

A simple method to obtain new groups from given ones is the direct product construction.
For two groups G1 and G2 with neutral elements e1 and e2 the Cartesian product G1 × G2

can be made into a group, called the direct product group of G1 and G2, by defining the
multiplication component-wise, so (g1, g2) · (g̃1, g̃2) = (g1 · g̃1, g2 · g̃2). The neutral element of
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G1 ×G2 is (e1, e2) and the inverse for (g1, g2) is (g
−1
1 , g−1

2 ).

Reminder: Equivalence relations

The following is a basic reminder of equivalence classes and equivalence relations, a structure
which is required for our subsequent discussion of groups.

Definition 1.2. (Equivalence relation) A relation ∼ on a set S is an equivalence relation
iff

(i) s ∼ s ∀ s ∈ S (reflexivity)
(ii) s ∼ s′ =⇒ s′ ∼ s ∀ s, s′ ∈ S (symmetry)
(iii) s ∼ s′ and s′ ∼ s′′ =⇒ s ∼ s′′ ∀ s, s′, s′′ ∈ S (transitivity)

The equivalence class [s] of some s ∈ S is defined as [s] = {s′ ∈ S | s′ ∼ s}
Proposition 1.1. Two equivalence classes are either disjoint or equal.

Proof. If the two equivalence classes [s1] and [s2] are disjoint we are finished so assume that
s ∈ [s1]∩ [s2]. This implies that s ∼ s1 ∼ s2. Start with any s̃ ∈ [s1]. Then transitivity implies
that s̃ ∼ s1 ∼ s2 and, hence, s̃ ∈ [s2]. It follows that [s1] ⊂ [s2] and the reverse inclusion
follows from the same argument with the roles of [s1] and [s2] exchanged.

An equivalence class consists of all elements of S which are related to one another and the set
S “cleanly” splits up into disjoint equivalence classes (see Fig. 1.1). The set of all equivalence
classes is also denoted by S/ ∼.

Figure 1.1: The set S is split into disjoint equivalence classes

Conjugation

Returning to groups, here is one way to define an equivalence relation on a group.

Definition 1.3. For a group G, two elements g1, g2 ∈ G are called conjugate if

∃ g ∈ G | g2 = gg1g
−1 (1.1)

This is an equivalence relation with equivalence classes called conjugacy classes and explic-
itly given by

[g1] = {g2 ∈ G | g2 = gg1g
−1 for some g ∈ G} (1.2)

Exercise 1.2. Show that conjugation defines an equivalence relation.

Conjugation and conjugacy classes will play an important role when we discuss representations
of finite groups in the next chapter.
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Subgroups and cosets

After introducing the basic algebraic structure one of the next standard steps is to define the
sub-structure of groups, that is, subgroups.

Definition 1.4. (Subgroups) A subgroup H of G is a subset H ⊂ G which is itself a group
under the group multiplication induced from G. Every group G has the trivial subgroups {e}
and G. All other subgroups of G are called proper subgroups.

Exercise 1.3. Show that a subset H ⊂ G of a group G is a subgroup if and only if it has
the following properties: (i) It is closed under multiplication, that is hh′ ∈ H ∀ h, h′ ∈ H (ii)
e ∈ H (iii) ∀h ∈ H ⇒ h−1 ∈ H.

For a group G and a subgroup H ⊂ G, we can define another equivalence relation

g1 ∼ g2 ⇔ g−1
1 g2 ∈ H (1.3)

Definition 1.5. (Cosets) The equivalence classes with regard to the equivalence relation (1.3),
given by gH = {gh | h ∈ H}, are called a (left) cosets of H in G.

For a finite group G, every coset gH has the same number of elements (the same number of
elements as H) since multiplication by a fixed g ∈ G is an invertible map. If we denote the
number of elements of a finite group G, also called the order of the group, by |G| we can
draw two interesting conclusions from this.

(i) |G| = k|H| where k ∈ N (1.4)

(ii) If |G| is prime, then G has no proper subgroups. (1.5)

If we consider a finite group G and an element g ∈ G, then not all power e = g0, g1, g2, . . .
can be different. This means we must have gk = gl and, hence gk−l = e, for some positive
integers k, l with k > l. The smallest integer p for which gp = e is called the order of the
group element g.

Normal subgroups

In much the same way that we have introduced left cosets above we can also introduce right
cosets, simply by changing the order of multiplication in the definition. There is a particularly
important class of subgroups for which the left and right cosets are identical.

Definition 1.6. (Normal subgroups) A subgroup H ⊂ G is called normal iff gH = Hg for
all g ∈ G, that is, if left and right cosets are the same.

If H ⊂ G is a normal subgroup, then the set of all cosets of H in G, the quotient space

G/H = {gH | g ∈ G} (1.6)

forms a group under the multiplication

(g1H) · (g2H) = (g1g2)H . (1.7)

Exercise 1.4. Show that the quotient space G/H, where H ⊂ G is a normal subgroup, forms
a group under the multiplication (1.7). What is the neutral element of this group?
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Figure 1.2: Illustration of the isomorphism theorem.

Group homomorphisms

The next basic step is to define the maps consistent with the algebraic structure, the group
homomorphisms.

Definition 1.7. (Homomorphism) A map f : G → G̃ is called a (group) homomorphism
iff

f(g1g2) = f(g1)f(g2) ∀ g1, g2 ∈ G (1.8)

The set of all group homomorphisms G→ G̃ is also denoted by Hom(G, G̃). The kernel and
image of a group homomorphism are defined as

Ker(f) = {g ∈ G | f(g) = ẽ} ⊂ G (1.9)

Im(f) = {f(g) | g ∈ G} ⊂ G̃ (1.10)

where ẽ is the identity element of G̃. If the homomorphism f : G → G̃ is bijective it is called
a (group) isomorphism. If such an isomorphism exists between G and G̃ we say the groups
are isomorphic and we write G ∼= G̃.

Remark 1.2. Group homomorphisms G → G are also called (group) endomorphisms of
G and the set of these is denoted End(G) = Hom(G,G). Invertible endomorphisms are called
(group) automorphisms of G and the set Aut(G) of all automorphisms G → G forms a
group (with multiplication the composition of maps) called the automorphisms group of G.

Remark 1.3. Group homomorphisms have the following basic properties.

• f(e) = ẽ and f(g−1) = f(g)−1

• Ker(f) is a normal subgroup of G. This implies the quotient G/ Ker(f) is a group.

• Im(f) is a subgroup of G̃

• f is one-to-one (injective) ⇔ Ker(f) = {e}

• f is onto (surjective) ⇔ Im(f) = G̃

Exercise 1.5. Prove the properties of group homomorphisms in the previous remark.
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The above remarks show that the obstruction to a homormophism f : G→ G̃ being injective is
a non-trivial kernel Ker(f) ̸= {e}. This obstruction can be removed by passing to the quotient
G/Ker(f). On the other hand, we can make the map surjective by replacing the co-domain
G̃ with Im(f) (which is a sub-group of G̃). These observation suggest the following theorem.

Theorem 1.6. (Isomorphism theorem) If f : G→ G̃ is a group homomorphism, then

G/Ker(f) ∼= Im(f) (1.11)

Exercise 1.7. Prove the isomorphism theorem. To do this, first show that the homomorphism
f : G → G̃ induces an obvious homomorphism f̂ : G/Ker(f) → Im(f). Then show that f̂ is
bijective.

1.2 Representations

We are now ready to define the central mathematical structure of these lectures, the (linear)
representations of a group and explore their basic properties. An important part of the
discussion will be to define irreducible representations which form the basic building
blocks and can be used to construct new representations. We end by discussing several ways
in which given representations can be used to define new ones. These are closely aligned with
the standard methods of defining new vector spaces from old ones: the dual vector space and
tensor vector spaces. If your linear algebra on these topics is hazy you might want to remind
yourself.

Definition of representations

Recall that our goal was to define a mathematical structure which facilitates the action of
groups on vector spaces. The first step is to observe that the set GL(V ) (= Aut(V )) of
invertible linear maps V → V on an n-dimensional vector space V over a field F = R,C forms
a group, called the general linear group of V . The group multiplication is composition
of maps, the unit element is the unit map and the inverse is the map inverse. For V = Fn
the general linear group consists of invertible n × n matrices with entries in F, the group
multiplication is matrix multiplication, the group identity is the unit matrix and the group
inverse is the matrix inverse.

By definition the general linear group GL(V ) acts (linearly) on the vector space V . An
obvious way for an arbitrary group G to act on a vector space is to assign to each group
element in G a linear transformation in GL(V ). Of course this assignment should “preserve”
the structure of the group G, that is, it should be a group homomorphism G→ GL(V ). This
motivates the following definition.

Definition 1.8. (Representation) A representation R of a group G is a group homomor-
phism R : G→ GL(V ) where V is a vector space over F. The dimension of the represen-
tation R is defined by dim(R) = dimF(V ).

Remark 1.4. (i) Often we consider the vector spaces V = Rn or V = Cn. In this case,
GL(V ) is the group of invertible n × n matrices (with real or complex entries) and the R(g)
are matrices from this group.

(ii) The homomorphism property is crucial and it means that R(g1g2) = R(g1)R(g2), so that
the representation matrices multiply in the “same way” (have the same multiplication table)
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as the group elements. This property is hinted at by the terminology “representation”.

(iii) The fact that R is a group homomorphism implies that R(g−1) = R(g)−1 and R(e) = idV .

Equivalence of representations

As ever, when a new class of mathematical objects has been defined we need to think about
under which circumstances we want to consider two such objects as “equal” or equivalent. If
the representation matrices of two representations are related by a common basis transforma-
tion we should consider the two representations equivalent - after all, the choice of basis on a
vector space is arbitrary. Generalising this idea slightly leads to this definition.

Definition 1.9. (Equivalent representations) Two representations R1 : G → GL(V1) and
R2 : G→ GL(V2) are called equivalent iff these exists an isomorphism ϕ : V1 → V2 such that

R1(g) = ϕ−1 ◦R2(g) ◦ ϕ ∀ g ∈ G . (1.12)

In this case, we write R1
∼= R2. Otherwise, the representations are called inequivalent and

we write R1 ≇ R2.

Remark 1.5. (i) Note that the linear map ϕ in the above definition is the same for all g ∈ G.
Its existence (or otherwise) is, therefore, a non-trivial matter.

(ii) Since ϕ : V1 → V2 is an isomorphism (so dimF(V1) = dimF(V2) in particular) two represen-
tations R1 and R2 can only be equivalent if they have the same dimension, dim(R1) = dim(R2).

Basis properties of representations

Often vector spaces V have additional structure, the most prominent one being a s scalar
product, ⟨·, ·⟩. A vector space with a scalar product is also called an inner product vector
space. On such an inner product space we can consider the invertible linear maps f ∈
GL(V ) which leave the scalar product invariant, that is, the maps f ∈ GL(V ) which satisfy
⟨f(v), f(w)⟩ = ⟨v, w⟩ for all v, w ∈ V . Such linear maps are called unitary and the set of all
unitary linear maps (relative to the given scalar product), denoted U(V ), forms a subgroup
of GL(V ). If V = Rn with the dot product, then the unitary maps are the orthogonal n× n
matrices, denoted O(n) = U(Rn). For V = Cn with the standard hermitian scalar product
the unitary maps are precisely the unitary n× n matrices U(n) = U(Cn).

Exercise 1.8. Let V be an inner product vector space. Show that the set U(V ) of unitary
maps forms a subgroup of GL(V ).

For an inner product vector space V we can consider special representations where all repre-
sentation maps are contained in the subgroup U(V ) ⊂ GL(V ).

Definition 1.10. (Unitary representations) A representation R : G → GL(V ) on an inner
product vector space V is called unitary if R(g) is a unitary linear map for all g ∈ G (or,
equivalently, iff Im(R) ⊂ U(V )).

The following is just a somewhat redundant but often-used piece of terminology.

Definition 1.11. (Faithful representation) A representation R : G→ GL(V ) is called faithful
iff it is one-to-one, or, equivalently, iff Ker(R) = {e}.
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For a faithful representation, the representation maps R(g) capture the full group structure -
hence the name. For non-faithful representations two or more group elements are mapped to
the same representation map and information about the group structure “is lost”.

Reducible and irreducible representations

Now we come to the crucial notion of a reducible/irreducible representation which is the
key to understanding how representations can be decomposed into basic building blocks.

Definition 1.12. (Reducible and irreducible representations) A representation R : G →
GL(V ) is called reducible iff a non-trivial subspace U ⊂ V (U ̸= {0}, V ) exists such that
R(g)U ⊂ U ∀ g ∈ G (that is, the subspace U is invariant under the group action). Otherwise,
R is called irreducible or an irrep.

To get to an intuitive idea of what this definition means consider a reducible representation
R and choose a basis of V by starting with a basis of U and completing this to a basis of V .
Relative to such a basis, R(g) is described by a matrix [R(g)] of the form

[R(g)] =

(
A(g) B(g)
0 C(g)

)
basis of U
other basis vectors not in U

(1.13)

The zero entry arises due to the closure of U under R which implies that a vector (u, 0)T in U
must be transformed into a vector of the same form. Unfortunately, for vectors (0, w)T there
is no such requirement and this is why we cannot conclude that the matrices B(g) vanish.
The presence of the matrix B(g) is an obstruction to decomposing a reducible representation
and cases where all B(g) vanish are called fully reducible. The proper definition of this term
is as follows.

Definition 1.13. (Fully reducible representations) Let R : G → GL(V ) be a representation.
If there exists a direct sum decomposition V = U1 ⊕ · · · ⊕ Uk such that R(g)(Ui) ⊂ Ui for all
g ∈ G and all i = 1, . . . , k and the representations Ri : G→ GL(Ui) defined by Ri(g) = R(g)|Ui

are irreducible then R is called fully reducible. In this case, we write R = R1 ⊕ · · · ⊕Rk.

To see what this means it is again useful to think of a basis adapted to the direct sum
decomposition V = U1 ⊕ · · · ⊕ Uk. Relative to such a basis the representation matrices are of
the block-diagonal form

[R(g)] =

 [R1(g)] 0
. . .

0 [Rk(g)]

 U1...
Uk

(1.14)

Exercise 1.9. Suppose that all representation matrices of a representation R are of the block-
diagonal form (1.14). Show that every block [Ri(g)] defines a representation.

In other words, a fully reducible representation R can be written as a direct sum, R =
R1 ⊕ · · · ⊕Rk of irreducible representations Ri. In this case we have the dimension formula

dim(R) =

k∑
i=1

dim(Ri) . (1.15)

11



Note that an irreducible representation is trivially fully reducible.

Given this discussion, we would like to know when a reducible representation is fully re-
ducible. Unfortunately, this is not always the case but it turns out that important classes of
representations are fully reducible. The first of these are unitary representations.

Proposition 1.2. Unitary representations are fully reducible.

Proof. We consider a representation R : G→ U(V ) on a vector space with inner product ⟨·, ·⟩
(recall, the notion of unitary representation is only defined if we have an inner product). If R
is irreducible then it is fully reducible and there is nothing to show.

Let us assume R is reducible so that R(g)U ⊂ U for a subspace U ⊂ V . Define the perpendic-
ular space W = U⊥ = {w ∈ V | ⟨w, u⟩ = 0 ∀ u ∈ U} and recall from standard linear algebra
that V = U ⊕W .

Consider w ∈ W . It follows that ⟨R(g)w, u⟩ = ⟨w,R(g)−1u⟩ = 0 since R(g)−1u ∈ U and,
therefore, R(g)w ∈ U⊥ = W . This means the perpendicular space W is also invariant under
R and, hence, the matrices B(g) in Eq. (1.13) vanish.

If both R|U and R|W are irreducible we are finished. Otherwise, we apply the above argument
to R|U and R|W and continue until we are left with irreducible subspaces only.

Many of the representations relevant in physics are unitary, so this covers significant ground.
Finite groups are another important class with fully reducible representations.

Corollary 1.1. Any representation of a finite group is unitary (relative to a suitable scalar
product) and, hence, fully reducible.

Proof. On V introduce an arbitrary scalar product ⟨·, ·⟩0 (that this is possible is a standard
result of linear algebra). Define a new scalar product by

⟨v, w⟩ =
∑
g̃∈G

⟨R(g̃)v,R(g̃)w⟩0. (1.16)

Note that the sum is well-defined since the group G is finite. This new scalar product is
invariant under all R(g), that is,

⟨R(g)v,R(g)w⟩ = ⟨v, w⟩ ∀ v, w ∈ V (1.17)

since the left action of the representation on both vectors merely permutes the terms in the
sum in (1.16). It follows that the representation R is unitary relative to the scalar product
⟨·, ·⟩ and, therefore, from the previous proposition, that it is fully reducible.

Exercise 1.10. Prove the invariance (1.17) of the scalar product (1.16) under the represen-
tation R.

Schur’s Lemma

Schur’s Lemma constrains linear maps which commute with all representation maps of an
irreducible representation. You have probably used a special version of Schur’s Lemma in
Quantum Mechanics (“If the Hamilton operator commutes with angular momentum, then
angular momentum eigenstates |jm⟩ have the same energy for all m.”) The general statement
is as follows.

12



Lemma 1.1. (Schur’s Lemma) Let R : G → GL(V ) and R̃ : G → GL(W ) be two irreducible
representations over complex vector spaces V and W . Further, let ϕ : V →W be a linear map
satisfying ϕ ◦R(g) = R̃(g) ◦ ϕ for all g ∈ G. Then, we have the following statements.

(i) Either ϕ is an isomorphism or ϕ = 0.
(ii) If V =W and R = R̃, then ϕ = λ idV where λ ∈ C.

Proof. (i) We begin by showing that Ker(ϕ) is invariant under R. Consider a v ∈ Ker(ϕ), so
that ϕ(v) = 0. Then ϕ(R(g)v) = R̃(g)(ϕ(v)) = 0 and it follows that R(g)v ∈ Ker(ϕ). This
means that Ker(ϕ) is invariant under R. In the same way, we can show that Im(ϕ) is invariant
under R̃. But R and R̃ are irreducible so Ker (ϕ) = {0} or V and Im (ϕ) = {0} orW . Suppose
that Ker(ϕ) = V . In this case, ϕ = 0 and the second possibility in (i) is realised. On the other
hand, if Ker(ϕ) = {0} then ϕ is injective and its image cannot be trivial. Hence, Im(ϕ) = W
and ϕ is surjective.

(ii) Define the eigenspace Eigϕ(λ) = {v ∈ V | ϕ(v) = λv} of ϕ with eigenvalue λ. This
eigenspace is non-trivial for at least one λ, since det(ϕ − λidV ) = 0 has a solution in C.
For this value of λ consider an eigenvector v ∈ Eigϕ(λ). The short calculation ϕ(R(g)v) =
R(g)ϕ(v) = λR(g)v shows that R(g)v ∈ Eigϕ(λ) and, hence, that Eigϕ(λ) is invariant under
R. Since R is irreducible and Eigϕ(λ) ̸= {0} it follows that Eigϕ(λ) = V . This means that
ϕ = λ idV .

It is worth restating Schur’s Lemma slightly. Suppose that the first option in (i) is realised and
ϕ is an isomorphism. Then R(g) = ϕ−1 ◦ R̃(g) ◦ ϕ which shows that R and R̃ are equivalent
in this case. Let us fix an isomorphism ϕ0 : V → W which realises this equivalence, so
that R(g) = ϕ−1

0 ◦ R̃(g) ◦ ϕ0. We would then like to determine the set of all maps ϕ which
“intertwine” R and R̃, that is, ϕ ◦ R(g) = R̃(g) ◦ ϕ. If we define ψ = ϕ−1

0 ◦ ϕ : V → V an
easy calculation shows that ψ ◦R(g) = R(g) ◦ ψ, so we can apply part (ii) of Schur’s Lemma
and conclude that ψ = λ idV or, equivalently, ϕ = λϕ0. On the other hand, if R and R̃ are
inequivalent then the second possiblity in (i) must be realised and ϕ = 0. We can summarise
this discussion by saying that, under the assumptions of Schur’s Lemma, the map ϕ is given
by

ϕ =

{
0 if R ≇ R̃

λ ϕ0, λ ∈ C if R ∼= R̃
(1.18)

where ϕ0 : V →W is any isomorphism which realises the equivalence, so R(g) = ϕ−1
0 ◦R̃(g)◦ϕ0.

Part (ii) of Schur’s Lemma is the more widely known statement. In short, it says

[ϕ,R(g)] = 0 ∀g ∈ G ⇒ ϕ = λ idV (1.19)

provided R is an irreducible representation over a complex vector space. (Here, [f, g] :=
f ◦ g− g ◦ f is the commutator.) “A linear map which commutes with all representation maps
of a complex irrep must be a multiple of the identity map.”

Schur’s Lemma leads to an interesting statement about the representations of Abelian groups.

Corollary 1.2. All complex irreps of Abelian groups are one-dimensional.

Proof. Let G be Abelian and R : G→ Gl(V ) be a complex irrep of G. Commutativity of the
group multiplication implies [R(g), R(g′)] = 0 ∀ g, g′ ∈ G. If we set ϕ = R(g) we can apply
part (ii) of Schur’s Lemma and conclude that R(g) = λ(g) idV . However, a representation of
this form is only irreducible if dim(V ) = 1.
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New representations from old ones

We now quickly review a few standard constructions of representations. Most of these are
based on standard constructions for vector spaces, such as direct sum, dual vector spaces and
tensor vector spaces.

Trivial representation

This doesn’t quite fit the bill but needs to be mentioned. The trivial representation R : G→
GL(V ) is defined by

R(g) = idV ∀g ∈ G . (1.20)

This representation is of course not faithful and if dim(V ) > 1 then it is reducible. The
one-dimensional trivial representation, dim(V ) = 1, is irreducible so it appears in the list of
irreducible representations for every group.

Direct sum representation

This is basically the opposite of decomposing a fully reducible representation into its irreducible
pieces. Suppose, we have representations Ri : G → GL(Ui), for i = 1, . . . , k. The direct sum
vector space V = U1 ⊕ · · · ⊕ Uk consists of all vectors of the form v = u1 + · · · + uk, where
ui ∈ Ui. We can define a representation R : G→ GL(V ) on the direct sum by

R(g)(u1 + · · ·+ uk) := R1(g)(u1) + · · ·+Rk(g)(uk). (1.21)

Relative to a basis of V which is adapted to the direct sum (choosing a basis for each Ui
and combining all those vectors to a basis of V ) the representation matrices for R(g) have a
block-diagonal form, as in Eq. (1.14).

Exercise 1.11. Use the definition (1.21) to show that the direct sum representation is indeed
a representation, that is, show that R(g1g2) = R(g1)R(g2).

Reminder: Dual and tensor vector spaces

This is a “rough-and-ready” summary of the relevant facts without paying much attention to
mathematical niceties. If you haven’t seen some of this before you might want to consult a
linear algebra book.

• Start with a vector space V over the field F and a basis (ei), so that any v ∈ V is
expressed as v = vie

i.

• The dual vector space V ∗ = Hom(V,F) is the space of linear forms on V - that is,
linear maps V → F. For a basis {ei} of V ∗ we can write λ = λiei for λ ∈ V ∗. This
basis can be chosen to be the dual basis to the basis (ei) of V which is defined by the
relations ei(e

j) = δji . For this choice, the action of a functional λ ∈ V ∗ on a vector v ∈ V
can be written as λ(v) = λivi. Note that a vector space V and its dual V ∗ have the
same dimension. (If you have encountered vectors with upper and lower indices before
and have wondered what they are, then here is the answer. They correspond to vectors
in a vector space and in its dual.)
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• For the tensor vector space we consider two vector spaces V and W with bases (ei)
and (ϵa), respectively. The tensor product V ⊗W is spanned by the vectors v ⊗ w (a
bi-linear operation), where v ∈ V and w ∈W , and it has a basis (ei ⊗ ϵa). Hence, every
tensor t ∈ V ⊗W can be written as t = tiae

i ⊗ ϵa and we have

dimF(V ⊗W ) = dimF(V ) dimF(W ) . (1.22)

We can form multiple tensor products with more than two factors and, in particular,
we can consider the tensor product V ⊗p ⊗ (V ∗)⊗q which consists of p factors of V and
q factors of its dual V ∗. Tensors in this space are also called (p, q)-tensors and they can
be written as

T = Ti1,...,ip
j1,...jq ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq (1.23)

• The space Hom(V,W ) of linear maps V →W is a vector space (which is isomorphic to
the vector space of matrices with size dim(W )× dim(V )) with dimension

dimF(Hom(V,W )) = dimF(V ) dimF(W ) . (1.24)

The relation between a linear map f ∈ Hom(V,W ) and its representing matrix M is via
the equation

f(ei) =Ma
iϵa ↔ Ma

jϵa ⊗ ej (1.25)

which shows that Hom(V,W ) ∼=W ⊗ V ∗.

The original representation

Let us start by working out the action of a representation R : G→ GL(V ) on the components
vi of a vector v = vie

i. Since

R(g)(v) = viR(g)(e
i) = [R(g)]i

jvje
i (1.26)

the components transform as vi 7→ [R(g)]i
jvj , where [R(g)]i

j is the matrix representing R(g).

Dual representation

For a representation R : G → GL(V ) on a vector space V there is a natural associated
representation R′ : G→ GL(V ∗), called the dual representation, defined by

(R′(g)λ)(R(g)v) = λ(v) ∀v ∈ V, ∀λ ∈ V ∗ ⇔ R′(g) = R(g)−1T (1.27)

For λ = λiei we have R
′(g)(λ) = [R′(g)]ijλ

jei so the components transform as λi 7→ [R′(g)]ijλ
j

with [R′(g)]ij = [R(g)−1]j
i
. Of course the representation R and its dual representation R′ have

the same dimension, dim(R) = dim(R′).

The complex conjugate representation R∗ of a matrix representation R : G → GL(Cn)
is defined as R∗(g) = R(g)∗. For unitary matrix representations R : G → GL(Cn) we have

R(g)−1T = R(g)†
T

= R(g)∗ so that the dual representation R′ is, in fact, the same as the
complex conjugate representation. A matrix representation R is called real if there exists a
basis such that R∗(g) = R(g) for all g ∈ G, that is, if all representation matrices are real
matrices. If R and R∗ are inequivalent representations then R is called complex. There is
also an intermediate case, when R and R∗ are equivalent but no basis can be found such that
R∗(g) = R(g) for all g ∈ G. In this case, R is called pseudo-real.
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Exercise 1.12. Show that the dual R′ of a representation R, as defined in Eq. (1.27), is indeed
a representation. Convince yourself that the maps g 7→ R(g)−1 and g 7→ R(g)T do not define
representations.

Tensor product representation

For representations RV : G→ GL(V ) and RW : G→ GL(W ) on vector spaces V andW there
is a natural representation RV ⊗RW : G → GL(V ⊗W ), called the tensor representation
of RV and RW , defined by

(RV ⊗RW )(g)(v ⊗ w) ≡ RV (g)(v)⊗RW (g)(w) . (1.28)

From Eq. (1.22), we know the dimension of the tensor representation is

dim(RV ⊗RW ) = dim(RV ) dim(RW ) . (1.29)

It is worth working out what this means relative to a basis, so we use the above definition
(plus linearity) on a tensor t = tiae

i ⊗ ϵa and work out

(RV ⊗RW )(g)(t) = tiaRV (g)(e
i)⊗RW (g)(ϵa) = [RV (g)]j

i[RW (g)]b
atiae

j ⊗ ϵb . (1.30)

Hence, the tensor components transform as tjb 7→ [RV (g)]j
i[RW (g)]b

atia. Note that this is in
complete analogy with the transformation of a vector, except that we require a transformation
matrix per index.

It also shows that the entries of the matrix associated to RV ⊗RW (g) contains products of
the matrix elements from RV (g) and RW (g). To write this down more explicitly we introduce
the Kronecker product of an n× n matrix A and an m×m matrix B by

A×B :=

 A11B A12B · · ·
A21B · · · · · ·
...

. . .
...

 . (1.31)

In other words, the Konecker product A×B is an (nm)× (nm) matrix obtained by replacing
every entry Aij of A with AijB, that is, with the entire matrix B times that entry. Useful
properties of the Kronecker product are

A× (B + C) = A×B +A× C , (A×B)(C ×D) = (AC)× (BD) . (1.32)

If we now order the basis (ei ⊗ ϵa) of the tensor space V ⊗ W as (e1 ⊗ ϵ1, e1 ⊗ ϵ2, ..., e1 ⊗
ϵdim(W ), e2 ⊗ ϵ1, ...) then the matrix for RV ⊗RW (g) is given by the Kronecker product

[RV ⊗RW (g)] = [RV (g)]× [RW (g)] . (1.33)

Exercise 1.13. Proof the relations (1.32) for the Kronecker product. Use these to show, from
Eq. (1.33), that the tensor representation is indeed a representation.

In fact, the above construction can be generalised somewhat to two groups G1 and G2 with
representations R1 : G1 → GL(V1) and R2 : G2 → GL(V2). In this situation, the tensor
product can be used to define a representation R : G1×G2 → GL(V1⊗V2) of the direct product
group G1 × G2 by R((g1, g2))(v1 ⊗ v2) = R1(g1)(v1) ⊗ R2(g2)(v2). The above discussion of
tensor representations immediately generalises, with the group arguments suitably adjusted.
In particular, the tensor transformation in components is given by Eq. (1.30).
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Induced representation on linear maps

ForRV andRW as given above there is an induced representationRHom(V,W ) : G→ GL(Hom(V,W ))
This follows from the fact that Hom(V,W ) ∼=W ⊗ V ∗ which also shows that

RHom(V,W )(g)(f) = RW (g) ◦ f ◦RV (g)−1 . (1.34)

The dimension of this representation is, of course,

dim(RHom(V,W )) = dim(RV ) dim(RW ) . (1.35)

Clebsch-Gordan decomposition

Start with two irreducible representations R : G → GL(V ) and R̃ : G → GL(W ). It is by no
means clear that the tensor representation R⊗ R̃ is also irreducible and, as we will see later,
it is usually a reducible representation. If it is fully reducible, then we can write

R⊗ R̃ =
⊕
s

Rs , (1.36)

where the Rs are irreducible representations. An equation of the form (1.36) is known as a
Clebsch-Gordan decomposition - it encodes which irreducible representation are contained
in a tensor product. In this case, we have the useful relation

dim(R⊗ R̃) = dim(R) dim(R̃) =
∑
s

dim(Rs) (1.37)

between the various dimensions. If the dimensions of the irreducible representations are known
this relation can be helpful in narrowing down which irreps Rs can appear in the Clebsch-
Gordan decomposition.

Induced representation on subgroups and branching

If H ⊂ G is a subgroup, we can restrict the representation R(G) : G → GL(V ) of G to a
representation R(H) : H → GL(V ) of H, simply by using the same representation maps,
so R(H)(h) = R(G)(h) ∀h ∈ H. In this way, every representation of a group induces a
representation of a subgroup.

Suppose that R(G) is irreducible. It is by no means clear that the induced representation R(H)

remains irreducible. There might well be a subspace U ⊂ V which is invariant under R(H)

but not under the generally larger set of representation maps from R(G). So, in general, R(H)

does not have to be irreducible and we have a decomposition, also referred to as branching
or branching rule, given by

R(G) → R(H) =
⊕
s

R(H)
s , (1.38)

where R
(H)
s are irreps of H. Such branching rules play a role in physics whenever a symmetry

H of a physical system is embedded into a larger symmetry G.

1.3 Examples

We are now ready to discuss the two simplest examples of Abelian groups and determine their
irreducible representations. The key statement which facilitates this is Corollary 1.2 which
asserts that the complex irreps of such Abelian groups are one-dimensional.
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G = Zn

This is the simplest finite Abelian group, also called the cyclic group. It is defined as
Zn = {0, 1, ..., n− 1} with the group operation g1 · g2 = (g1 + g2) mod n. This is an Abelian
group, thus all irreps over complex vector spaces are one-dimensional, from Corollary 1.2.

Consider such an irrep
R : Zn → GL(C) = C∗ = C\{0} .

The representation matrices are (invertible) 1×1 matrices, that is, non-zero complex numbers.
We have

R(1)n = R(1n) = R(0) = 1

(remembering that the group “multiplication” is, in fact, addition) which implies that R(1) is
an nth root of unity, so R(1) = exp [−2πiq/n] where q = 0, ..., n − 1. For each choice of q we
get an irrep which we call Rq. Since Rq(g) = Rq(1)

g it follows that

Rq(g) = exp [−2πiq g/n] , q = 0, . . . , n− 1 .

This provides explicitly the n irreps of Zn and, in a physics context, the integer q which labels
the representations is also called the charge. Note we have found the number of irreducible
representations is finite and also that the q = 0 representation is the trivial one.

G = U(1)

The group U(1) = {z ∈ C | |z| = 1} is the unit circle in the complex plane with group
operation the usual multiplication of complex numbers. It is an Abelian group so its irreducible
representations (over complex vector spaces) are one-dimensional.

Start with such a representation R : U(1) → C∗ and consider a unit-length complex number
of the form z = e2πip/q, where p, q ∈ Z. For such z is follows that

zq = 1 =⇒ R(z)q = 1 =⇒ |R(z)| = 1 .

For complex numbers z = exp(iϕ) with an arbitrary real phase ϕ the same statement holds
if we demand continuity of R (by using the fact that every real number can be obtained as a
limit of rational ones). It follows that the image of R is contained in U(1) ⊂ C∗ and that we
can write

R(eiϕ) = eir(ϕ) ,

for some function r. The representation property of R translates into the functional equation
r(ϕ1 + ϕ2) = r(ϕ1) + r(ϕ2) which shows that r is a linear function and can, hence, be written
as r(ϕ) = −qϕ for some real constant q. This means we have representations Rq, given by
Rq(exp(iϕ)) = exp(−iqϕ). We also demand that the representation is continuous at z = 1
which means it should approach the same value for ϕ = ϵ and ϕ = 2π − ϵ, as ϵ → 0. This
means

1 = Rq(1) = Rq

(
lim
ϕ→2π

eiϕ
)

= lim
ϕ→2π

Rq(e
iϕ) = lim

ϕ→2π
e−iqϕ = e−2πiq ,

so that q ∈ Z. In summary, the (continuous) irreducible complex representations of U(1) are
indexed by an integer q, in physics also called the charge, and are explicitly given by

Rq(e
iϕ) = e−iqϕ , q ∈ Z . (1.39)

Hence, the number of complex irreducible U(1) representations is countably infinite.
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Exercise 1.14. Show that R : U(1) → GL(R2) defined by

Rp(e
iϕ) =

(
cos(pϕ) − sin(pϕ)
sin(pϕ) cos(pϕ)

)
for p ∈ Z is an irreducible representation. Why does this not contradict Corollary 1.2?

Application 1.1: (U(1) and Zn in field theory model building)

Calling the integer q which labels U(1) and Zn representations “charge” is not a misnomer. In
a physics context it actually represents the charge as, for example, in “ charge of the electron”
(modulo the fact that, for historical reasons, to do with the late discovery of quarks, physical
charges are taken to be elements of Z/3 rather than Z).

To see how this works more practically, consider fields Ψi, where i = 1, . . . , k, in a field theory
which, at each point in space(-time), take values in C. From a mathematical point of view we
should think of Ψi as typical elements in a vector space Vi = C. In a physics context this is
often not made very explicit - the underlying (vector) space is implied by the use of a typical
element. Now suppose that on Vi we have a representation of Zn or U(1) with charge qi, so
that we have the group actions

Zn : Ψi 7→ exp(−2πiqig/n)Ψi , U(1) : Ψi 7→ exp(−iqiϕ)Ψi (1.40)

on the fields Ψi. In this case we say that the field Ψi (or the particle associated with it in a
quantum field theory) has charge qi. A common problem is to construct terms in a Lagrangian
which are invariant under a symmetry. Consider the term Ψ1 · · ·Ψk. Its transformation is

Zn : Ψ1 · · ·Ψk 7→ exp

(
−2πig

n

∑
i

qi

)
Ψ1 · · ·Ψk (1.41)

U(1) : Ψ1 · · ·Ψk 7→ exp

(
−iϕ

∑
i

qi

)
Ψ1 · · ·Ψk (1.42)

Another way to express these transformation laws is to say that the term Ψ1 · · ·Ψk has charge∑
i qi mod n in the Zn case and charge

∑
i qi in the U(1) case. This means Ψ1 · · ·Ψk is

invariant (that is, corresponds to the trivial representation) iff

Zn :
∑
i

qi = 0 mod n , U(1) :
∑
i

qi = 0 , (1.43)

that is, iff the charge sums up to zero.

The groups Zn and U(1) are prototypes for the large classes of groups we will study in the
remainder of these lectures: finite groups and Lie groups.

Application 1.2: (Restricting scalar field potentials)

To be a little more concrete, suppose we have a field theory with a complex-valued scalar field
ϕ : R4 → C and we would like to use U(1) or Zn symmetries to constrain its scalar potential
V (ϕ, ϕ̄). There are a number of constraints on this scalar potential which we would like to
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impose even before invoking symmetries: it is real (so the Lagrangian is), it is polynomial (not
strictly necessary but the usual starting point in QFTs), we are not considering linear terms
(can be shifted away) and the highest order is four (this is to restrict to renormalisable terms
in four dimensions). On this basis the most general expression is

V (ϕ, ϕ̄) = m2|ϕ|2 + λ|ϕ|4 +
(
1

2
µ2ϕ2 +

1

3!
κϕ3 +

1

4!
ξϕ4 + c.c.

)
+

(
ν|ϕ|2ϕ+

1

2
ρ|ϕ|2ϕ2 + c.c.

)
.

How can this potential be restricted further by imposing symmetries? First, note that neither
U(1) nor Zn symmetries can forbid the first two terms: since ϕ and ϕ̄ have opposite charges
the combination |ϕ|2 is always invariant. What can be done about the other terms?

First consider imposing a Z2 symmetry which acts as ϕ 7→ −ϕ. This forces κ = ν = 0 but
allows all other terms. Next suppose ϕ transforms under the charge 1 representation of Z3,
so ϕ 7→ αϕ, where α = exp(2πi/3). Since α3 = 1 the κ-term is now allowed but we are
forced to set µ = ξ = ν = ρ = 0. Similarly, if ϕ carries charge 1 under a Z4 symmetry then
µ = κ = ν = ρ = 0 but the ξ-term is allowed. If ϕ carries charges 1 under a Zn symmetry
with n > 4 or under U(1) then µ = κ = ξ = ν = ρ = 0.

We will tackle finite groups in the next chapter and then move to Lie algebras but in either
case we will, of course, not demand that the group is Abelian. This makes it quite hard
to copy the “brute-force” approach we have taken for the above examples which essentially
amounts to writing down an Ansatz for the representation matrices and impose that they
obey the correct group multiplication laws. For Abelian groups this works since the matrices
for irreducible representations are 1×1 matrices so just numbers. These are easy to deal with
and, in addition, there is no ambiguity due to basis choice as in Def. 1.9.

For non-Abelian groups these advantages fall away. Imagine writing down an Ansatz for a, say,
2× 2 representation matrix for every group element and then trying to fix, by “calculation”,
the matrix entries so that the right multiplication rules are obeyed. This becomes intractable
quickly and, due to the ambiguity in basis choice, this will not even completely fix the matrices.
This is a good example for how the common physicists’ method of “putting-your-head-through-
the-wall-by-calculation” can be quite useless. Some problems need a deeper, more structured
approach which recognises the nature of the problem. We will now introduce such an approach
for finite groups.
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Chapter 2

Finite groups

In this chapter we consider finite groups G and their representations.

2.1 Characters

An important feature to remember about representations is the notion of equivalence in
Def. 1.9. We are not interested in finding all irreducible representations, but we would rather
like to find all inequivalent, irreducible ones. Since equivalence corresponds to basis transfor-
mations we should, therefore, build basis-independence into our method. You already know
at least two basis-invariants of linear maps: the trace and the determinant. The trace is much
simpler - it is linear in the entries of a matrix - and it turns out, luckily, that it is the correct
object to tackle our problem. This motivates the definition of characters.

Definition and basis properties

Definition 2.1. Let R : G → GL(V ) be a representation of G. The character χR : G → C
of the representation R is defined by

χR(g) = tr(R(g)). (2.1)

Remark 2.1. (i) Note that χR is constant on conjugacy classes (Def. 1.3), making it an ex-
ample of a class function. This follows from the cyclicity of the trace and the representation
property.

χR(hgh
−1) = tr(R(hgh−1)) = tr(R(h)R(g)R(h)−1) = tr(R(g)) = χR(g) .

More generally, a class function is a function α : G → C with α(hgh−1) = α(g) for all
h, g ∈ G.

(ii) The character value of the group identity is the dimension of the representation.

χR(e) = tr(R(e)) = tr(idV ) = dim(R)

We require a few rules for how to calculate with characters.

Proposition 2.1. For representations R, R̃ of G the characters satisfy

(1) χR⊕R̃(g) = χR(g) + χR̃(g)

(2) χR⊗R̃(g) = χR(g)χR̃(g)

(3) χR′(g) = χR(g)
∗
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Proof. (1) For a direct sum of representations, the representation matrices have the form

[R⊕ R̃(g)] =

(
[R(g)] 0

0 [R̃(g)]

)
and (i) follows from tr([R⊕ R̃(g)]) = tr([R(g))] + tr([R̃(g)]).

(2) For a suitable choice of basis, the representation matrices for the tensor product are given
by the Kronecker product and the claim follows from tr(A×B) = tr(A) tr(B) where × is the
Kronecker product (see Section 1.2).

(3) We can diagonalise R(g) → [R(g)] = diag(λ1, ..., λn) and, since gk = e for the order

k ∈ N of g, it follows that the λi must be kth roots of unity. Then, [R′(g)] = [R(g)−1T ] =
diag(λ∗1, ..., λ

∗
n) = [R(g)]∗ (given that z−1 = z∗ for a root of unity z). It follows that tr(R(g))∗ =

tr(R′(g)) which is the desired statement.

Singlets in representations

If a representation R : G → GL(V ) is reducible it can be decomposed into its irreducible
pieces. The simplest irreducible representations are (one-dimensional) trivial representations
and the associated one-dimensional vector subspaces are also referred to as singlets. The
space of singlets in V is given by

V G = {v ∈ V | R(g)v = v ∀ g ∈ G} (singlets) . (2.2)

A closely related linear map p : V → V is defined by

p =
1

|G|
∑
g∈G

R(g) : V → V , (2.3)

and this map turns out to be a projector onto the singlet space.

Proposition 2.2. The linear map p : V → V in Eq. (2.3) is a projector onto V G. In other
words, we have (a) Im(p) = V G and (b) p ◦ p = p.

Proof. (a) We show this set equality by mutual inclusion.

Im(p) ⊂ V G: Let v ∈ Im(p) so that v = p(w) for some w ∈ V . Then

v = p(w) =
1

|G|
∑
g∈G

R(g)w .

We would like to show that v is in the singlet space and to do this we prove its invariance
under G.

R(g̃)v =
1

|G|
∑
g∈G

R(g̃g)w =
1

|G|
∑
g∈G

R(g)w = v

It follows that v ∈ V G and, hence, Im(p) ⊂ V G.

V G ⊂ Im(p): To show the reverse conclusion we start with a v ∈ V G, so that R(g)v = v for
all g ∈ G. it follows that

p(v) =
1

|G|
∑
g∈G

R(g)v = v , (2.4)
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so v is its own image under p and, hence, v ∈ Im(p). This proves the inclusion V G ⊂ Im(p).
It follows that Im(p) = V G which completes (a).

(b) Set w = p(v) for v ∈ V and note that w ∈ Im(p) = V G and, hence, p(w) = w from
Eq. (2.4). This means p ◦ p(v) = p(w) = w = p(v) which proves (b).

Note there is a simple formula for the dimension of the singlet space V G (“the number of
singlets”)

dim(V G) = tr(p) =
1

|G|
∑
g∈G

tr(R(g)) =
1

|G|
∑
g∈G

χR(g) (2.5)

in terms of the character.

Orthonormality of characters

The above results provide some insight into the trivial representation, but of course we would
like information about all irreps. The trick is to start with two complex irreps RV : G →
GL(V ) and RW : G → GL(W ) and apply the above results for singlets to the representation
induced on Hom(V,W ). From Eq. (1.34) we have

Hom(V,W )G =
{
ϕ ∈ Hom(V,W ) | RHom(V,W )(g)ϕ = RW (g) ◦ ϕ ◦RV (g)−1 = ϕ

}
= {ϕ ∈ Hom(V,W ) | RW (g) ◦ ϕ = ϕ ◦RV (g)} (2.6)

From Schur’s Lemma in the form (1.18) the dimension of this space can be computed as

dimF
(
Hom (V,W )G

)
=

{
1 for RV ∼= RW
0 for RV ≇ RW

while Eq. (2.5) together with χHom(V,W)(g) = χV ∗⊗W (g) = χ∗
V (g)χW (g) gives

dimF
(
Hom(V,W )G)

)
=

1

|G|
∑
g∈G

χHom(V,W )(g) =
1

|G|
∑
g∈G

χ∗
V (g)χW (g) .

Equating these two results for dimF
(
Hom(V,W )G)

)
leads to a key result for the characters of

irreps.

Theorem 2.1. Relative to the inner product of characters defined by

(χ, χ̃) =
1

|G|
∑
g∈G

χ(g)∗χ̃(g) (2.7)

the characters χi of the irreducible representations Ri form an orthonormal system, that is,
(χi, χj) = δij.

In practice, we can think of a character χ as a vector (χ(e), χ(g1), χ(g2), . . .) in C|G| which
contains the values of χ on all group elements. In this case, the inner product (2.7) simply
becomes the standard hermitian scalar product on C|G|. But the character is a class function,
so it is better to think of a character as a vector in CnC , where nC is the number of conjugacy
classes of the group G (”one value per class”). Since there cannot be more than nC ortho-
normal vectors in CnC we immediately have the following

Corollary 2.1. The number of irreps is less than or equal to the number of conjugacy classes
of G.

In particular, this means that the number of irreps is finite, something which was not clear
before. We will prove later that the number of irreps is, in fact, equal to the number of
conjugacy classes.
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Representation content from characters

The ortho-normality of the irrep characters is a powerful tool which can be used to analyse
the irrep content of an arbitrary representation.

Corollary 2.2. Let R1, ..., Rk be the irreps of G, χ1, ..., χk the associated characters, and R an
arbitrary representation of G. Since R is fully reducible we can write R ∼= R⊕m1

1 ⊕· · ·⊕R⊕mk
k ,

so that R contains mi copies of the irrep Ri. Then we have the following statements.

(i) R is completely determined by its character χR.
(ii) The multiplicity mi of Ri in R is given by mi = (χR, χi).
(iii) R is an irrep iff (χR, χR) = 1.

Proof. (i) This follows from part (ii). The representation R is fully determined if we know its
irrep content and, from (ii) this can be computed from the character χR.

(ii) To show (ii) we start with R = R⊕m1
1 ⊕ · · · ⊕ R⊕mk

k which implies χR =
∑k

j=1mjχj . It
follows that

(χR, χi) =

k∑
j=1

mj (χj , χi)︸ ︷︷ ︸
= δij

= mi

and this is the required formula.

(iii) R is an irrep iff one of the mi = 1 and all the others are zero. Since

(χR, χR) =
k∑

i,j=1

mimj(χi, χj) =
k∑
i=1

m2
i

this is equivalent to (χR, χR) = 1.

2.2 The regular representation

As we have seen, characters help us to work out the irrep content of given representations but
this assumes we already know the irreps and their characters. How do we find them in the
first place? It turns out the crucial mathematical structure required is the group algebra.

Group algebra and regular representation

Definition 2.2. The group algebra AG of G is the set of formal linear combinations

v =
∑
g∈G

v(g)g , v(g) ∈ C

where all g ∈ G are considered to be linearly independent. Hence, dim(AG) = |G|. (An algebra
is a vector space with a bi-linear multiplication. Vector addition and scalar multiplications in
AG are defined component-wise in the obvious way. The multiplication is induced by the group
multiplication, using its bi-linearity.).

The point of this definition is that we can construct a canonical representation of G on its
own group algebra AG.
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Definition 2.3. The regular representation Rreg : G → GL(AG) is the representation of
the group on its own algebra, defined by

Rreg(g)v = gv . (2.8)

Note that the right-hand-side of the definition (2.8) is simply a multiplication in the algebra
AG. The dimension of the regular representation

dim(Rreg) = dim(AG) = |G| (2.9)

equals the order, |G|, of the group. It turns out that the regular representation contains every
irrep.

Exercise 2.2. Write down the group algebra AZ2 and work out its multiplication.

Representation content of regular representation

Theorem 2.3. Let R1, . . . , Rk be the irreps of G. Then we have Rreg = R
⊕dim(R1)
1 ⊕ · · · ⊕

R
⊕dim(Rk)
k . This means the irrep Ri appears dim(Ri) times and, in particular, every irrep is

contained in Rreg. The dimensions of the irreps satisfy

k∑
i=1

(dim(Ri))
2 = |G| (2.10)

Proof. Clearly, the dimension formula (2.10) is implied by the first part of the theorem, given
that dim(Rreg) = |G|. To prove the first part we start by computing the character of the
regular representation.

Rreg(g)g̃ = gg̃

{
= g̃ for g = e
̸= g̃ for g ̸= e

⇒ χreg(g) =

{
dim(Rreg) = |G| for g = e
0 for g ̸= e

To understand why tr(Rreg(g)) = 0 for g ̸= e, write G = {gi |, i = 1, . . . , |G|}, so label the
group elements by an index. The (gi) form a basis of AG on which we can evaluate Rreg(g)
by writing

Rreg(g)(gj) =
∑
i

[R(g)]ijgi = ggj .

Provided g ̸= e, the product ggj is a group element different from gj so all diagonal entries of
the matrix [R(g)] must be zero and, hence, its trace vanishes.

Now we write the regular representation as Rreg = R⊕m1
1 ⊕ · · · ⊕ R⊕mk

k and compute the
multiplicities mi of the irreps using the previous theorem.

mi = (χreg, χi) =
1

|G|
∑
g∈G

χ∗
reg(g)χi(g) =

1

|G|
χ∗
reg(e)χi(e) =

1

|G|
|G| dim(Ri) = dim(Ri)

The main implications of this theorem can be summarised as follows.

• The regular representation contains all irreps of G, so we have to “reduce” Rreg to find
the irreps explicitly.

• Each irrep is contained in Rreg with a multiplicity that equals its dimension.

• Eq. (2.10) provides a strong dimensional constraint on irreps.

Exercise 2.4. What are the possible dimensions of the irreps of a group of order 6?
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2.3 Examples

It is time to practice the use of characters with a few examples, starting by revisiting the
Abelian case.

G = Z3

This is the group Z3 = {0, 1, 2} with group multiplication defined by addition modulo 3. Its
order is |Z3| = 3. We already know that is has three irreps Rq, where q = 0, 1, 2, which are all
one-dimensional, and are given by

Rq(g) = αqg , α ≡ e2πi/3 .

Since the group is Abelian, every element forms its own conjugacy class, so we have the three
classes C0 = {0}, C1 = {1} and C2 = {2}. For one-dimensional representations, the characters
are identical to the representations, χq = Rq. Putting this together, the character table for
Z3 is given by

C0 C1 C2

χ0 1 1 1

χ1 1 α α2

χ2 1 α2 α4 = α

Orthonormality, (χi, χj) = δij , of these characters follows from the relation 1 + α + α2 = 0,
for example

(χ1, χ2) =
1

|G|
∑
g∈G

χ1(g)
∗χ2(g) =

1

3

(
1× 1 + α−1 × α2 + α−2 × α

)
=

1

3

(
1 + α+ α2

)
= 0

To see how these characters can be used to extract the irrep content of a representation
consider the three-dimensional representation R : Z3 → GL(C3) defined by

R(g) = Aq , A =

 0 0 1
1 0 0
0 1 0

 . (2.11)

This is indeed a representation since A3 = 13. Since tr(A) = tr(A2) = 0 its character is given
by χR = (3, 0, 0). Taking the scalar product of this character with the ones for the irreps from
the above table gives

(χR, χi) =
1

3

2∑
g=0

χR(g)
∗χi(g) = 1

Recall that these are precisely the multiplicities of the irreps in R, so we have R = R0⊕R1⊕R2,
that is, R is the regular representation (it contains every irrep with multiplicity given by its
dimension).

The group algebra AZ3 is spanned by the three group elements, which we denote by bold face
numbers (0,1,2) in order to avoid confusion with actual numbers. Then the group algebra is

AZ3 = {a0+ b1+ c2 | a, b, c ∈ C}
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and it is equipped with a multiplication based on

1 · 0 = 1 = 00+ 11+ 02
1 · 1 = 2 = 00+ 01+ 12
1 · 2 = 0 = 10+ 01+ 02

The coefficients in each row on the right-hand side form the columns of the matrix representing
Rreg(1) relative to the basis (0,1,2) and, hence, we have [Rreg(1)] = A. This confirms that
the three-dimensional representation (2.11) is indeed the regular representation.

Exercise 2.5. Find the characters of the Zn irreps and show that they are ortho-normal.
Show that R : Zn → GL(Cn) defined by R(g)(ei) = e(i+g) mod n, where ei are the standard unit
vectors, defines a representation. Find the irrep content of R.

Quaternion group

The quaternion group is a group of order eight with elements H = {±1,±i,±j,±k} and
group multiplication defined by the relations

i2 = j2 = k2 = −1 , ij = −ji = k and cyclic (2.12)

A bit of playing around with these relations reveals there are five conjugacy classes

C1 = {1} , C2 = {−1} , Ci = {±i} , Cj = {±j} , Ck = {±k} . (2.13)

For example, the equivalence of i and −i follows from jij−1 = −jij = −jk = −i.

Given that we have 5 conjugacy classes we know from Cor. 2.1 that there are at most five
irreps. The other information about these irreps is the dimensional constraint (2.10) which
reads

k≤5∑
i=1

(dim Ri)
2 = |H| = 8 .

It seems one possible solution is to have just two irreps, each with dimension two, but this
does not leave any room for the trivial representation which always exist. Given this, the only
possibility is to have four one-dimensional and one two-dimensional irrep.

It is not hard to work out the one-dimensional representations. To construct the two-dimensional
representation we can use the Pauli matrices σi, where i = 1, 2, 3, defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.14)

These matrices square to one, σ2i = 12, and two of them multiply to (i times) the third, for
example σ1σ2 = iσ3. These properties can be summarised by the relation

σiσj = δij12 + iϵijkσk . (2.15)

For the computation of characters it is useful to note that the Pauli matrices have vanishing
trace, tr(σi) = 0. The rules (2.15) are very similar to the multiplication relations (2.12) for
the quaternion group and the differences in factors can be fixed by using iσi instead of σi. In
summary, this gives the representations and characters as in the following tables.
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g ±1 ±i ±j ±k
R1 1 1 1 1

Ri 1 1 -1 -1

Rj 1 -1 1 -1

Rk 1 -1 -1 1

R2 ±12 ±iσ3 ±iσ2 ±iσ1

C1 C2 Ci Cj Ck
# elements 1 1 2 2 2

χ1 1 1 1 1 1

χi 1 1 1 -1 -1

χj 1 1 -1 1 -1

χk 1 1 -1 -1 1

χ2 2 -2 0 0 0

These characters are indeed orthonormal with regard to the product (·, ·). (But note that to
verify this the number of elements in each conjugacy class has to be taken into account.)

Consider the four-dimensional representation R4 of H defined by R4(±1) = ±14 and

R4(±i) = ±

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , R4(±j) = ±

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , R4(±k) = ±

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


Exercise 2.6. Verify that R4 is indeed a representation of H by checking the multiplication
relations (2.12).

What is the representation content of R4? Taking the trace of the above matrices we find
χR4 = (4,−4, 0, 0, 0), so that

(χR4 , χ1) = (χR4 , χi) = (χR4 , χj) = (χR4 , χk) = 0 , (χR4 , χR2) = 2 ⇒ R4 = R2⊕R2 .

It is quite remarkable how easily this result is obtained. We now know that there must be a
common basis transformation which brings the above 4×4 matrices into a block-diagonal form
with each of the two 2×2 blocks forming a representation R2. But finding this transformation
explicitly looks like significantly more effort than the above character calculation.

This is also a good opportunity to practice computing a Clebsch-Gordan decomposition. What
is the irrep content of R = R2 ⊗ R2? Since, χR(g) = χ2(g)

2 (see Prop. 2.1) we have χR =
(4, 4, 0, 0, 0), so that

(χR, χ1,i,j,k) = 1 , (χR, χ2) = 0 ⇒ R2 ⊗R2 = R1 ⊕Ri ⊕Rj ⊕Rk .

Application 2.1: (Yukawa model building with finite groups)

As a model building application, consider a Yukawa term of the form

λijHψ̄
i
Lψ

j
R (2.16)

where H is a complex scalar field and ψiL, ψ
i
R are left- and right-handed fermions and i = 1, 2, 3

is a family index. (Details of the structure of these fields will be discussed later, in the section
on the Lorentz group, but this will not be important for the present discussion.) The fields
might be the quarks, (ψiL, ψ

i
R) = (uiL, u

i
R) or (d

i
L, d

i
R) or the leptons (ψiL, ψ

i
R) = (eiL, e

i
R). The

Yukawa couplings times the vacuum expectation value of the field H (the Higgs field) lead to
a mass matrix, Mij = λij⟨H⟩, which determines the masses (and mixings) of the particles.

One avenue of model building, aiming at an explanation of fermion masses and mixings, is
to constrain the couplings (2.16) by imposing a discrete symmetry under which H, ψiL and ψiR
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transform. Without any ambition of producing a realistic model, we would like to illustrate
how this works in principle, using the quaternion group H.

From its character table it is easy to extract the Clebsch-Gordan decompositions

Rp ⊗Rp = R1 Ri ⊗Rj = Rk and cyclic
Rp ⊗R2 = R2 R2 ⊗R2 = R1 ⊕Ri ⊕Rj ⊕Rk

where p = i, j, k, and this information is the basis for building a model. To be specific, assume
the following assignment of representations

H ∼ Ri , ψ̄3
L ∼ Rj , ψ3

R ∼ Rk , χ̄L := (ψ̄1
L, ψ̄

2
L) ∼ R2 , χR := (ψ1

R, ψ
2
R) ∼ R2 .

In other words, we arrange the first two families, for both left- and right-handed fields, into
the two-dimensional representations and all other fields into one-dimensional ones. (There are
of course many other ways to do this.) With this assignment we should only keep the terms in
Eq. (2.16) which are H-invariant. Since Hψ̄3

LχR ∼ Ri ⊗ Rj ⊗ R2 = R2 we learn immediately
that λ31 = λ32 = 0. For similar reasons, λ13 = λ23 = 0. So right away, the Yukawa matrix is
restricted to

λ =

 ⋆ ⋆ 0
⋆ ⋆ 0
0 0 ⋆


where the ⋆ indicates a potentially non-zero entry. In fact, the λ33 entry is allowed since
Ri⊗Rj ⊗Rk = R1. What about the 2× 2 block? Since H ∼ Ri only the representation Ri ∈
R2 ×R2 is allowed. In fact, the one-dimensional subspace which corresponds to Ri ∈ R2 ⊗R2

is given by χ̄TLσ2χR, as an explicit R2 transformation shows. (Transform with the non-trivial
R2 representation matrices ±iσi as χ̄L 7→ ±iσiχ̄L and χR 7→ ±iσiχR.)

Hence, the final form of the Yukawa matrix is

λ =

 0 λ1 0
−λ1 0 0
0 0 λ3

 ,

where λ1, λ3 are arbitrary.

Exercise 2.7. Try other charge assignments of the quaternion group to constrain the Yukawa
terms (2.16). Also, try other finite groups to do the same.

2.4 More on the regular representation

There are a few loose ends to tie up. We still need to show that the number of irreps equals
the number of conjugacy classes. It would also be useful to have more information about the
structure of the regular representation and how to extract the irreps from it. We begin with
a lemma on some useful properties of class functions.

The number of irreps

Lemma 2.1. Let α : G → C be a class function, R : G → GL(V ) a complex representation
and the map ϕα,R : V → V is defined by ϕα,R =

∑
g∈G α(g)R(g) : V → V . Then

(i) [ϕα,R, R(h)] = 0 for all h ∈ G
(ii) If R is an irrep then ϕα,R = λ1dim(V )

29



Proof. (i) The vanishing of this commutator can be shown by an explicit calculations. For
v ∈ V we have

ϕα,R(R(h)v) =
∑
g∈G

α(g)R(gh)v =
∑
g∈G

α(hgh−1)R(hgh−1h)v

= R(h)

∑
g∈G

α(g)R(g)v

 = R(h) (ϕα,Rv)

(ii) This follows from part (i) and Schur’s Lemma.

Theorem 2.8. The number of irreps of G equals the number of equivalence classes.

Proof. Let Ri be the irreps of G with associated characters χi, where i = 1, . . . , k. Recall that
we can think of a character as a vector in CnC , where nC is the number of conjugacy classes
of G. If we can show that the irrep characters span the entire space CnC , then it follows that
k = nC , which is the desired statement. We can do this by proving that any class function
α : G → C which is perpendicular to all irrep characters must be zero. So we have to show
that (α, χi) = 0 for i = 1, . . . , k implies α = 0.

To this end, we define the maps ϕα,i =
∑

g∈G α(g)
∗Ri(g). Part (ii) of the previous Lemma

implies that ϕα,i = λ1, for some λ ∈ C. In fact, λ can be computed from

λ =
1

dim(Ri)
tr(ϕα,i) =

1

dim(Ri)

∑
g∈G

α∗(g)χi(g) =
|G|

dim(Ri)
(α, χi) = 0

This means that ϕα,i = 0 for all i = 1, . . . , k. But since every representation R can be written
as a sum of irreps it follows that ϕα,R = 0. Consider the regular representation:

0 = ϕα,reg =
∑
g∈G

α∗(g)g .

Since the group elements g are linearly independent as a basis of AG it follows that α(g) = 0
for all g ∈ G. Hence, α = 0, which is what we needed to show.

Structure of regular representation

Recall the structure of the regular representation is

Rreg = R⊕dimR1
1 ⊕ · · · ⊕R⊕dimRk

k ,

so the multiplicity of every irrep in Rreg equals its dimension. The group algebra AG must
have a corresponding decomposition into vector subspaces Vi,j with

AG = V1 ⊕ · · · ⊕ Vk , Vi = Vi,1 ⊕ · · · ⊕ Vi,dim(Ri) , dim(Vi,j) = dim(Ri) . (2.17)

Each subspace Vi contains the dim(Ri) copies of the representation Ri and, therefore, de-
composes further into dim(Ri) subspaces Vi,j each hosting one representation Ri. If we can
find the subspaces Vi,j then we can extract the irreps from the regular representation. The
following theorem is a partial solution to this problem in that it provides projectors for the
subspaces Vi.
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Theorem 2.9. The maps Pi : AG → AG defined by

Pi =
dim(Ri)

|G|
∑
g∈G

χi(g)
∗g : AG → AG (2.18)

are projectors onto the subspace Vi ⊂ AG in Eq. (2.17).

Proof. Denote the irreps and their character by Ri and χi, where i = 1, . . . , k, and define the
maps

ψij ≡
dim(Rj)

|G|
∑
g∈G

χ∗
i (g)Rj(g) .

Since the characters are class functions we know from Lemma 2.1 that ψij = λ1. As before,
we can compute λ by taking the trace.

λ =
1

dim(Rj)
tr(ψ) =

1

|G|
∑
g∈G

χ∗
i (g) tr(Rj(g)) = (χi, χj) = δij .

This means that

Pi|Vj,k = ψij =

{
1 for i = j
0 for i ̸= j

Hence, Pi is a projector onto Vi.

2.5 More examples

Quaternion group (continued)

If we insert characters of for the quaternion group H in Section 2.3 into Eq. (2.18) we can
obtain projectors onto the various subspaces of the group algebra. For example, a projector
onto the subspace which corresponds to the one-dimensional representation Ri is given by

PRi =
1

8
(1 + (−1) + i+ (−i)− j − (−j)− k − (−k)) =: g

It is easy to check that PRi does indeed project onto a one-dimensional subspace, namely
Span(g) ⊂ AH. The representation “matrices” (in this case just numbers since we are con-
sidering a one-dimensional irrep) can be obtained by acting with the elements of H on g and
reading off the pre-factors.

±1g = g , ±ig = g , ±jg = −g , ±kg = −g .

The signs on the right-hand sides of these equations do indeed correctly reproduce the values
of Ri(g), as comparison with the table in Section 2.3 shows. In this same way, we obtain
the projector associated to the two-dimensional representation R2, which is given by PR2 =
1
2(1− (−1)). It projects onto a four-dimensional subspace of AH since a two-dimensional irrep
in contained twice in the group algebra.
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The permutation group Sn

There is much to say about permutation groups and their representations. However, we need
to keep things brief so we will only mention some basic results that relate to our general
discussion of finite groups, without proofs. For more details see, for example, Ref. [1].

Recall that the permutation group Sn is the set of all bijective maps of n objects, so

Sn = {σ : {1, ..., n} → {1, ..., n} |σ is a bijection} .

It is a finite group of order |Sn| = n! with group multiplication given by composition of maps.
The sign of permutations is a map sgn : Sn → {±1} ∼= Z2 which can be defined as

sgn(σ) =
∏
i<j

σ(j)− σ(i)

j − i

It is not too hard to check from this definition that sgn(σ1 ◦ σ2) = sgn(σ1)sgn(σ2), so that
sgn is a group homomorphism - and indeed a non-trivial one-dimensional representation of
Sn. Permutations σ ∈ Sn with sgn(σ) = +1 ( sgn(σ) = −1) are called even permutations
(odd permutations). The kernel of sgn consists of all even permutations which, hence, form
a group, called the alternating group An.

One way to write down a permutation σ is by explicitly listing its images, so

σ =

[
1 2 · · · n

σ(1) σ(2) · · · σ(n)

]
.

All permutations can be written in terms of cycles, that is, subsets of {1, . . . , n} which are
cyclically permuted. For example, the following permutation σ ∈ S9 reads in cycle notation

σ =

[
1 2 3 4 5 6 7 8 9
2 3 4 1 6 5 8 7 9

]
, σ = (1, 2, 3, 4)(5, 6)(7, 8)(9) . (2.19)

To discuss representations of Sn we need to know about its conjugacy classes. In fact, con-
jugacy classes of Sn consist of all permutations with the same length of cycles. We can
label these lengths by partitions of n, that is, by integer vectors λ = (λ1, . . . , λk) with
λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and n = λ1 + · · · + λk. In this language, the permutation σ ∈ S9
in Eq. (2.19) is characterised by the partition of 9 given by (λ1, λ2, λ3, λ4) = (4, 2, 2, 1). So,
in short, conjugacy classes of Sn are labelled by partitions of n. Partitions λ = (λ1, . . . , λk)
of n can also be represented by Young tableaux which consist of n boxes arranged in k
rows, with λi boxes in row i and the length of rows not increasing from top to bottom. For
example, the Young tableau for the conjugacy class of S9 which contains the permutation σ
in Eq. (2.19) is
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So, the conjugacy classes of Sn can be labelled by all the Young tableaux with n boxes. For
a given Young tableau λ = (λ1, . . . , λk) we can define the following subsets of Sn.

Rλ = {σ ∈ Sn | σ preserves each row} , Cλ = {σ ∈ Sn | σ preserves each column}

These are the subsets of permutations which permute the entries in each row (column) of the
Young tableau such that they stay in the same row (column). Based on these two sets we can
define a map Pλ : ASn → ASn by

Pλ = c

∑
σ∈Rλ

σ

×

∑
σ∈Cλ

sgn(σ)σ

 ,

where c ∈ C. It can be shows that, for a suitable choice of c, this map is a projector, so
P 2
λ = Pλ. The irreps of Sn are in one-to-one correspondence with partitions λ so can be writ-

ten as Rλ. Each subspace PλASn of the group algebra contains precisely one irrep Rλ. Note
that this is actually a stronger statement than the one in Theorem 2.9 which only provided a
projector onto a subspace which carries dim(R) copies of an irrep R.
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Chapter 3

Lie groups

The remainder of the course is devoted to Lie groups, their associated Lie algebras and their
representations. These continuous groups have wide-ranging applications in physics, and they
describe most of the symmetries underlying the fundamental theories of physics, such as, for
example, the standard model of particle physics. Examples of Lie groups include the (special)
orthogonal groups SO(n), the (special) unitary groups SU(n) and other, less familiar groups
of matrices. Many of these groups will be explicitly discussed later but first we should develop
the general understanding of Lie groups. The obvious place to start is with their definition.

3.1 The geometry of Lie groups

Definition 3.1. (Lie group) A group G is a Lie group if G is a differentiable manifold and
the group multiplication and inversion are differentiable maps.

Very little can be extracted from this definition unless we know about differential manifolds.
This is of course the subject of a different mathematical field - differential geometry - which
we cannot possibly develop in any detail here. Instead, we will go for a short crash course
(and ask mathematicians to suspend, for the time being, their sense of good mathematical
taste).

Some (very) basic differential geometry

Definition of manifolds

We begin by defining differentiable manifolds.

Definition 3.2. (Differentiable manifold) A differentiable manifold M is a topological
space with charts (Ui, ϕi), where (Ui) is an open cover of M and ϕi : Ui → Vi are homeo-
morphisms (they are continuous and have an inverse which is continuous) into the open sets
Vi ⊂ Rn. Further, the transition functions ϕij = ϕi ◦ ϕ−1

j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are
required to be C∞ functions. The collection (Ui, ϕi)i of all charts is called an atlas of M . The
dimension of M is defined by dim(M) = n.
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The intuitive meaning of this definition is indicated in the figure above. Every chart identifies
a “patch” of the manifold with an open set in Rn and for this reason a manifold can be
thought of as looking locally like Rn. The entire manifold is covered in this way by charts
which, together, form an atlas. Some open sets Ui and Uj will necessarily overlap and their
images under the maps ϕi and ϕj are, in general, two different open sets in Rn which represent
the same parts of the manifold (the regions shaded in red in the above figure). The transition
functions ϕij = ϕi ◦ ϕ−1

j identify those open Rn sets which correspond to the same part of M
and they are required to be differentiable (a meaningful requirement for maps on Rn).

Vector fields

A (infinitely many times) differentiable real function f : M → R on a manifold is a function
such that all “local” functions f ◦ϕ−1

i : Vi → R are (infinitely many times) differentiable. Since
the transition functions are C∞ this definition is consistent in view of the patch overlaps. The
space of such functions is denoted by C∞(M).

Definition 3.3. A vector field on a manifold M is a linear map ξ : C∞(M) → C∞(M)
which satisfies the product rule

ξ(fg) = fξ(g) + ξ(f)g.

We define ξx(f) = ξ(f)(x) for x ∈M

This definition is inspired by Rn where a vector can be used to perform a partial derivative
in the direction of the vector. Of course such partial derivatives are linear and they obey the
product rule for differentiation. The above definition uses these properties as a basis for a
more abstract definition.

The tangent space and tangent map

Definition 3.4. The tangent space at a point x of a manifold M is defined by

TxM = {ξx | ξ is a (local) vector field} .
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The tangent space is a vector space under the obvious addition and scalar multiplication,
defined by (ξx + ξ̃x)(f) = ξ(f)(x) + ξ̃(f)(x) and (αξx)(f) = αξ(f)(x), for two vector fields ξ
and ξ̃.

Maps F : M1 → M2 between two manifolds are called differentiable if their local versions
ϕ2i◦F ◦ϕ−1

1j : V1i → V2j , relative to chart (ϕ1i, U1i) ofM1 and (ϕ2i, U2i) ofM2, are differentiable.
Such differentiable maps between manifolds induce maps between the tangent spaces.

Definition 3.5. For a differentiable map F : M1 → M2 between manifolds M1 and M2, the
tangent map TxF : TxM1 → TF (x)M2 is defined by

TxF (v)(f) ≡ v(f ◦ F ) (3.1)

where x ∈ M1, v ∈ TxM1 and f ∈ C∞(M2). The tangent map is also denoted by F∗, so that,
for a vector field ξ on M1, F∗ξ is a vector field on M2 defined by (F∗ξ)F (x) = TxF (ξx).

So the tangent map maps vector fields on M1 into vector fields on M2, in a way that is con-
sistent with the structure of tangent spaces: if M1 ∋ x 7→ F (x) ∈M2 then TxF maps tangent
vectors in TxM1 to those in TF (x)M2. All this is indicated in the above figure.

Remark 3.1. (i) Consider two differentiable maps G : M1 → M2 and F : M2 → M3. Then,
we have the chain rule

Tx(F ◦G) = TG(x)(F )Tx(G) . (3.2)

This can be seen, using the definition (3.1) of the tangent map. Let f ∈ C∞(M3), v ∈ TxM1

and w = TxG(v), then

Tx(F ◦G)(v)(f) = v(f ◦ F ◦G) = Tx(G)(v)(f ◦ F ) = w(f ◦ F )
= TG(x)(F )(w)(f) = TG(x)(F )Tx(G)(v)(f) . (3.3)

Alternative, the chain rule can be written as (F ◦G)∗ = F∗G∗.

(ii) The tangent map of the identity map idM is TxidM = idTxM , the identity map on the
tangent spaces.

(iii) For an invertible differentiable map F : M1 → M2, we can combine (i) and (ii) to get
(TxF )

−1 = TF (x)(F
−1).
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It is useful to look at some of this in local coordinates. Consider a chart (ϕ,U) of M . With
coordinates (x1, . . . , xn) on Rn (which is an example of a manifold), the tangent map Txϕ :
TxM → Tϕ(x)V = Tϕ(x)Rn associated to the chart map ϕ can be written as

Txϕ(v) = vi(x)
∂

∂xi
.

This provides an explicit local identification of tangent vectors v with first order derivative op-
erators. Since the map ϕ is invertible, so is Txϕ and this implies dim(TxM) = dim(Tϕ(x)Rn) =
n. Hence,

dim(TxM) = dim(M) , (3.4)

that is, the dimension of the tangent space (as a vector space) equals the dimension of the
manifold.

Tangent map in coordinates

Further, consider a differentiable map F : M → N , a chart (ϕ,U) with ϕ(x) = (x1, . . . , xn)
on M and a chart (ψ,W ) with ψ(y) = (y1, . . . , ym) on N . The chart maps ϕ and ψ both
have associated tangent maps which map tangent vectors on M or N to tangent vector in Rn.
These images of tangent vectors can be written as

Txϕ(v) = vi(x)
∂

∂xi
∈ Tϕ(x)Rn , Tyψ(w) = wi(y)

∂

∂yi
∈ Tψ(y)Rm ,

where vi(x) and wi(y) can be viewed as the coordinates of v and w, relative to the two charts.
The local version of F relative to the chosen charts is F ≡ ψ ◦F ◦ ϕ−1 and it is instructive to
work out its tangent map (setting y = F(x))

Tϕ(x)(F)
(
vi∂xi

)
(f)(x) = vi∂xi(f ◦ F)(x) = vi(∂xiF j)(x)(∂yjf)(y) = [DF(x)]ji v

i∂yjf(y) .

The result shows that the local version of the tangent map is described, relative to the basis
of standard partial differentials ∂xi and ∂yj , by the Jacobi matrix DF .

Integral curves and flows

A vector field has associated integral curves which are the curves whose tangent vectors equal
the value of the vector field at every point along the curve. This is illustrated in the figure
below.
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The formal definition of integral curves is as follows.

Definition 3.6. Let ξ be a vector field on M . An integral curve of ξ is a differentiable
curve αξ : [a, b] →M, t ∈ [a, b] 7→ αξ(t) ∈M such that

∂tαξ(t) := Tt(αξ) (∂t) = ξα(t) (3.5)

The left hand-side of Eq. (3.5) is of course symbolic - the partial derivative ∂t = ∂/∂t does
not really have a meaning on an abstract manifold - and is defined by the expression in the
middle. In this context, the partial derivative ∂t should be seen as a tangent vector on the
interval [a, b] (seen as a one-dimensional manifold with coordinate t) which is mapped to the
tangent vector Tt(αξ) (∂t) to the curve. Eq. (3.5) demands that this tangent vector equals the
value ξα(t) at that point and it is a first order ordinary differential equation for αξ. Provided
an initial condition, such as αξ(0) = x ∈ M , is specified it has a unique solution. A flow
combines all these solutions for different initial conditions and is defined as follows.

Definition 3.7. The flow ϕ(t, x) = ϕt(x) of the vector field ξ on M is given by the unique
integral curve with the initial condition ϕ(0, x) = x.

Remark 3.2. (i) The maps s 7→ ϕ(s, ϕ(t, x)) and s 7→ ϕ(s+ t, x) have the same initial value
ϕ(t, x) at s = 0 and the same derivative with respect to s so by uniqueness of the solution they
must be equal. This implies

ϕ(s, ϕ(t, x)) = ϕ(s+ t, x) =⇒ ϕs ◦ ϕt = ϕs+t (3.6)

(ii) The underlying vector field ξ can be recovered from its flow by ∂t|0ϕ(t, x) = ξx.

This concludes our very rudimentary account of basic differential geometry.

We now return to Lie groups. Recall that, in general, a group representation is a group homo-
morphism R : G → GL(V ). Since GL(V ) can be identified with n× n matrices M ∈ GL(Fn)
with det(M) ̸= 0 (and this is an open condition), general linear groups are Lie groups. Hence,
we should think of representations of Lie groups G as Lie group morphisms R : G → GL(V )
into the specific Lie group GL(V ), where Lie group morphisms means that it has to respect
the differential manifold structure, that is, be a differential map, and the group structure, that
is, be a group homomorphism.

Left-invariant vector fields

The interplay between group and manifold structures leads to a number of new features which
we now explore. For a start, the existence of the group structure means that Lie groups G
have special differentiable maps Lg : G→ G, called left translations, defined in terms of the
group multiplication by Lg(x) = gx. The tangent maps of these left translations can be used
to single out specific vector fields on G.

Definition 3.8. A vector field ξ on G is called left-invariant if TxLg(ξx) = ξgx for all
x, g ∈ G. (Equivalently, this can also be written as g∗ξ = ξ.)

This definition might look confusing at first but has, in fact, a very intuitive interpretation
which is illustrated in the figure below.
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On the group manifold G a vector field ξ provides tangent vectors at every point on the
manifold, so in particular at ξx ∈ TxG and ξgx ∈ TgxG. Another way to obtain a tangent
vector in TgxG is to act on ξx with the tangent map TxLg : TxG → TgxG associated to the
left-translation Lg. This gives a vector TxLg(ξx) ∈ TgxG which is, in general, different from
the value ξgx of the vector field at gx. The vector field is called left-invariant iff these two
vectors are equal for all x, g ∈ G.

We denote the space of left-invariant vector fields on G by L(G) and, since the left-invariance
condition is linear, this is clearly a vector space. The left-invariance condition means that
a left-invariant vector field ξ is uniquely determined once we know its value ξx at one (any)
point on G and conversely fixing a vector v ∈ TxG there is a left-invariant vector field with
ξx = v. This means we have a vector space isomorphism

L(G)
∼=→ TeG

ξ 7→ ξe
(3.7)

between the space of left-invariant vector fields and the tangent space at the identity (or any
other tangent space for that matter). The inverse of this map is given by ξe 7→ g∗ξe = ξg.
In particular, the isomorphism (3.7) implies that the (vector space) dimension of L(G) is the
same as the tangent space dimension and, hence, from Eq. (3.4) as same as the dimension of
G as a manifold.

dim(L(G)) = dim(TeG) = dim(G) . (3.8)

The bracket for left-invariant vector fields

Since vector fields ξ, η are derivative operators we can consider their commutator [ξ, η] :=
ξ ◦ η − η ◦ ξ. The following quick calculation in coordinates

[ξ, η] = ξi∂xi ◦ ηj∂xj − ηi∂xi ◦ ξj∂xj =
(
ξi∂xiη

j − ηi∂xiξ
j
)
∂xj

shows that, perhaps contrary to naive expectation, the commutator is still a first order deriva-
tive operator, so it is a vector field as well. What is more, the property of left-invariance is
preserved by the commutator.

Lemma 3.1. If ξ, η are left-invariant vector fields on G, then so is [ξ, η].
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Proof. All the proof requires is a careful calculation, based on the various definitions. We
start with two left-invariant vectors fields ξ and η, so vector fields satisfying g−1

∗ ξ = ξ and
g−1
∗ η = η. It is useful to first work out the left-hand sides of these conditions acting on a
function f : G→ R which gives

g−1
∗ ξx(f) = ξgx(f ◦ g−1) = ξ(f ◦ g−1)(gx) ⇒ g−1

∗ ξ(f) = ξ(f ◦ g−1) ◦ g ,

and similarly for η. Using this equation we re-write the commutator as

[g−1
∗ ξ, g−1

∗ η](f) = g−1
∗ ξ

(
g−1
∗ η(f)

)
− g−1

∗ η
(
g−1
∗ ξ(f)

)
= g−1

∗ ξ
(
η(f ◦ g−1) ◦ g

)
− g−1

∗ η
(
ξ(f ◦ g−1) ◦ g

)
= ξ

(
η(f ◦ g−1

)
) ◦ g − η

(
ξ(f ◦ g−1)

)
◦ g = [ξ, η](f ◦ g−1) ◦ g = g−1

∗ [ξ, η](f) .

Hence, g−1
∗ can be “pulled in and out” of the commutator and this means g−1

∗ [ξ, η] = [g−1
∗ ξ, g−1

∗ η] =
[ξ, η] where the last equality follows from the left-invariance of ξ, η.

3.2 Lie algebras

The previous Lemma shows that the left-invariant vector fields L(G) do not just form a vector
space but also carry a commutator. It is useful to define such a structure more abstractly.

Definition and Lie algebras of a Lie group

Definition 3.9. (Lie algebra) A Lie algebra L is a vector space endowed with a bilinear
bracket operation (called the Lie bracket or sometimes the commutator) [·, ·] : L × L → L
satisfying

(i) [ξ, η] = −[η, ξ] (anti-symmetry)
(ii) [ξ, [η, λ]] + [η, [λ, ξ]] + [λ, [ξ, η]] = 0 (Jacobi identity)

A Lie algebra morphism f : L1 → L2 between two Lie algebras L1 and L2 is a linear map
which preserves the commutator, so f([ξ, η]) = [f(ξ), f(η)] for all ξ, η ∈ L1.

The commutator [ξ, η] := ξ ◦ η − η ◦ ξ of two vector fields is evidently anti-symmetric and a
quick calculation shows that it also automatically satisfies the Jacobi identity.

Exercise 3.1. Show that the vector field commutator [ξ, η] := ξ ◦ η− η ◦ ξ satisfies the Jacobi
identity.

Further, from Lemma 3.1 the left-invariant vector fields L(G) on G are closed under the
commutator and we conclude that L(G) is, in fact, a Lie algebra, also called the Lie algebra
associated to the group G.

Representations of Lie algebras

We have defined representations of a Lie group G as group homomorphisms into the specific
Lie groups GL(V ). The Lie algebra of GL(V ) is given by End(V ), the endomorphisms or linear
maps V → V . (To see this note that GL(V ) ∼= GL(Fn) which is locally like Fn2

and, hence,
has a tangent space Fn2

). Hence, it makes sense to define representations of Lie algebras as
Lie algebra morphisms into the specific Lie algebras End(V ).
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Definition 3.10. (Representation of a Lie algebra) A representation of a Lie algebra L is
a linear map r : L → End(V ) such that

r([ξ, η]) = [r(ξ), r(η)]. (3.9)

for all ξ, η ∈ L.

We can define reducible, irreducible and fully reducible representations of Lie algebras in
complete analogy with the corresponding definitions for (Lie) groups.

Basis on a Lie algebra

In physics applications, it is common to introduce a basis (ξ1, . . . , ξn) on a Lie algebra L. The
commutator [ξi, ξj ] ∈ L must be a linear combination of these basis vectors, so we can write

[ξi, ξj ] = fij
kξk . (3.10)

The constants fij
k which appear in these equations are called the structure constants of the

Lie algebra L. Relative to such a basis, the condition (3.9) for a linear map r : L → End(V )
to be a Lie algebra representation is equivalent to

[r(ξi), r(ξj)] = fij
kr(ξk) ,

for all i, j = 1, . . . , n. This simply means that the Lie algebra basis ξi and their representation
maps r(ξi) have to commute on the same structure constants fij

k and it points to a recipe
for how to find Lie algebra representations: identify linear maps (or matrices) which commute
“in the same way” as the basis elements of the Lie algebra.

3.3 The adjoint representation

Now that we have a vector space - the Lie algebra - associated to a Lie group it is natural to
ask if we can represent the Lie group (and the Lie algebra) on this vector space. This leads
to a specific and important representation called the adjoint representation.

Adjoint at the group level

As a preparation, we introduce the conjugation map

Cg : G→ G , Cg(x) = gxg−1 ,

which acts simply by conjugating its argument with g ∈ G. Such a conjugation with a fixed
group element defines an automorphism Cg ∈ Aut(G) (where Aut(G) is the group which
consists of all invertible group homomorphism G → G). This means we also have a group
homomorphism

C : G→ Aut(G) , g 7→ Cg ,

which assigns to a group element g the associated conjugation automorphism Cg. We can
check that C is indeed a group homomorphism by

Cg1g2(x) = g1g2x(g1g2)
−1 = g1(g2xg

−1
2 )g−1

1 = Cg1 ◦ Cg2(x) ⇒ Cg1g2 = Cg1 ◦ Cg2 . (3.11)

Note that Cg(e) = e - the group identity is invariant under conjugation - so that the tangent
map TeCg : TeG → TeG is a map from the tangent space at e to itself. This observation
facilitates the following definition.
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Definition 3.11. (Adjoint representation of a Lie group) The adjoint representation of a
Lie group G is a representation Ad : G → GL(L(G)) of the Lie group on its own Lie algebra
L(G) ∼= TeG defined by

Ad(g) = TeCg : TeG→ TeG (3.12)

We should convince ourselves that Ad is indeed a representation:

Ad(g1g2) = Te(Cg1g2)
(3.11)
= Te(Cg1 ◦ Cg2)

(3.3)
= TeCg1 ◦ TeCg2 = Ad(g1) ◦Ad(g2) .

Adjoint at the algebra level

In order to define a corresponding representation of the Lie algebra L(G) we can use the
tangent map TeAd of the adjoint representation. Since Ad(e) = id it maps the Lie-algebra
L(G) ∼= TeG of G into the Lie-algebra End(L(G)) of GL(L(G)), so that the following definition
makes sense.

Definition 3.12. (Adjoint representation of Lie algebra) The adjoint representation ad :
L(G) → End(L(G)) of the Lie algebra L(G) on itself is defined by ad = TeAd.

While it was quite straightforward to show that Ad is a group representation, showing that
ad is a Lie algebra representation is a bit more involved. To do this, we have to think about
flows.

For a vector field ξ on Lie group G with flow ϕ we can think about the specific integral curve

αξ(t) = ϕ(t, e) (3.13)

which passed through the identity, that is, αξ(0) = e. If ξ is a left-invariant vector field then
the entire flow can be reconstructed from this curve by

ϕ(t, x) = xαξ(t) . (3.14)

This follows because the two sides of Eq. (3.14) satisfy the same initial condition, ϕ(0, x) = x
and xα(0) = xe = x, and because the right-hand side satisfies the same differential equation
as the flow ϕ:

∂t|0(xαξ(t) = T0(Lx ◦ αξ)(∂t)
(3.3)
= Tαξ(0)Lx ◦ T0αξ(∂t) = TeLx(ξe) = ξx ,

where left-invariance of ξ has been used in the last step. Further, the integral curve αξ satisfies
the nice property

αξ(s+ t) = αξ(s)αξ(t) (3.15)

which follows from

αξ(s+ t)
(3.13)
= ϕ(s+ t, e)

(3.6)
= ϕ(t, ϕs(e))

(3.14)
= ϕs(e)αξ(t)

(3.13)
= αξ(s)αξ(t) .

We are now ready to prove the crucial theorem which expressed the ad representation in terms
of the commutator.

Theorem 3.2. ad(ξe)(ηe) = [ξ, η]e
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Proof. We start with two left-invariant vector fields ξ and η on G with associated curves αξ
and αη, defined as in Eq. (3.13). The goal is to work out the expression ad(ξe)(ηe) step by
step, following the definition of Ad and ad. We start with the conjugation map.

Cαξ(s)(αη(t)) = αξ(s) · αη(t) · αξ(s)−1 = αξ(s) · αη(t) ◦ αξ(−s) .

For the group adjoint this implies

Ad(αξ(s))ηe = Te(Cαξ(s))ηe = Te(Cαξ(s))T0(αη) (∂t) = T0(Cαξ(s)◦αη) (∂t) = ∂t|0αξ(s)·αη(t)·αξ(−s)

which translates into

ad(ξe)(ηe) = TeAd(ξe)(ηe) = TeAd T0αξ (∂s) (ηe) = T0(Ad ◦ αξ) (∂s) ηe = ∂s|0Ad(αξ(s))ηe
= ∂s∂t|0 αξ(s) · αη(t) · αξ(−s)

and finally

ad(ξe)(ηe)(f) = ∂s∂t|0 f(αξ(s) · αη(t) · αξ(−s))
= ∂s∂t|0 f(αξ(s) · αη(t))− ∂s∂t|0 f(αη(t) · αξ(s)) = ξeηe(f)− ηeξe(f) .

Corollary 3.1. The adjoint representation ad : L(G) → End(L(G)) is a Lie algebra
representation.

Proof. This follows by combining the previous theorem with the Jacobi identity.

ad([ξ, η])(λ)
Thm. (3.2)

= [[ξ, η], λ]
Jacobi
= [ξ, [η, λ]]− [η, [ξ, λ]]

= ad(ξ) ◦ ad(η)(λ)− ad(η) ◦ ad(ξ)(λ) = [ad(ξ), ad(η)](λ)

Adjoint representation in a basis

Suppose we choose a basis (ξ1, . . . , ξn) on L(G) and we want to work out the representation
matrices of ad relative to this basis. From the previous corollary and Eq. (3.10) it follows that

ad(ξi)(ξj) = [ξi, ξj ] = fij
kξk (3.16)

and, hence, that the representation matrices relative to this basis are given by the structure
constants, so

[ad(ξi)]
k
j = fij

k . (3.17)

Relation between group and algebra

We have now introduced Lie groups and their Lie algebras and we understand - at least in
principle - how to obtain the algebra from the group. For both the group and the algebra
we have defined morphisms (representations) and we have just seen an example of a group
representation, the adjoint, leading to a representation of its Lie algebra via taking the tan-
gent map at the identity. All this suggests a close correspondence between Lie groups, their
associated algebras and representations and leads to a set of questions.
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(1) Is it always true that the tangent map at e of a group homomorphism (a representation)
is a Lie algebra homomorphism (a representation of the Lie algebra)?

(2) Are all Lie algebra homomorphisms tangent maps at e of group homomorphisms?

(3) Can the Lie group be “recovered” from the Lie algebra?

Question (1) can be answered by carefully thinking about the various definitions involved and
expressing them in terms of diagrams.

These diagrams commute which means that either of the two paths from the upper left to
the lower right leads to the same results. That this is the case can be checked by explicit
calculation.

F ◦ Cg(x) = F (gxg−1) = F (g) ◦ F (x) ◦ F (g)−1 = CF (g) ◦ F (x) (3.18)

Te(F ) ◦Ad(g) = Te(F ) ◦ Te(Cg) = Tẽ(CF (g)) ◦ Te(F ) = Ad(F (g)) ◦ Te(F ) (3.19)

A further, related diagram is

whose commutativity

Te(F ) ◦ ad(ξ)(η) = ad ◦ Te(F )(ξ) ◦ Te(F )(η) ⇒ Te(F )([ξ, η]) = [Te(F )ξ, Te(F )η]

follows by taking the tangent map of Eq. (3.19) and it directly implies that Te(F ) is a Lie
algebra morphism. Conversely, we have the following theorem.

Theorem 3.3. A linear map f : L(G) → L(G̃) is the tangent map of a group homomorphism
F (so f = Te(F ) = F∗) iff f is a Lie algebra homomorphism.

Proof. See Ref. [1], p. 119.

We have now answered questions (1) and (2) and in both cases the answer is “yes”.
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3.4 The exponential map

In order to address question (3) we need to discuss the exponential map which reconstructs
the Lie group from its Lie algebra.

Definition 3.13. For a left-invariant vector field ξ on G with v = ξe we have an integral
curve αv with initial condition αv(0) = e. Then, the exponential map Exp : TeG → G is
defined by Exp(v) = αv(1).

Note that we have identified the tangent space at e with the Lie algebra, so Exp is indeed a
map from the algebra into the group. Its geometrical interpretation is indicated in the figure
below.

The exponential map has the following properties.

Theorem 3.4. The exponential map

(1) is differentiable at the origin and T0(Exp) = idL(G).

(2) maps L(G) ∼= Te(G) diffeomorphically into a neighbourhood of e ∈ G.

(3) satisfies F◦Exp = Ẽxp ◦ Te(F ) for a group homomorphism F : G→ G̃.

Proof. (1) The fact that Exp is differentiable at the origin follows from general theorems on
solutions to differential equations. For the second part of the statement we first note that the
two integral curves s 7→ αtv(s) and s 7→ αv(ts) have the same tangent vector tv at e and must,
hence, be equal. If we define the map mv by mv(t) = tv we have

Exp ◦mv(t) = Exp(vt) = αvt(1) = αv(t)
∂t|0
=⇒ T0Exp ◦ ṁv(0)︸ ︷︷ ︸

=v

= v

(2) Since T0Exp = idL(G), the exponential map is locally diffeomorphic by the inverse function
theorem.

(3) If αv is an integral curve for a left-invariant vector ξ with ξe = v on G then βw =
F ◦ αv is an integral curve on G̃, associated to the left-invariant vector field ξ̃ with ξ̃ẽ = w.
(Group homomorphisms map left-invariant vector fields to left-invariant vector fields and this
is checked in the lemma below.) We have

w = β̇w(0) = TeF (α̇v(0)) = TeF (v)

and, hence,

Ẽxp ◦ TeF (v) = Ẽxp(TeF (v)) = Ẽxp(w) = βw(1) = F ◦ αv(1) = F ◦ Exp(v) .
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Lemma 3.2. If F : G→ G̃ is a group homomorphism and ξ is a left-invariant vector field on
G, then ξ̃ = F∗(ξ) is a left-invariant vector field on G̃.

Proof. We start with x, g ∈ G, a left-invariant vector ξ on G and their images x̃ = F (x),
g̃ = F (g) and ξ̃ = F∗(ξ) under F . As a first step, we express the left-translation Lg̃ on G̃ in
terms of the left-translation Lg on G.

Lg̃ ◦ F (x) = Lg̃x̃ = g̃x̃ = F (g)F (x) = F (gx) = F ◦ Lg(x) ⇒ Lg̃ ◦ F = F ◦ Lg .

We need to check the left-invariance condition for x̃.

Tx̃Lg̃(ξ̃x̃) = Tx̃Lg̃ ◦ TxF (ξx) = Tx(Lg̃ ◦ F )(ξx) = Tx(F ◦ Lg)(ξx)
= TgxF ◦ TxLg(ξx) = TgxF (ξgx) = ξ̃F (gx) = ξ̃g̃x̃

Our results mean that Lie groups can, at least locally, be recovered from the Lie algebra 1

This means we can consider classifying Lie groups by classifying their algebras. Moreover,
Theorem 3.4 (3), which translates into the commutative diagram

facilitates studying Lie group representations in terms of representations of the associated Lie
algebras. We start with a Lie group G, work out its Lie-algebra L(G) and find a representation
r : L(G) → End(V ) of this Lie algebra. The corresponding Lie group representation R : G→
GL(V ) with TeR = r can be obtained by exponentiating.

3.5 Matrix Lie groups

Many of the Lie groups we will consider are matrix Lie groups, that is, Lie groups G ⊂ GL(Fd)
which consist of non-singular d× d matrices with real or complex entries. For this reason and
also in order to dial down the level of formality it makes sense to work out what we have
developed so far for the case of matrix Lie groups.

Notation

To do this we work in a chart around the group identity 1d and parametrise the matrices in
G as g = g(t), where t = (t1, . . . , tn) ∈ Rn are the parameters and we adjust conventions such
that g(0) = 1d. Further, we use µ, ν, . . . = 1, . . . , d as matrix indices, so the d × d matrix g
has entries gµ

ν .

1In fact, there is a somewhat stronger result which states that the entire component of G connected to e is
obtained by exponentiating the Lie algebra [1].
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Vector fields

Vector fields ξ on the matrix Lie group can be written as

ξt = ξi(t)
∂

∂ti
= ξi(t)

∂gµ
ν

∂ti
(t)

∂

∂gµν
= ξi(t) tr

(
∂g

∂ti
(t)

∂

∂gT

)
, (3.20)

where the last expression is just a short-hand for the one with indices in the middle.

Generators

The generators of G are d× d matrices defined by

Ti =
∂g

∂ti
(0) , (3.21)

so that we can expand the group matrices near the identity as g(t) = 1d + Tit
i +O(t2).

Tangent space at identity

The tangent space at the identity consists of the value ξt=0 of vector fields which, from
Eq. (3.20), can be written as

ξt=0 = ξi(0) tr

(
Ti

∂

∂gT

)
(3.22)

so that the tangent space at the identity can be written as

T1G =

{
vi tr

(
Ti

∂

∂gT

)
| v ∈ Rn

}
∼= {viTi | v ∈ Rn} ∼= L(G) . (3.23)

The conclusion is that the tangent space at the identity (which is isomorphic to the Lie algebra
from our general arguments) is the vector space of matrices spanned by the generators.

Left-invariant vector fields

Next, we would like to work out a more explicit form for the left-invariant vector fields on G.
The left-translation, Lg(x) = gx on g is just matrix multiplication, so we have

(gx)µ
ν = gµ

τxτ
ν ⇒ (TxLg)

νρ
µσ =

∂(gx)µ
ν

∂xρσ
= gµ

τδρτ δ
ν
σ = gµ

ρδνσ .

Inserting a vector field ξ in the form (3.22) into the left-invariance condition ξgx = TxLg(ξx)
gives

ξi(gt)
∂gµ

ν

∂ti
(gx)

∂

∂gµν
= (TxLg)

νρ
µσξ

i(t)
∂gρ

σ

∂ti
(x)

∂

∂gµν

and replacing the tangent map by the above result, stripping off the differentials ∂/∂gµ
ν and

writing the result in matrix form gives

ξi(gt)
∂g

∂ti
(gx) = ξi(t)g

∂g

∂ti
(x)

x=1,t=0
=⇒ ξi

∂g

∂ti
= ξi(0)gTi .

We should think about the last equation as a differential equation which specifies the left-
invariant vector field ξ, with components ξi whose value at t = 0 is ξi(0). Denote by Li = ξji ∂tj ,
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where i = 1, . . . , n, a basis of left-invariant vector fields, characterised by ξji (0) = δji . These
satisfy

ξji
∂g

∂tj
= gTi . (3.24)

Hence, the left-invariant vector fields Li can be written as

Li = ξji
∂

∂tj
= ξji tr

(
∂g

∂tj
∂

∂gT

)
= tr

(
gTi

∂

∂gT

)
⇒ Li,1 = tr

(
Ti

∂

∂gT

)
The last expression shows that the identification L(G) ∼= T1G is explicitly given by Li 7→ Ti.
In effect, this means we can think of the Lie algebra as the span of the generators - a much
more concrete realisation than the one by left-invariant vector fields. What remains is to
translate a number of operations which we have formulated in terms of left-invariant vector
fields into the language of generators.

Commutator

The first of these is the commutator.

[Li, Lj ] = tr

(
gTi

∂

∂gT

)
◦ tr

(
gTj

∂

∂gT

)
− (i↔ j) = tr

(
g[Ti, Tj ]

∂

∂gT

)
∈ L(G) (3.25)

Here, the expression [Ti, Tj ] is the matrix commutator and since the right-hand side of Eq. (3.25)
must be in the Lie algebra it follows that [Ti, Tj ] must be a linear combination of the generators.
Hence, we can write

[Ti, Tj ] = fij
kTk (3.26)

for structure constants fij
k and inserting this back into Eq. (3.25) shows that these are, in fact,

the same as the structure constants for Li, so [Li, Lj ] = fij
kLk. The upshot of this discussion is

that, instead of having to work with left-invariant vector fields (first order derivative operators)
and their commutators we can instead work with the generators and the matrix commutator.

Exponential map

The next step is to translate the exponential map into the language of generators. Consider a
left-invariant vector field ξi = vjξij and define the associated generator T = viTi. The integral

curve ti = ti(s) and αv(s) = g(t(s)) of this left-invariant vector field satisfy the differential
equation

dti

ds
= vjξij ⇒ dαv

ds
=
∂g

∂ti
dti

ds
=
∂g

∂ti
vjξij

(3.24)
= vjgTj = αv(s)T

with initial condition αv(0) = g(t(0)) = g(0) = 1. The solution is simply αv(s) = exp(sT ),
where exp is the matrix exponential. Hence, the exponential map in terms of generator is

Exp(T ) = αv(1) = exp(T ) ,

that is, it is the matrix exponential.
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Ad representation

Recall that conjugation was defined as Cg(x) = gxg−1. For a group element g ∈ G and a
matrix T ∈ L(G) It follows that

Ad(g)(T ) = TeCg(T )
Thm. (3.4)

= exp−1 ◦Cg◦ exp(T ) = exp−1(geT g−1) = g exp−1(eT )g−1 = gTg−1 .

So the simple conclusion is that, expressed in matrix language, the adjoint representation
amounts to a conjugation

Ad(g)(T ) = gTg−1 (3.27)

of the Lie algebra matrix T by the group elements g.

ad representation

From Theorem (3.2) and the fact that vector field commutators translate to matrix commu-
tators, we know that for two matrices T, S ∈ L(G) we have

ad(T )(S) = [T, S] (3.28)

On the generators (Ti) we have ad(Ti)(Tj) = [Ti, Tj ] = fij
kTk so that the representing matrices

for the generators, relative to the generator basis, are [ad(Ti)]
k
j = fij

k, which is of course a
version of Eq. (3.16).

Summary

In summary, for matrix Lie groups we have now translated a somewhat abstract story in
differential geometry into a straightforward exercise in matrix computations. The generators
Ti of the matrix Lie group G can be computed from Eq. (3.21) and they span the Lie algebra
L(G) which is now a vector space of matrices with the matrix commutator as the commutator
bracket. The exponential map is simply the matrix exponential and the adjoint acts by
conjugation as in Eq. (3.27).

3.6 Simple examples: SU(2) and SO(3)

It is now time to practice some of the above ideas in the context of simple examples: the Lie
groups SU(2) and SO(3) which, as we will see, are closely related.

Definition of groups

The group SU(2) consists of 2× 2 unitary matrices with determinant one, so

SU(2) = {U ∈ GL(C2) |U †U = 12 , det(U) = 1}

=

{(
α β

−β∗ α∗

)
|α, β ∈ C, |α|2 + |β|2 = 1

}
∼= S3 . (3.29)

This is evidently a subgroup of GL(C2) since it contains the unit matrix, it is closed under
multiplication and it contains the inverse. The explicit form in Eq. (3.29) can be obtained
by inserting an arbitrary complex 2× 2 matrix into the defining equations. It shows that, as
a manifold, SU(2) is the same as the three-sphere S3. The orthogonal group O(3) and the
rotation group SO(3) in three dimensions are defined as

O(3) = {R ∈ GL(R3) |RTR = 13} , SO(3) = {R ∈ O(3) |det(R) = 1} . (3.30)
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Exercise 3.5. Show that SU(2) is a subgroup of GL(C2). Derive the explicit form for SU(2)
matrices in Eq. (3.29). Further, show that O(3) and SO(3) are subgroups of GL(R3).

The orthogonality condition RTR = 13 implies that det(R) ∈ {±1}, so, with the matrix
P = −13, also referred to as parity, we can write the orthogonal group as a disjoint union

O(3) = SO(3) ∪ P (SO(3)) . (3.31)

of rotations and rotations times parity. Since the determinant cannot jump from +1 to −1
along a continuous path, these two components are path disconnected.

Lie algebra of SU(2)

To compute the Lie algebra we can either write down a parametrisation of the group and use
Eq. (3.21) or, if the group is defined in terms of constraints, work out the linearised version
of these constraints.

Exercise 3.6. Start with the parametrisation (3.29) of SU(2) and use Eq. (3.21) to work out
the SU(2) generators and Lie algebra.

We use the latter method and write U = 12+T+O(T 2), insert this into the defining equations
and read off the linear constraint on T .

U †U = 12 + T + T † +O(T 2)
!
= 12 ⇒ T = −T †

det(U) = 1 + tr(T ) +O(T 2)
!
= 1 ⇒ tr(T ) = 0

(Of course, this is just a quick way of differentiating the defining relations with respect to the
parameters ti and evaluating the results at t = 0. For example, differentiating U †U = 12 in
this way leads to ∂iU

†U + U †∂iU = 0 and evaluating at t = 0, remembering that U(0) = 12

and ∂iU(0) = Ti gives T
†
i + Ti = 0.) Hence, the Lie algebra of SU(2) is given by the three-

dimensional vector space of anti-hermitian 2 traceless 2× 2 matrices

su(2) = L(SU(2)) = {T ∈ End(C2) |T = −T † , tr(T ) = 0} = Span(τ1, τ2, τ3) , (3.32)

where τi = −iσi/2 and σi are the Pauli matrices (which are hermitian, traceless and linearly
independent and can hence be used to form a basis of su(2)).

This is probably a good place to collect some properties of Pauli matrices before we carry
on. We have already seen the key relation

σiσj = δij12 + iϵijkσk . (3.33)

Exchanging the indices i and j in this equation and subtracting from or adding to the original
leads to the commutator and anti-commutator of the Pauli matrices.

[σi, σj ] = 2iϵijkσk , {σi, σj} = 212δij . (3.34)

In particular, these relations imply that the Pauli matrices square to one and anti-commute,
so

σ2i = 12 , σiσj = −σjσi for i ̸= j (3.35)

2By writing U = 12 + T + · we are using the convention prevalent in mathematics. In the physics literature
U = 12 + iT + · is more common and this leads to hermitian, rather than anti-hermitian matrices T .
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both of which are useful properties for computation. Taking the trace of Eq. (3.33) (and
remembering that σi have vanishing trace) leads to

tr(σiσj) = 2δij . (3.36)

The complex conjugate of the Pauli matrices is σ∗1 = σ1, σ
∗
2 = −σ2 and σ∗3 = σ3 and, using

Eq. (3.35), this can also be written more concisely as

σ2σ
∗
i σ2 = −σi . (3.37)

The Pauli matrix commutation relations (3.34) immediately translate into the su(2) commu-
tation relations

[τi, τj ] = ϵij
kτk (3.38)

and, hence, the su(2) structure constants are given by fij
k = ϵij

k. This means the represen-
tation matrices of the adjoint representation ad, relative to the basis (τi), are [ad(τi)]

k
j = ϵij

k

or, written as matrices Ti = [ad(τi)], they are

T1 =

 0 0 0
0 0 −1
0 1 0

 , T2 =

 0 0 1
0 0 0

−1 0 0

 , T3 =

 0 −1 0
1 0 0
0 0 0

 . (3.39)

Lie algebra of (S)O(3)

We proceed as before and write R = 13 + T +O(T 2) and work out the linearised constraint

RTR = 13 + T + T T +O(T 2)
!
= 13 ⇒ T = −T T .

Since the trace of antisymmetric matrices vanishes automatically the condition det(R) = 1
does not lead to any additional constraint. We conclude that the Lie algebra of O(3) and
SO(3) are the same (not surprising given they only differ in their global structure but are the
same near the identity) and are given by the three-dimensional vector space of anti-symmetric
matrices

(s)o(3) = L((S)O(3)) = {T ∈ End(R3) |T = −T T } = Span(T1, T2, T3) , (3.40)

with the matrices Ti in Eq. (3.39) as a basis. Their commutation relations are

[Ti, Tj ] = ϵij
kTk (3.41)

so we have the same structure constants, fij
k = ϵij

k, as for su(2). This means that the linear
map defined by τi 7→ Ti is a Lie algebra (iso)morphism and that so(3) is, in fact, the adjoint
representation of su(2).

Exponential map

For the case of SU(2) the exponential map can be explicitly worked out, thanks to the rela-
tion (3.33), and this results in

exp(viTi) = cos

(
|v|
2

)
12 − i sin

(
|v|
2

)
viσi
|v|

. (3.42)

By comparing with Eq. (3.29) it is not hard to see that the image of exp is, in fact, all of
SU(2).
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Fundamental representation

For matrix groups, the representation defined by the matrices themselves is also called the
fundamental representation. Hence, the fundamental representation R of SU(2) is two-
dimensional. Its complex conjugate representation R∗ satisfies

R∗(U) = U∗ = exp(T ∗)
(3.37)
= σ2 exp(T )σ

−1
2 = σ2Uσ

−1
2 . (3.43)

This shows that the fundamental representation R of SU(2) and its complex conjugate rep-
resentation R∗ are equivalent. However, R is not real, since the matrices U contain complex
entries, but rather pseudo-real. The fundamental representation of SO(3) is three dimensional
and this is clearly a real representation.

Adjoint representation

We have seen above, that the ad representation of the Lie algebra su(2) leads to the Lie algebra
so(3). We would now like to study the corresponding relationship at the level of groups by
constructing the Ad representation of SU(2). We recall that the adjoint is a representation
of the group on its own Lie algebra so, for SU(2), it is a representation on the vector space
su(2) = Span(τ1, τ2, τ3). We identify this vector space with R3 by introducing the map

φ : R3 ∼=−→ su(2) , φ(X) = Xiτi .

With this definition and thanks to Eq. (3.36) the dot product in R3 can be written as

X · Y = −2 tr(φ(X)φ(Y )) . (3.44)

Instead of looking at the adjoint representation Ad : SU(2) → GL(su(2)) with Ad(U)(T ) =
UTU † directly we consider the equivalent representation R : SU(2) → GL(R3) defined by

R(U) = φ−1 ◦Ad(U) ◦ φ ⇔ σ · (R(U)X) = U(X · σ)U † , (3.45)

where σ = (σ1, σ2, σ3) is a formal vector which contains the three Pauli matrices. It is not too
hard to verify that the representation R is unitary, relative to the dot product.

(R(U)X) · (R(U)Y )
(3.44)
= −2 tr(φ(R(U)X)φ(R(U)Y ))

(3.45)
= −2 tr(Ad(U)(φ(X))Ad(U)(φ(Y )))

= −2 tr(Uφ(X)U †Uφ(Y )U †) = −2 tr(φ(X)φ(Y ))
(3.44)
= X · Y

The immediate conclusion is that R(U) ∈ O(3), so the matrices R(U) are orthogonal. In fact,
since R(12) = 13 and SU(2) ∼= S3 is path connected it is clear that R(U) must be in the
component of O(3) path connected to the identity, that is, R(U) ∈ SO(3). The kernel of R
can be worked out from Schur’s Lemma. For U ∈ Ker(R) we have

R(U) = 13 ⇔ T = UTU † ∀T ∈ su(2) ⇔ [T,U ] = 0 ∀T ∈ su(2) ⇔ U = λ12

The only values of λ for which λ12 ∈ SU(2) are λ = ±1, so we conclude that Ker(R) =
{±12} ∼= Z2. It can also be shown that R : SU(2) → SO(3) is surjective, so the isomorphism
theorem for groups implies that

SO(3) ∼=
SU(2)

Z2
. (3.46)

So we see that SO(3) is indeed the adjoint representation of SU(2), as suggested by the
results on the Lie algebra level. Eq. (3.46) is sometimes expressed by saying that SU(2) is
a two-fold cover of SO(3): Any pair U,−U ∈ SU(2) is mapped to the same rotation matrix
R(U) = R(−U) ∈ SO(3).
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Chapter 4

Lie algebras

It is now time to look at Lie algebras in their own right and collect some information about
their structure. In this chapter we will be working with a Lie algebra L with bracket [·, ·],
typical elements denoted by T, S, . . ., basis (Ti), where i, j, . . . = 1, . . . , n, and commutators
[Ti, Tj ] = fij

kTk. The adjoint representation ad : L → GL(L) is given by ad(S)(T ) = [S, T ].

4.1 Structure of Lie algebras

We need to start with a definition which collects the various notions we require to describe
the structure of a Lie algebra.

Basic definitions and terminology

Definition 4.1. For a Lie algebra L we have the following definitions:

(i) A subset A ⊂ L is called a (Lie) sub-algebra iff A is a linear subspace and [A,A] ⊂ A.
(ii) A sub-algebra is called Abelian iff [A,A] = 0.
(iii) A sub-algebra is an ideal iff [L,A] ⊂ A. An ideal is called non-trivial iff A ≠ {0},L.
(iv) The derived series {DkL} of L is defined by D1L = [L,L] and DkL = [Dk−1L,Dk−1L].
(v) L is called solvable iff DkL = 0 for some k.

The following definition sets up the most important structural features of Lie algebra, sim-
plicity and semi-simplicity.

Definition 4.2. A Lie algebra L is called

(i) simple iff it contains no non-trivial ideals.
(ii) semi-simple iff it contains no non-zero solvable ideals.

An alternative and equivalent way to define semi-simplicity is:

Lemma 4.1. L semi-simple ⇐⇒ L has no non-zero Abelian ideals.

Proof. ”⇒” We prove this indirectly, so assume that L has a non-zero Abelian ideal A. Then
D1A = [A,A] = 0 implies that A is solvable, and therefore L is not semi-simple.

“⇐” It is straightforward to show (from the Jacobi identity) that for an ideal A ⊂ L the entire
derived series DkA consists of ideals. Now assume that L is not semi-simple and, hence, has
a non-zero solvable ideal A. Then there is a k such that Dk−1A ̸= 0 and DkA = 0 and it
follows that Dk−1A is a non-zero Abelian ideal.
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Example 4.1: (Lie algebras of U(1) and SU(2))

The Lie algebra of U(1) is u(1) = R which is Abelian. Hence, u(1) has a non-zero Abelian
ideal (all of u(1)) and is not semi-simple.

The Lie algebra su(2) is spanned by matrices τi with [τi, τj ] = ϵijkτk. If the write a · τ = aiτi
for a vector a ∈ R3, then [a · τ, b · τ ] = (a × b) · τ , where × denotes the cross product. This
relation shows that neither a one-dimensional subspace Span(a · τ), nor a two-dimensional
subspace Span(a · τ, b · τ) can be an ideal. Hence, su(2) is simple. □

Decomposition of Lie algebras

The next statement is a technical one which will allow us to define the radical of Lie algebra.

Lemma 4.2. If B, C ⊂ L are solvable ideals, then so is A = B + C.

Proof. Let B, C both be solvable ideals. Then A = B + C clearly is an ideal and all we need
to show is that it is solvable. We start by observing that DiA = D1B + DiC + Ai, where
Ai ⊂ B ∩ C. To see this, consider, for example, D1A = [B + C,B + C] = D1B + D1C + [B, C]
and observe that A1 := [B, C] ⊂ B ∩ C since both B and C are ideals. For higher entries DiA
in the derived series the statement follows analogously.

Since B and C are both solvable there exists a k with DkB = DkC = 0. It follows that
DkA = Ak ⊂ B ∩ C ⊂ B. Hence, D2kA ⊂ DkB = 0 and therefore A is solvable.

We now define the radical which is the obstruction to L being semi-simple.

Definition 4.3. The sum of all solvable ideals in L is called the radical rad(L) of L.

It turns out, every Lie algebra can be written as a semi-direct sum of the radical and a
semi-simple part.

Theorem 4.1. (Levi) A Lie algebra L can be written as L = P ⊕S A, where P = rad(L) is
the radical and A is semi-simple. (The semi-direct product refers to a direct sum of vector
spaces and commutators of the form [P,P] ⊂ P, [A,A] ⊂ A and [P,A] ⊂ P.)

Proof. Ref. [1], p. 499.

Theorem 4.2. A semi-simple Lie algebra L is a direct sum of L = L1 ⊕ · · · ⊕ Lk of simple
Lie algebras Li. (The direct sum refers to a direct vector space sum and the commutators
[Li,Lj ] = 0 for i ̸= j.)

Proof. Ref. [1], p. 480.

Combining the previous two theorems we learn that every Lie algebra L can be written in the
form

L = rad(L)⊕S (L1 ⊕ · · · ⊕ Lk) (4.1)

where the Li are simple and commute with each other.

Example 4.2: (Structure of Lie algebras)

Consider the direct product group G = G1 ×G2 of two Lie groups G1 and G2. This is again
a Lie group with Lie algebra L(G) ∼= TeG = TeG1 ⊕ TeG2

∼= L(G1) ⊕ L(G2) (and the sum is
direct since vectors fields on G1 commute with those on G2). Hence, a direct product of Lie
groups leads to a direct sum of the associated Lie algebras.
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For example, the Lie algebra for SU(2)× SU(2)

L(SU(2)× SU(2)) =

simple︷ ︸︸ ︷
su(2)⊕

simple︷ ︸︸ ︷
su(2)︸ ︷︷ ︸

semi−simple

is a direct sum of two simple algebras (since su(2) is simple), so it is semi-simple. On the
other hand, this Lie algebra for U(1)× SU(2)× SU(2) is

L(U(1)× SU(2)× SU(2)) = L = u(1)︸︷︷︸
radical

⊕
simple︷ ︸︸ ︷
su(2)⊕

simple︷ ︸︸ ︷
su(2)︸ ︷︷ ︸

semi−simple

is not semi-simple, since u(1) is a non-zero Abelian ideal. In fact, comparing with Eq. (4.1),
rad(L) = u(1) is the radical and L1 = L2 = su(2) are the simple parts. □

The following statement relates simplicity and semi-simplicity to properties of the adjoint
representation.

Proposition 4.1. The adjoint representation ad : L → End(L) satisfies:
(i) If L is semi-simple then ad is faithful.
(ii) If L is simple ad is irreducible.

Proof. (i) We prove this indirectly and assume that ad is not faithful. This means that
Ker(ad) ̸= 0 and there must be a non-zero T ∈ L such that ad(T )(S) = [T, S] = 0 for all
S ∈ L. This implies that Span(T ) is a non-zero Abelian ideal so that L is not semi-simple.

(ii) Again, we do this indirectly and assume that ad is reducible. This means there exists a
non-trivial subspace A ⊂ L such that ad(T )A ⊂ A for all T ∈ L. It follows that [L,A] ⊂ A
so A is a non-trivial ideal and L is not simple.

4.2 The Killing form

A Lie algebra carries a symmetric bi-linear form, the Killing form, which plays an important
role in analysing the structure of Lie algebras and is defined as follows.

Definition of Killing form

Definition 4.4. The symmetric bilinear form Γ : L × L → C defined by

Γ(T, S) = tr(ad(T )ad(S)) (4.2)

is called the Killing form of L

Remark 4.1. We can use the representation matrices (3.17) of the adjoint representation to
compute the Killing form γij = Γ(Ti, Tj) relative to a basis (Ti).

γij = Γ(Ti, Tj) = tr(ad(Ti)ad(Tj)) = [ad(Ti)]
l
k [ad(Tj)]

k
l = fik

lfjl
k (4.3)

Then, the Killing form of two Lie algebra elements T = viTi and S = wjTj can be written as
Γ(T, S) = γijv

iwj.

55



It turns out the adjoint representation is anti self-adjoint relative to the Killing form.

Proposition 4.2. (Property of Killing form) The Killing form satisfies

Γ(T, ad(U)S) = −Γ(ad(U)T, S) (4.4)

Proof.

Γ(T, ad(U)S) = Γ(T, [U, S]) = tr(ad(T ) ◦ ad([U, S])) = tr(ad(T ) ◦ [ad(U), ad(S)])

= tr(ad(T ) ◦ ad(U) ◦ ad(S))− tr(ad(T ) ◦ ad(S) ◦ ad(U))

= tr([ad(T ), ad(U)] ◦ ad(S)] = tr(ad([T,U ] ◦ ad(S)) = Γ([T,U ], S)

= −Γ(ad(U)T, S)

Kiling form and Lie algebra structure

The Killing form Γ is called (non-degenerate) iff Γ(T, S) = 0 for all T ∈ L implies that S = 0.
Equivalently, Γ is non-degenerate iff the matrix (γij) is invertible. The Killing form can be
used to decide whether a Lie algebra is semi-simple.

Theorem 4.3. A Lie algebra L is semi-simple iff Γ is non-degenerate.

Proof. “⇐” Assume Γ is non-degenerate and A is an Abelian ideal. We want to show that
A is the zero ideal. To do this set up a basis (Ta, Tα), where (Ta) is a basis of A and (Tα) a
basis of the remainder. For T ∈ L and S ∈ A we have

ad(T ) ◦ ad(S)(Ta) = [T, [S, Ta]] = [T, 0] = 0 , ad(T ) ◦ ad(S)(Tα) = [T, [S, Tα]] ∈ A

and, hence, the Killing form is given by

Γ(T, S) = tr(ad(T )ad(S)) = tr

(
0 ∗
0 0

)
= 0

for all T ∈ L. Since Γ is non-degenerate this implies that S = 0 and, hence, that A = {0}.
For the other direction (which can be shown along similar lines) see Ref. [1], p. 480.

It is useful to have some final statement about the sign of the quadratic form associated to
the Killing form.

Theorem 4.4. If G is compact, then the Killing form Γ on L(G) is negative semi-definite
(that is, Γ(T, T ) ≤ 0 for all T ∈ G).

Proof. See Ref. [2], p. 214.

4.3 Some useful properties of structure constants

Practical applications are often formulated in terms of a basis (Ti) of the Lie algebra L, where
i = 1, . . . , n, structure constants fij

k and the Killing form γij = fik
lfjl

k. If L is semi-simple
then γij is invertible and we can also introduce its inverse γij . It is useful to translate some
of the previous results into this language.
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Jacobi identity for structure constants

The Jacobi identity [[Ti, Tj ], Tk]+[[Tj , Tk], Ti]+[[Tk, Ti], Tj ] = 0 together with the commutation
relations [Ti, Tj ] = fij

kTk translates into the relation

fij
lfkl

n + fjk
lfil

n + fki
lfjl

n = 0 (4.5)

for the structure constants. Of course the structure constants are anti-symmetric in the first
two indices, so

fij
k = −fjik . (4.6)

Totally anti-symmetric structure constants

To get to a stronger statement, we introduce the structure constants

fijk = γklfij
l (4.7)

with three lower indices, where the Killing metric is used to lower the last index. A short
calculation shows that

fijk
(4.7)
= γklfij

l (4.3)= fkm
nfij

lfln
m (4.5)

= fkm
n(fjn

lfil
m + fni

lfjl
m)

= fkm
nfjn

lfil
m + fmk

nfni
lflj

m = tr(fkfjfi) + tr(f̃kf̃if̃j) ,

where fi (f̃i) is the matrix with entries fij
k (fji

k). Cyclicity of the trace shows that the struc-
ture constants fijk are unchanged under cyclic permutations of the three indices. Together
with anti-symmetry in the first two indices this implies that

fijk is totally anti-symmetric . (4.8)

Quadratic Casimir

If L is semi-simple we can define the quadratic Casimir operator

C = γijTiTj (4.9)

Its relevance is that it commutes with the entire Lie algebra.

Theorem 4.5. The Casimir operator (4.9) satisfies [C, T ] = 0 for all T ∈ L,

Proof.

[C, Tl] = γij [TiTj , Tl] = γijTi[Tj , Tl] + γij [Ti, Tl]Tj = γijfjl
mTiTm + γijfil

mTmTj

= γijfjl
m(TiTm + TmTi)

(4.7)
= γijγmn(TiTm + TmTi)fjln

(4.8)
= 0

The last equality follows from the fact that fjln is antisymmetric in (j, n), while the remainder
of the expression is symmetric.

Corollary 4.1. If the Lie algebra is irreducible then C = λ1.

Proof. This is a direct consequence of Theorem 4.5 and Schur’s Lemma applied at the level
of the algebra.

The number λ - the value of the Casimir operator - is a characteristic number for the Lie
algebra under consideration.
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Physics conventions

Physics applications often rely on a specific convention for the generators and structure con-
stants but the underlying assumptions are rarely spelled out explicitly. The purpose of this
section is to do so. We start by assuming that the Lie group G is compact and that its algebra
L(G) is simple. Then, combining Theorems 4.3 and 4.4, we learn that this Killing form is
non-degenerate and negative semi-definite and, hence, non-degenerate and negative definite.
This means we can choose a basis (Ti) of L(G) such that

γij = −δij ⇒ fij
k = −fijk . (4.10)

As a result the structure constants fij
k which appear in the commutation relations are com-

pletely anti-symmetric, in the same way as their lower index counterparts fijk.

Consider an irrep r : L(G) → End(Fd), where d = dim(r) and write the representation

matrices of the basis as T
(r)
i = r(Ti). For the Casimir C(r) in the representation r we have

C(r) (4.9)
= −

∑
i

(T
(r)
i )2

Cor. 4.1
= C(r)1d . (4.11)

where the value C(r) of the Casimir characterises the representation r. It turns out that, given

these conventions, the representation matrices T
(r)
i satisfy a nice normalisation condition with

respect to the trace.

Proposition 4.3. With the above conventions we have

tr
(
T
(r)
i T

(r)
j

)
= −c(r) δij (4.12)

where c(r) is a number, also called the index of the representation r.

Proof. We define the normalisation matrixMjk = tr(T
(r)
j T

(r)
k ) and want to show, using Schur’s

Lemma, that it is proportional to the unit matrix.

([T
(ad)
i ,M ])jk = (T

(ad)
i )jltr(T

(r)
l T

(r)
k )− tr(T

(r)
j T

(r)
l )(T

(ad)
i )lk = tr(fijlT

(r)
l T

(r)
k )− tr(filkT

(r)
j T

(r)
l )

= tr([T
(r)
i , T

(r)
j ]T

(r)
k + T

(r)
j [T

(r)
i , T

(r)
k ]) = tr([T

(r)
i , T

(r)
j T

(r)
k ]) = 0

Schur’s Lemma then implies that M = λ1d.

We have now found two numbers, the Casimir C(r) and the index c(r) which are associated
to an irrep r. How are they related? The short calculation

dim(r)C(r) = tr(C(r)) = −
∑
i

tr
(
(T

(r)
i )2

)
=
∑
i

c(r) = dim(ad) c(r)

shows that

c(r) =
dim(r)

dim(ad)
C(r) . (4.13)
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4.4 Example SU(2) - again

Killing form, Casimir and index

We can now add a few pieces to the discussion of SU(2) and its algebra su(2). Recall that the
latter consists of the 2 × 2 anti-hermitian, traceless matrices and is spanned by τi = −iσi/2,
where i = 1, 2, 3. The structure constants are fij

k = ϵij
k and, hence, we have for the Killing

form
γij = fik

lfjl
k = ϵik

lϵjl
k = −2δij . (4.14)

(Apart from the factor 2 this realises the convention (4.10).) Since σ2i = 12 this means the
Casimir in the fundamental representation is

C = γijτiτj =
3

8
12 , (4.15)

so that C(fund) = 3/8 and, from Eq. (4.13) (with dim(fund) = 2 and dim(ad) = 3), the index
is c(fund) = 1/4. We note that γij is invertible so, from Theorem 4.3, we conclude that su(2)
is semi-simple (in fact, earlier arguments have already shown it is simple).

A new basis for su(2)

Denote by Ti = r(τi) the matrices in any su(2) representation, so that [Ti, Tj ] = ϵij
kTk. Let

us introduce a new basis (H,E±) on the Lie algebra defined by

E± =
1

2
(T1 ± iT2) , H = iT3 . (4.16)

In the context of quantum mechanics, these are also called Ji = −iTi and J± = J1 ± iJ2
while the Casimir is C = γijTiTj = −JiJi/2 = −J2/2. The definitions (4.16) are not quite
as innocent as they look. Our original Lie algebra su(2) is a vector space over R, so, with
su(2) we are not really entitled to redefinitions which include factors of i. Instead, Eqs. (4.16)
should be viewed as equations in su(2)C = su(2)+ i su(2), the complexification of su(2) and
(H,E±) should be viewed as a basis on this complexification. Note that su(2)C consists of the
sum of all anti-hermitian and hermitian traceless matrices, so

su(2)C = {T ∈ End(C2) | tr(T ) = 0} . (4.17)

The commutation relations of our new basis elements are

[H,H] = 0 , [H,E±] = ±E± , [E+, E−] =
1

2
H . (4.18)

Representations of su(2)C

Finding the irreps of su(2)C is a standard topic dealt with in quantum mechanics (for a nice
account see, for example, the appendix of Ref. [10], vol. 2). Here, we simply recap the main
results.

The irreps Rj of su(2)C are labelled by an integer or half-integer j ∈ Z/2 and are characterised
by the value J2 = j(j + 1) of the Casimir. The vector space Vj on which Rj acts is spanned
by vectors |jm⟩, where j = −m,−m + 1, . . . ,m − 1,m, with ⟨jm|jm′⟩ = δmm′ . Hence, the
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dimension of the representation Rj is dim(Rj) = 2j + 1. More specifically, the representation
matrices (J3, J±) act on this basis as

J3|jm⟩ = m |jm⟩ , J±|jm⟩ =
√
j(j + 1)−m(m± 1) |jm± 1⟩ . (4.19)

The basis idea for how to arrive at these results is evident from the last two equations. The
basis |jm⟩ is obtained as a basis of eigenvectors of J3, with eigenvalues m, while J± act as
“raising” and “lowering” operators, changing the eigenvalue by ±1. The relations (4.19) can
be used to compute explicit representation matrices for every Rj .

The Clebsch-Gordan decomposition for these representations is also well-known (in quantum
mechanics referred to as “coupling of angular momenta”) and is given by

Rj1 ⊗Rj2 =

j1+j2⊕
j=|j1−j2|

Rj . (4.20)

In particular, this means that we have two preferred bases on Rj1 ⊗Rj2 , the obvious basis of
tensor states |j1m1j2m2⟩ = |j1m1⟩⊗ |j2m2⟩ and the basis |jm⟩ adapted to the right-hand side
of Eq. (4.20). The relation between those bases

|jm⟩ =
∑
m1,m2

|j1j2m1m2⟩⟨j1j2m1m2|jm⟩ , (4.21)

is sometimes also referred to as Clebsch-Gordan decomposition and the coefficients ⟨j1j2m1m2|jm⟩
are called Clebsch-Gordan coefficients. They can be computed by standard methods fa-
miliar from quantum mechanics - basically, by applying J− successively and using Eqs. (4.19).

4.5 The Cartan-Weyl basis

The method for constructing the irreps of su(2)C involves studying eigenvectors and eigenvalues
ofH and introducing raising and lowering operators E± which map between those eigenvectors.
We would now like to generalise this method to an an arbitrary semi-simple, complex Lie
algebra L. The first step is to introduce the generalisation of H in the su(2)C case. This now
becomes a subalgebra of L and, since the aim is to simultaneously diagonalise the elements in
this subalgebra, it is required to be Abelian.

Cartan subalgebra, roots and Cartan decomposition

Definition 4.5. A maximal, diagonalisable Abelian subalgebra H ⊂ L is called a Cartan
subalgebra. The dimension of H is called the rank of L, denoted by rk(L) = dim(H).

Of course there are a number of things to clarify about this definition. W need to worry about
the existence and construction of the Cartan subalgebra and, since it turns out it is not unique,
about whether dim(H) is well-defined. App. D of Ref. [1] shows that H always exists and that
the rank, rk(L) = dim(H), is indeed well-defined. The requirement that H be diagonalisable
means that the adjoint actions of all H ∈ H can be diagonalised simultaneously. This means
we can study the simultaneous eigenvectors T ∈ L which satisfy the equation

ad(H)(T ) = α(H)T for all H ∈ H . (4.22)

The eigenvalue α(H) depends on H linearly and hence α ∈ H′ is a linear functional on H.
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Definition 4.6. (Roots) A non-zero linear functional α ∈ H′ is called a root of the Lie
algebra L if there is a non-zero T ∈ L such that Eq. (4.22) is satisfied. The set ∆ = {α ∈
H′ |α is a root} is called the root space of L. The lattice generated by ∆ (that, is all integer
linear combinations of elements in ∆) is called the root lattice, ΛR.

If we denote by Lα ⊂ L the eigenspace for root α then the Lie algebra can be written as

L = H⊕
⊕
α∈∆

Lα , (4.23)

and this is called the Cartan decomposition of L. The Cartan subalgebra is sometimes
written as L0 = H (since its elements corresponds to eigenvectors of ad(H) with eigenvalues
0). Note, however, that, by definition, 0 is not a root.

Structure of Cartan decomposition

The Cartan decomposition is consistent with the commutator. To see this start with T ∈ Lα
and S ∈ Lβ so that [H,T ] = α(H)T and [H,S] = β(H)S. It follows that

[H, [T, S]]
Jacobi
= [T, [H,S]]− [S[H,T ]]

(4.22)
= β(H)[T, S]− α(H)[S, T ] = (α(H) + β(H)) [T, S]

and hence
[Lα,Lβ] ⊂ Lα+β . (4.24)

This result has direct implications for the relation between the Cartan decomposition and the
Killing form. Consider eigenvectors T ∈ Lα, S ∈ Lβ and U ∈ Lγ so that

ad(T ) ◦ ad(S)(U) = [T, [S,U ]] ∈ Lα+β+γ .

If α+β ̸= 0 then this result means that ad(T )◦ad(S) has vanishing diagonal elements so that
Γ(T, S) = tr(ad(T ) ◦ ad(S)) = 0. We conclude that

Lα ⊥ Lβ for α+ β ̸= 0 , (4.25)

that is any two eigenspaces are orthogonal, relative to the Killing form, as long as their roots do
not sum to zero. The Cartan decomposition leads to a number of further important properties
which are summarised in the following theorem.

Theorem 4.6. (Structure of the Cartan decomposition)

(i) Γ
∣∣
H×H is non-degenerate.

For all α ∈ H′ there exists a unique Hα ∈ H with Γ(H,Hα) = α(H) for all H ∈ H.
We define the inner product of roots as (α, β) = Γ(Hα, Hβ).

(ii) If ∆ contains α, it also contains −α.
(iii) For T ∈ Lα and S ∈ L−α, we have [T, S] = Γ(T, S)Hα.

One can choose T, S such that Γ(T, S) = 1.
(iv) dim(Lα) = 1 for all α ∈ ∆.
(v) Let α ∈ ∆. Then, from {kα | k ∈ Z}, only α and −α are roots.

(vi) For H, H̃ ∈ H, we have Γ(H, H̃) =
∑

α∈∆ α(H)α(H̃).
(vii) ∆ contains a basis of H′ (“roots span root space”)
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Proof. (i) Since L is semi-simple we know that the Killing form is non-degenerate on L×L. To
show that the Killing form is non-degenerate on H×H we start by assuming that Γ(H, H̃) = 0
for H ∈ H and all H̃ ∈ H. We need to show this implies that H = 0. From the Cartan
decomposition (4.23), write any S ∈ L as S = H̃ +

∑
α∈∆ Sα, where H̃ ∈ H and Sα ∈ Lα. It

follows from Eq. (4.25) that

Γ(H,S) = Γ(H, H̃) +
∑
α∈∆

Γ(H,Sα)
(4.25)
= 0

and, hence, non-degeneracy of Γ on L×L implies that H = 0. Hence, Γ|H×H is non-degenerate
and, following standard linear algebra, it defines an isomorphism between H and H′ as indi-
cated.

(ii) Assume that −α /∈ ∆. Then Eq. (4.25) implies that Lα ⊥ Lβ for all β ∈ ∆ as well as
Lα ⊥ H so that Lα ⊥ L. However, this is a contradiction, since Γ is non-degenerate.

(iii) Let H ∈ H, T ∈ Lα and S ∈ L−α and work out

Γ(H, [T, S]) = Γ([H,T ], S) = α(H)Γ(T, S) = Γ(H,Hα)Γ(T, S) = Γ(H,Γ(T, S)Hα)

This result together with non-degeneracy of Γ|H×H implies that [T, S] = Γ(T, S)Hα. As in
part (i) it can be shown that Γ is non-degenerate when restricted to Lα ⊕L−α, so there must
be a T ∈ Lα and an S ∈ L−α with Γ(T, S) ̸= 0. Hence, by suitably normalising T and S one
can achieve Γ(T, S) = 1.

(iv), (v) In line with (iii) choose T ∈ Lα, S ∈ L−α and Hα ∈ H such that [T, S] = Hα. Define
the space

V = CS + CHα +
∑
k≥1

Lkα

which is invariant under ad(Hα). We prove the statement by computing the trace of ad(Hα)|V
in two different ways. First, since the trace of a commutator always vanishes it follows that

tr(ad(Hα)|V ) = tr(ad([T, S])|V ) = tr([ad(T )|V , ad(S)|V ]) = 0 .

On the other hand, we can work out the trace directly by evaluating ad(Hα) on a basis of V .
This leads to

ad(Hα)(S) = [Hα, S] = −α(Hα)S = −(α, α)S

ad(Hα)(Hα) = 0

ad(Hα)(U) = [Hα, U ] = kα(Hα) = k(α, α)U for U ∈ Lkα

which implies for the trace that

tr(ad(Hα)|V ) = (α, α)

−1 +
∑
k≥1

k dim(Lkα)

 !
= 0 .

The expression in the bracket can only be zero if dim(Lα) = 1 and dim(Lkα) = 0 for k > 1.

(vi) We need to work out the Killing form on two elements H, H̃ ∈ H, so we start with

ad(H) ◦ ad(H̃)(T ) = [H, [H̃, T ]] = α(H)α(H̃)T .
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For the trace this implies

Γ(H, H̃) = tr(ad(H) ◦ ad(H̃)) =
∑
α∈∆

α(H)α(H̃)

which is the desired formula.

(vii) Assume that Span(∆) ̸= H′, choose a basis (α1, . . . , αn) of Span(∆), complete to a
basis (α1, . . . , αn, αn+1, . . . , αN ) of H′ and introduce the dual basis (H1, . . . ,HN ) of H so that
αi(Hj) = δij . It follows that α(HN ) = 0 for all α ∈ ∆ and, with the formula from (vi), that
Γ(HN , H) = 0 for all H ∈ H. However, this contradicts the non-degeneracy of Γ|H×H.

Cartan-Weyl basis

Based on this theorem, we can now construct the Cartan-Weyl basis of L. We start by
choosing a basis (Hi), where i = 1, . . . , r = rk(L), of the Cartan (this is, of course, not unique).
Also, we know that the eigenspaces Lα are one-dimensional for α ̸= 0 so we can choose Eα ∈ L
such that Lα = Span(Eα). In addition, these can be normalised so that Γ(Eα, E−α) = 1. In
summary, we have the basis

(Hi, Eα) where i = 1, . . . , r = rk(L), α ∈ ∆ and Γ(Eα, E−α) = 1 . (4.26)

Relative to the basis (Hi) on the Cartan 1, elements α ∈ H′ can be described by a vector
(α1, . . . , αr), where αi = α(Hi).

The Killing form, relative to the Cartan Weyl basis, then has components

γij := Γ(Hi, Hj) =
∑

α∈∆ αiαj γiα := Γ(Hi, Eα) = 0
γα,−α := Γ(Eα, E−α) = 1 γαβ := Γ(Eα, Eβ) = 0 , α+ β ̸= 0

(4.27)

Combining these results into a matrix leads to the block structure

[Γ] =



...
(γij) ...

...
0 1 ...
1 0 ...

0 1 ...
1 0 ...

...
...

...
...

...
. . .



H

Lα
L−α
Lβ
L−β
...

,

with all entries outside the indicated blocks zero. We need to collect a few more pieces of
information. First the Cartan element Hα, related to α ∈ H′ via Theorem 4.6 (i) must be a
linear combination of the form Hα = λiHi. The short calculation

αj = α(Hj) = Γ(Hα, Hj) = λiΓ(Hi, Hj) = λiγij

shows that λi = γijαj (where γij is the inverse of γij). We can use the Killing metric γij on
the Cartan and its inverse to lower and raise indices. In this spirit we write

Hα = αiHi where αi = γijαj . (4.28)

1Henceforth, we use indices i, j, . . . = 1, . . . , r = rk(H) to label the basis of the Cartan.

63



Using the same notation, the Killing form for α, β ∈ H′ can be written as

(α, β) = β(Hα) = αjβ(Hj) = αjβj = γijαiβj . (4.29)

From Theorem 4.6 and Eqs. (4.22), (4.24), the commutation relations for the Cartan-Weyl
basis take the form

[Hi, Hj ] = 0 [Hi, Eα] = αiEα

[Eα, E−α] = Hα = αiHi [Eα, Eβ] =

{
NαβEα+β for 0 ̸= α+ β ∈ ∆
0 for 0 ̸= α+ β /∈ ∆

,

(4.30)
where Nαβ are constants. An interesting and very helpful observation about these commuta-
tion relations is that for any root α ∈ ∆ the three generators (Hα, Eα, E−α) form a subalgebra
with commutation relations

[Hα, E±α] = ±α(Hα)E±α = ±(α, α)E±α , [Eα, E−α] = Hα (4.31)

Comparison with Eq. (4.18) shows that this is, in fact, an su(2)C algebra (the only difference
being the factor (α, α) which can be removed by a re-scaling of the three generators).

4.6 Weights

Basics of weights

Representations r : L → End(V ) of a complex vector space V can be described following what
we have done for the adjoint representation.

Definition 4.7. For a representation r : L → End(V ) we call ω ∈ H′ a weight of r if there
is a non-zero vector v ∈ V such that

r(H)(v) = w(H)v for all H ∈ H (4.32)

The eigenspace of a weight w, denoted by Vω, consists of all v ∈ V which satisfy Eq. (4.32).

In other words, we are looking for common eigenvectors of the Cartan, just as we have done
for the adjoint representation. This means that the weights of the adjoint representation are
the roots. The representation vector space V can be written as

V =
⊕
ω

Vω , (4.33)

where the sum runs over all weights of the representation r. In practice, weights can be
described by their values on the basis (Hi) of H, so that a weight w ∈ H′ is represented by
the numerical vector (w(H1), . . . , w(Hr)), where r = rk(L).

Raising and lowering operators

How do the representation maps r(Eα) act on eigenvectors v ∈ Vω? A short calculation

r(H) (r(Eα)v) = [r(Eα)r(H) + [r(H), r(Eα)]] v = [ω(H)r(Eα) + r([H,Eα])] v

= [ω(H)r(Eα) + r(α(H)Eα)] v = [ω(H)r(Eα) + α(H)r(Eα)] v

= [ω(H) + α(H)] r(Eα)v (4.34)
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shows that r(Eα)v ∈ Vω+α. So, applying Eα to a vector with weight ω leads to a vector
with weight ω + α. This justifies thinking of the Eα as “raising” and ”lowering” operators,
in analogy with E± in the case of su(2)C (except we haven’t quite decided yet which ones to
call “raising” and which ones “lowering” - this is less straightforward in a multi-dimensional
situation).

The above calculation suggests that weights in a representation differ by roots. This is made
more precise in the following proposition.

Proposition 4.4. If r : L → End(V ) is irreducible then any two weights ω1, ω2 of r satisfy
ω1 − ω2 ∈ ΛR, that is, differences of weights are in the root lattice.

Proof. If ω1 − ω2 /∈ ΛR then
⊕

α∈ΛR
Vω1+α ⊂ V is invariant under r and genuinely smaller

than V since it doesn’t contain Vω2 . Since r is irreducible this is excluded.

Weights of tensor representations

We should try to understand what happens to weights if we form the tensor product of
two representations. To do this we should first work out what the tensor product means
at the level of the Lie algebra. Consider two group representations RV : G → GL(V ) and
RṼ : G → GL(Ṽ ) of a Lie group G. These representations are related to their Lie algebra

counterparts rV : L(G) → End(V ) and rṼ : L(G) → End(Ṽ ) by

RV (g) = 1+ rV (T ) + · · ·
RṼ (g) = 1+ rṼ (T ) + · · ·

}
⇒ (RV ⊗RṼ )(g) = 1+ rV (T )⊗ 1+ 1⊗ rṼ (T ) + · · · ,

where T ∈ L(G) exponentiates to g ∈ G. We conclude that that the tensor representation at
the algebra level is given by

rV⊗Ṽ (T ) = rV (T )⊗ 1+ 1⊗ rṼ (T ) . (4.35)

Now consider weights w and w̃ of r and r̃ with associated eigenvectors v ∈ V and ṽ ∈ Ṽ , so
that rV (H)v = w(H)v and rṼ (H)ṽ = w̃(H)ṽ. It follows that

rV⊗Ṽ (H)(v ⊗ ṽ) = (rV (H)(v))⊗ ṽ + v ⊗ (rṼ (H)(ṽ)) = (w(H) + w̃(H))(v ⊗ ṽ)

so the tensor state v ⊗ ṽ has weight w + w̃. In short, weights add up under tensoring.

Weights of dual representations

What happens to weights if we pass from a representation R : G → GL(V ) to its dual
representation R′ : G→ GL(V ′)? Writing R(g) = 1+ r(T ) and R′(g) = 1+ r′(T ), as before,
the condition R′(g)(λ))(R(g)(v)) = λ(v) which defines the dual representation translates into

(r′(T )(λ))(v) + λ(r(T )(v)) = 0 , (4.36)

and this relation defines the dual representation r′ of r at the Lie algebra level. This means that
r′(T ) = −r(T )T , so if we set T = H we learn that the weights are related by ω′(H) = −ω(H).
The weights of the dual representation are the negatives of the original weights.
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Values of weights

Recall from Eq. (4.31) that (Hα, Eα, E−α) span an su(2)C sub-algebra of L for all roots
α ∈ ∆. Representations of this subalgebra have weights ω which evaluate to ω(Hα) and, from

the results on su(2)C representations, these values must be in (α,α)
2 Z, where the additional

factor of (α, α) accounts for the difference in normalisation between the algebras (4.31) and
(4.18). In conclusion,

(ω, α) = ω(Hα) ∈
(α, α)

2
Z for all weights ω and all roots α . (4.37)

We can formalise this statement by introducing the weight lattice

ΛW =

{
ω ∈ H′

∣∣∣∣ 2(ω, α)(α, α)
∈ Z ∀ α ∈ ∆

}
. (4.38)

It follows that all weights of a representation of L lie in ΛW .

In the following, the idea is to construct irreps r of L by finding a procedure to determine the
weight system of r. This idea is modelled on what we did for su(2)C: first find the highest
weight m = j and then apply the lowering operator, which changes the weights by the root
−1, to find the entire weight system j, j−1, . . . ,−j. In the present case, the weights and roots
are generally multi-dimensional so some additional twists and generalisations are in order. In
one dimensions it is clear what is meant by lowering the weights. In higher dimensions, we
have to define the difference between positive and negative roots.

Positive and negative roots

Choose a direction ℓ ∈ H′ in root space and define the two subsets of roots

∆+ = {α ∈ ∆ | ℓ(α) > 0} (positive roots)
∆− = {α ∈ ∆ | ℓ(α) < 0} (negative roots) ,

(4.39)

where ℓ(α) = α(Hℓ). Of course we need to be slightly careful about the choice of ℓ so that
ℓ(α) ̸= 0 for all α ∈ ∆ but since ∆ is a finite set of roots this is always possible. This granted
we have ∆ = ∆+ ∪ ∆− and ∆− = −∆+. The Eα with α ∈ ∆+ are considered the raising
operators and the Eα with α ∈ ∆− the lowering operators. Given this distinction we can now
define the highest weight and highest weight vector.

Definition 4.8. Let r : L → End(V ) be a representation. A non-zero vector v ∈ V is called
a highest weight vector of r if Eα(v) = 0 for all α ∈ ∆+. The weight λ of a highest weight
vector is called highest weight.

Of course we should worry about existence and uniqueness of the highest weight vector.

Lemma 4.3. For a semi-simple complex Lie algebra L with representation r : L → End(V )

(i) r has a highest weight vector v ∈ V .
(ii) Successive application of Eα, where α ∈ ∆− on v gives a sub-representation of r.

If r is an irrep it is obtained in this way.
(iii) If r is an irrep the highest weight vector is unique up to re-scaling.
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Proof. (i) Define the highest weight λ as the weight for which ℓ(λ) = λ(Hℓ) is maximal and
choose a vector v ∈ Vλ. For all α ∈ ∆+ we have ℓ(λ+ α) = ℓ(λ) + ℓ(α) > ℓ(λ) but since ℓ(λ)
was the maximum over all weights this means that λ+ α cannot be a weight, so Vλ+α = {0}.
Hence Eαv = 0 which shows that v is a highest weight vector.

(ii) We begin by defining Wk = Span{Eα1 · · ·Eαk
v |αi ∈ ∆−} and W =

⊕
kWk ⊂ V . This

means that W is the subspace of V which is spanned by all the vectors obtained by acting
with lowering operators on the highest weight vector - exactly the type of construction we
have envisaged earlier. We need to show that W is invariant under all generators. This is
obvious for lowering operators Eα, where α ∈ ∆− since EαWk ⊂Wk+1.

For an element H ∈ H in the Cartan we have

HEα1Eα2 · · ·Eαk
v = (Eα1H + [Eα1 , H])Eα2 · · ·Eαk

v

= Eα1HEα2 · · ·Eαk
v − α1(H)Eα1Eα2 · · ·Eαk

v

By repeating the above commutation step H can be moved further and further to the right,
picking up a term proportional to Eα1Eα2 · · ·Eαk

v each time until H is next to v in which
case we use Hv = λ(H)v. Altogether, this shows that H(Wk) ⊂Wk.

Finally, we need to worry about raising operators Eα, where α ∈ ∆+. We claim that
EαWk ⊂

⊕
i≤kWi and show this by induction in k. For k = 0 we have EαW0 = EαSpan(v) =

{0} ⊂W0. Now assume the statement is true for k − 1 and work out

EαEα1Eα2 · · ·Eαk
v = Eα1

∈
⊕

i≤k−1Wi by ind.︷ ︸︸ ︷
EαEα2 · · ·Eαk

v︸ ︷︷ ︸
∈Wk−1

+

∈Wk∪Wk−1︷ ︸︸ ︷
[Eα, Eα1 ]︸ ︷︷ ︸

∈H or∼Eα+α1

Eα2 · · ·Eαk
v ∈

⊕
i≤k

Wi

This completes the induction step and we have shown that W ⊂ V carries a representation. If
W was a direct sum, so W =W1 ⊕W2, then v ∈W1 or v ∈W2 but then repeating the above
construction would lead to the same set of vectors so either W1 =W or W2 =W .

(iii) Suppose there are two linearly independent highest weight vectors v1, v2 ∈ Vλ. Then
applying the procedure in (ii) to v1 generates an irrep which does not contain v2, so that V is
not irreducible. Hence, dim(Vλ) = 1.

Simple roots

The previous Lemma describes a practical, algorithmic way of constructing a representation
starting with a highest weight and a highest weight vector, by successively applying lowering
operators to the highest weight. If α, β and α+β are weights we know from the commutation
relations that Eα+β is proportional to [Eα, Eβ]. This means, in the above algorithm to sweep
out an irrep we only need to consider roots which are not sums of two other roots.

Definition 4.9. A positive (negative) root is called simple if it cannot be written as a sum
of two positive (negative) roots.

Corollary 4.2. For simple roots we have the following statements.

(i) An irrep r can be generated by successively applying lowering operators Eα
to the highest weight vector v, where α is a simple negative root.

(ii) The simple positive (or negative) roots form a basis of H′.

Proof. (i) This follows from part (ii) of the previous Lemma and the fact that Eα+β is pro-
portional to [Eα, Eβ].
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(ii) We know from Theorem 4.6 (vii) that ∆ contains a basis of H′. Since ∆− = −∆+ either of
∆± must already contain a basis of H′ and since the simplicity requirement eliminates linearly
dependent vectors this is still true for the positive (or negative) simple roots.

Dynkin labels and Cartan matrix

Courtesy of part (ii) of the above lemma we can introduce a basis (α1, . . . , αr), where r = rk(L),
of H′ which consists of positive simple roots. For any weight w ∈ H′ we can then define the
quantities

ai =
2(w,αi)

(αi, αi)
∈ Z where i = 1, . . . , r . (4.40)

Since all weights are in the weight lattice (4.38) these quantities are indeed integers. The
vector (a1, . . . , ar) of these integers characterises the weight w and it is called the Dynkin
label of the weight w.

The r × r matrix whose rows are the Dynkin labels of the positive simple roots is called the
Cartan matrix of L and it is explicitly given by

Aij =
2(αi, αj)

(αj , αj)
. (4.41)

As we will see, the Cartan matrix encodes all the relevant information about the Lie algebra
and it can be used to reconstruct the entire root system and the weight system of all irreps.
To accomplish the latter we require a statement about the highest weights of irreps.

Theorem 4.7. The highest weights of all irreps of L are given by Dynkin labels (a1, . . . , ar)
with all ai ≥ 0.

Proof. See Ref. [1], App. D.

With these statements we now have an outline of how to proceed systematically in the quest to
understand semi-simple complex Lie algebras L and their representations. The classification
of these algebras can, in fact, be accomplished by thinking about the possible Cartan matrices
and we will work this out later. With such a classification in hand, we choose the algebra,
that is, a Cartan matrix. Then we select a highest weight Dynkin label (a1, . . . , ar) for the
irrep we would like to construct and apply the procedure outlined in Lemma 4.3 to obtain the
full system of weights. We will develop the details of this process later.
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Chapter 5

Examples of Lie groups

It is now time to put the results so far to some use and discuss examples beyond the cases
of SU(2) and SO(3). These include the Lorentz and Poincaré groups in four dimensions, the
unitary groups and the orthogonal groups.

5.1 The Lorentz group

The Lorentz group in four dimensions is of pre-eminent importance in physics, since it is an
underlying symmetry for all relativistic theories. Its group structure and its representation
theory determines the basic rules for building relativistic (quantum) field theories.

Definition of Lorentz group

The Lorentz group L = O(3, 1) is the group of real 4×4 matrices which leaves the Lorentz
metric η = diag(−1, 1, 1, 1) invariant, so

L = O(3, 1) =
{
Λ ∈ GL(R4) | ΛT ηΛ = η

}
(5.1)

For index notation, we will usually use indices µ, ν = 0, 1, 2, 3 for space-time, and we write
Λ = (Λµν) and η = (ηµν), while indices i, j, . . . = 1, 2, 3 are used for the three spatial directions.
The defining relation of the Lorentz group in index notation is

ηµνΛ
µ
ρΛ

ν
σ = ηρσ ⇔ Λµ

ρΛνρ = δνµ (5.2)

Note that the three-dimensional orthogonal group O(3) can be thought of as a subgroup of
the Lorentz group via the embedding

O(3) ∋ R 7→
(

1 0
0 R

)
∈ L . (5.3)

Global structure

Taking the determinant of the defining relation ΛT ηΛ = η it follows that det(Λ) ∈ {±1}
for any Λ ∈ L. There is another sign choice, as can be seen from the following calculation,
focusing on the (00) component of Eq. (5.2).

ηµνΛ
µ
0Λ

ν
0 = −1 ⇒ (Λ0

0)
2 = 1 +

∑
i

(Λi0)
2 ≥ 1 ⇒ Λ0

0 ≥ 1 or Λ0
0 ≤ −1 .
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Altogether, we have four combinations of sign choices for det(Λ) and Λ0
0 and with the specific

Lorentz group elements

P = diag(1,−1,−1,−1) (parity) , T = diag(−1, 1, 1, 1) (time inversion) , (5.4)

we see that all four possible sign combinations are in fact realised since {14, P, T, PT = −14} ⊂
L. More generally, the Lorentz group consists of four path-disconnected pieces, corresponding
to the four sign combinations, which are defined as

L↑
+ =

{
Λ ∈ L | detΛ = 1,Λ0

0 ≥ 1
}
∋ 1 (proper orthochronous)

L↓
+ =

{
Λ ∈ L | detΛ = 1,Λ0

0 ≤ −1
}
= PTL↑

+

L↑
− =

{
Λ ∈ L | detΛ = −1,Λ0

0 ≥ 1
}
= PL↑

+

L↓
− =

{
Λ ∈ L | detΛ = −1,Λ0

0 ≤ −1
}
= TL↑

+

(5.5)

and are each generated from the proper orthochronous Lorentz group L↑
+ by multi-

plication with one of the four group elements in {14, P, T, PT = −14} ⊂ L. The proper
Lorentz group SO(3, 1) consists of the Lorentz transformations with determinant one, so

SO(3, 1) = L↑
+ ∪ L↓

+.

The Lorentz transformations routinely used in Special Relativity are contained in the proper
orthochronous Lorentz group L↑

+ and they include the standard two-dimensional transforma-
tions

Λ = diag(Λ2,12) ∈ L↑
+ where Λ2 =

(
cosh(ξ) sinh(ξ)
sinh(ξ) cosh(ξ)

)
=

(
γ βγ
βγ γ

)
, (5.6)

where ξ ∈ R is called rapidity, β = tanh(ξ) is interpreted as the relative velocity of the two
inertial systems in the x-direction and γ = 1/

√
1− β2. The proper orthochronous Lorentz

group L↑
+ also contains the three-dimensional rotations SO(3), via the embedding (5.3).

Application 5.1: (Lorentz invariance in physics)

When we talk about Lorentz invariance it is important to be clear about which of the four
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parts of the Lorentz group we have in mind. At the minimal level Lorentz invariance refers to
invariance under the proper orthochronous Lorentz group L↑

+ and this is the sense in which the
term is most commonly used in physics. If a theory is Lorentz invariant in this sense whether
it is also invariant under the other parts of the Lorentz group comes down to the question
of whether it is invariant under parity P and time inversion T (as is clear from Eqs. (5.5)).

While the known relativistic theories of physics are invariant under L↑
+, invariance under P

and T depends on the theory in question. While the theory of strong interactions (QCD) is
P -invariant (and T -invariant at least to very high accuracy) the theory of weak interactions
respects neither P nor T .

Lie algebra of the Lorentz group

The Lie algebra of the Lorentz group is the tangent space at the identity 14 which is con-
tained in the proper orthochronous component L↑

+. For this reason, the Lie algebra carries no
information about the other three components. We can determine the Lie algebra as usual,
by writing down Λ = 1 + T + · · · and evaluating this to linear order on the defining relation

ΛT ηΛ = (14 + T T + · · · )η(14 + T + · · · ) = η + T T η + ηT + · · · !
= η ⇒ T = −ηT T η

so that the Lie algebra is

L(L) =
{
T ∈ End(R4) | T = −ηT T η

}
⇒ dim(L(L)) = 6 . (5.7)

The condition T = −ηT T η is a mixed symmetry/anti-symmetry condition, depending on the
signs in η, and it leads to anti-symmetry in the space-space entries of T and symmetry in the
space-time entries (as well as to zero along the diagonal). There are at least two standard
ways to write down a basis for L(L), namely

L(L) = Span(σµν) = Span(J̃i, K̃i) (5.8)

where σµν are six matrices, labelled by a pair (µν) of anti-symmetric indices and defined by

(σµν)
ρ
σ = ηρµηνσ − ηµση

ρ
ν . (5.9)

Their commutation relations can be worked out by straightforward calculation from the above
expression and are given by

[σαβ, σγδ] = ηαδσβγ + ηαγσδβ + ηβδσγα + ηβγσαδ . (5.10)

The advantage of this basis is that it is labelled by a pair of “covariant” four-dimensional
indices. The other basis consists of essentially the same matrices but with the labelling broken
up into the space-space and space-time components, according to

J̃i =
1

2
ϵijkσjk , K̃i = σ0i . (5.11)

More explicitly, these matrices are given by

J̃i =

(
0 0
0 Ti

)
, K̃i

i=1
=


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (5.12)
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where Ti are the SO(3) generators from Eq. (3.39). The appearance of the SO(3) generators
is of course not at all surprising, given the embedding of SO(3) into the Lorentz group, and
they exponentiate to rotations of the form (5.3).The other three generators K̃i are called the
boost generators and they exponentiate to genuine Lorentz transformations, such as those
in Eq. (5.6). The commutators (5.10) can be translated to the (J̃i, K̃i) basis and this leads to

[J̃i, J̃j ] = ϵij
kJ̃k , [K̃i, K̃j ] = −ϵijkJ̃k , [J̃i, K̃j ] = ϵij

kK̃k (5.13)

Evidently, the J̃i span an so(3) subalgebra of L(L).

The group SL(2,C)

We have seen earlier that the groups SO(3) and SU(2) are closely related. With SO(3) a
subgroup of the Lorentz group it seems reasonable to ask if this relationship can be extended
to L and, if so, what the required generalisation of SU(2) would be. This group needs to
contain SU(2) as a subgroup and its dimension needs to be six (the same as the Lorentz
group’s). It turns out that the correct group is the special linear group in two dimensions.
The special linear group in n dimensions consists of complex matrices with determinant one,
so

SL(n,C) = {M ∈ GL(Cn) | detM = 1} . (5.14)

The idea is now that the Lorentz group is a representation of SL(2,C), in the same way SO(3)
is the adjoint of SU(2). To check this, we introduce the space S = {S ∈ End(C2) |S = S†} of
hermitian 2× 2 matrices and the map

T : R4 ∼=−→ S , T (X) = Xµσµ , (5.15)

where σµ = (12, σi) forms a basis of S. The map T identifies a four-vector Xµ with the
hermitian matrix

T (X) =

(
X0 +X3 X1 − iX2

X1 + iX2 X0 −X3

)
. (5.16)

An interesting feature of this map, which is the analogue of Eq. (3.44), is that the Minkowski
product of a vector can be expressed as

XT ηX = −det(T (X)) , (5.17)

as can be quickly checked by working out the determinant of Eq. (5.16).

The crucial step is to introduce the SL(2,C) representation RV : SL(2,C) → GL(R4) by

RV (M)(X) = T −1(MT (X)M †) ⇔ σµRV (M)µνX
ν =M(Xµσµ)M

† (5.18)

Note this makes sense: T (X) is a hermitian matrix, as is MT (X)M † which is converted back
to a four-vector by T −1 - hence RV (M) does indeed map four-vectors to four-vectors. How
does RV (M) relate to the Minkowski product?

(RV (M)(X))T η(RV (M)(X))
(5.17)
= −det(T (RV (M)(X)))

(5.18)
= −det(MT (X)M †)

det(M)=1
= −det(T (X)) = XT ηX .

This means RV (M) leaves the Minkowski product invariant and must, hence, be a Lorentz

transformation. Since SL(2,C) is, in fact, path-connected, RV (M) ∈ L↑
+. Much as for the
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analogous SU(2) case, we can show that Ker(RV ) = {±12} and that the image of RV is all

of L↑
+. Altogether, this means that

L↑
+
∼=

SL(2,C)
Z2

, (5.19)

which is of course the analogue of Eq. (3.46).

Lie algebra of SL(2,C)

The isomorphism (5.19) implies an isomorphism between the corresponding Lie algebras and to
see this explicitly we should first work out the Lie algebra of SL(2,C). WithM = 12+T+ · · · ,
the condition det(M) = 1 translates into tr(T ) = 0, so

sl(2,C) = L(SL(2,C)) = {T ∈ End(C2) | tr(T ) = 0} ⇒ dim(sl(2,C)) = 6 . (5.20)

This Lie algebra consists of all traceless, complex 2× 2 matrices and, since each such matrix
can be written as a sum of a hermitian and an anti-hermitian traceless matrix, a basis for
sl(2,C) can be easily written down in terms of Pauli matrices:

Ji = −iσi
2
, Ki = −σi

2
(5.21)

Their commutation relations follow easily from the commutators (3.34) of the Pauli matrices
and are given by

[Ji, Jj ] = ϵij
kJk , [Ki,Kj ] = −ϵijkJk , [Ji,Kj ] = ϵij

kKk . (5.22)

The generators Ji span the su(2) subalgebra of sl(2,C). The linear map sl(2,C) → L(L)
defined by Ji 7→ J̃i and Ki 7→ K̃i is a Lie algebra isomorphism, as comparison of Eqs. (5.13)
and (5.22) shows.

Representations

The commutation relations (5.22) not only contain the relations for su(2) but, as a whole, are
quite reminiscent of the su(2) relations. This can be made more explicit by defining the new
sl(2,C) basis

J±
i =

1

2
(Ji ± iKi) , (5.23)

with commutation relations (derived from Eq. (5.22))

[J±
i , J

±
j ] = ϵij

kJ±
k , [J+

i , J
−
j ] = 0 ⇒ sl(2,C) ∼= su(2)⊕ su(2) . (5.24)

It is a lucky coincidence that the Lorentz group algebra is isomorphic to two copies of su(2).
This means that studying its representation does not require the full machinery of Lie group
representations (as more complicated groups will) but we can rely on our knowledge of su(2)C
representations.

We know that su(2)C representations are classified by a “spin” j ∈ Z/2 and have dimension
2j + 1, so sl(2,C) representations are classified by two spins (j+, j−) ∈ Z/2 × Z/2 and have
dimension (2j+ + 1)(2j− + 1). More explicitly, if r± are the su(2)C representations with spin
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j± then the corresponding sl(2,C) representation r(j+,j−) : sl(2,C) → End(V(j+,j−)) (where

V(j+,j−)
∼= C(2j++1)(2j−+1))) has dimension

dim(r(j+,j−)) = (2j+ + 1)(2j− + 1) , (5.25)

and is explicitly specified by

r(j+,j−)(J
+
i ) = r+(J

+
i )× 12j−+1 , r(j+,j−)(J

−
i ) = 12j++1 × r−(J

−
i ) . (5.26)

By inverting Eq. (5.23) the representation matrices of the original generators are then

r(j+,j−)(Ji) = r+(J
+
i )× 12j−+1 + 12j++1 × r−(J

−
i )

r(j+,j−)(Ki) = −i
(
r+(J

+
i )× 12j−+1 − 12j++1 × r−(J

−
i )
) . (5.27)

We can lift this up to the group level using the exponential map (writing r = r(j+,j−) and R
for its counterpart at the group level):

M = exp(tiJi + siKi) 7→ R(M) = exp(tir(Ji) + sir(Ki)) .

Examples of sl(2,C) representations

The sl(2,C) representations with low dimensions play an important role in relativistic physics.
They classify the types of particles - scalars, fermions, vector fields - which arise and they
determine the structure of relativistic theories. For this reason, we work out these simplest
representations explicitly. (For simplicity of notation, we will drop the representation r in the
following and, for example, write J+

i instead of r(J+
i ) - which representation r is referred to

will be clear from the context.)

(j+, j−) = (0, 0) (Scalars)

From Eq. (5.25), this is a one-dimensional representation on V(0,0) ∼= C. Since it is built

from two spin zero representations we have to choose J±
i = 0 which, from Eq. (5.27), implies

Ji = Ki = 0. From Eq. (5.1) this means R(M) = 1 for all M ∈ SL(2,C), so this is the trivial
representation. In physics this is also called the scalar representation of the Lorentz group
and fields which take values in V(0,0) are referred to as scalar fields.

(j+, j−) = (1/2, 0) (Left-handed Weyl spinors)

From Eq. (5.25) this is a two-dimensional representation, V(1/2,0) ∼= C2, and we have to choose

J+
i = −iσi/2 (the standard generators in the fundamental of su(2)C) and J−

i = 0 (the right
choice for spin zero) which, via Eq. (5.27), translates to Ji = −iσi/2 and Ki = −σi/2.
Exponentiating, using Eq. (5.1) leads to

RL(M) = R(1/2,0)(M) = exp

[
1

2
(−si − iti)σi

]
. (5.28)

This representation is called the left-handed Weyl spinor representation and fields taking
values in V(1/2,0) are called left-handed Weyl spinors.

(j+, j−) = (0, 1/2) (Right-handed Weyl spinors)

From Eq. (5.25) this is a two-dimensional representation, V(0,1/2) ∼= C2, and we have to choose

J+
i = 0 and J−

i = −iσi/2 which, via Eq. (5.27), translates to Ji = −iσi/2 and Ki = σi/2.
Exponentiating, using Eq. (5.1), leads to

RR(M) = R(0,1/2)(M) = exp

[
1

2
(si − iti)σi

]
. (5.29)
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This representation is called the right-handed Weyl spinor representation and fields
taking values in V(0,1/2) are called right-handed Weyl spinors. Note that this representa-
tion, as well as its left-handed counterpart, is not unitary (the argument of the exponent is in
general not anti-hermitian).

(1/2, 0)⊕ (0, 1/2) (Dirac spinors)

This is a four-dimensional (reducible under sl(2,C)) representation, RD = RL ⊕ RR, built as
a direct sum of the left- and right-handed Weyl spinors with representation matrices

RD(M) =

(
RL(M) 0

0 RR(M)

)
(5.30)

This is called the Dirac spinor representation and fields taking values in V(1/2,0)⊕V(0,1/2) ∼=
C4 are called Dirac spinors.

(j+, j−) = (1/2, 1/2) (Vector fields)

From Eq. (5.25) this representation is four-dimensional and, on dimensional grounds (plus a
parity argument, see below) it must be equal to the fundamental representation RV of the
Lorentz group L. Hence, the representation matrices can be written as

Λ(M) = RV (M) = exp(tiJ̃i + siK̃i) (5.31)

with the Lorentz group generators J̃i, K̃i from Eq. (5.11).

Parity

So far, we have studied representations of the Lie algebra which means representations of L↑
+,

the component of the Lorentz group which contains the identity. For representations of the
full Lorentz group L we have to consider the effect of parity P = diag(1,−1,−1,−1) on the
representations. Since

P J̃iP = J̃i , P K̃iP = −K̃i ⇒ PJ±
i P = J∓

i

it follows that parity maps representations as P : R(j+,j−) → R(j−,j+), that is, it exchanges
the two spins which characterise representations of sl(2,C). This means the only sl(2,C)
irreps which are representations of the full Lorentz group are the representations R(j+,j−) with
j+ = j−. From the above list, this includes only the vector representation (j+, j−) = (1/2, 1/2).
However, direct sums R(j+,j−)⊕R(j−,j+) also form representations under the full Lorentz group.
They are reducible as sl(2,C) representations but irreducible as representations of the full
Lorentz group. The Dirac spinor, (1/2, 0)⊕ (0, 1/2), is an example.

Dual and complex conjugate of spinors

We can consider the dual and the complex conjugate representation and we would like to do
this for the Weyl spinors constructed above. This will lead to useful identities which facilitate
writing down Lorentz invariants. Since performing the dual and the complex conjugation lead
to representations of the same dimensions and the left- and right-handed Weyl spinors are the
only two-dimensional irreps we know that these two operations must relate the Weyl spinor
the (complex conjugate) dual of the left-handed Weyl spinor we have

(RL(M)−1)†
(5.28)
= exp

[
1

2
(si − iti)σi

]
(5.29)
= RR(M) . (5.32)
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The dual of the left-handed Weyl spinor is the right-handed Weyl spinor (and vice versa, of
course). For the complex conjugate we find

RL(M)∗
(5.28)
= exp

[
1

2
(−si + iti)σ∗i

]
(3.37)
= σ2 exp

[
1

2
(si − iti)σi

]
σ2

(5.29)
= σ2RR(M)σ−1

2 (5.33)

The complex conjugate of the left-handed Weyl spinor is equivalent to the right-handed Weyl
spinor via a basis transformation with σ2. Taking the inverse complex conjugate of Eq. (5.32)
and using Eq. (5.33) we also have

RL(M)T = (RR(M)−1)∗ = σ2RL(M)−1σ2 . (5.34)

Another, very useful relation follows from Eq. (5.18) (by dropping X, identifying M with
RL(M) and writing Λ = RV (M)):

RR(M)†σµRR(M) = Λµ
νσν

c.c.
=⇒ RL(M)†σ̄µRL(M) = Λµ

ν σ̄ν , (5.35)

where σ̄µ = σ2σ
∗
µσ2 = (12,−σi).

Application 5.2: (Lorentz invariant model building - a rough guide)

The main players of Lorentz invariant field theories are fields which take values in the sim-
ple Lorentz group representations constructed above, so scalars, left- and right-handed Weyl
spinors, Dirac spinors and vector fields. All fields are functions of space-time coordinates xµ,
where µ = 0, 1, 2, 3, which transform as vectors, so that xµ 7→ Λµνx

ν and ∂µ 7→ Λµ
ν∂ν , where

∂µ = ∂/∂xµ. Vectors carry a single µ index, tensors of the vector representation multiple in-
dices µ, ν, . . . and, as a result of Eq. (5.2), we can construct invariants of these objects simply
by contracting upper with lower indices.

Scalars ϕ = (ϕa) (where a labels different scalars) with ϕa(x) ∈ V(0,0) are Lorentz singlets and
a general Lorentz group invariant Lagrange density is of the from

Lscalar = −Gab(ϕ)∂µϕa∂µϕb − V (ϕ) , (5.36)

where Gab and V are functions of ϕ, called the field-space metric and the scalar potential,
respectively. The first term above is called the kinetic term - note that the contraction of
the µ indices ensures it is Lorentz invariant.

We denote left- and right-handed Weyl spinors by χL,R or ψL,R, so that χL(x), ψL(x) ∈ V(1/2,0)
and χR(x), ψR(x) ∈ V(0,1/2). This implies the Lorentz transformations

χL,R 7→ RL,R(M)χL,R . (5.37)

If we define the conjugation of a Weyl spinor by χcL = σ2χ
∗
L (and similarly for χR) then,

from Eq. (5.33), the conjugated spinor transforms as

χcL 7→ σ2 (RL(M)χL)
∗ = σ2RL(M)∗χ∗

L
(5.33)
= RR(M)σ2χ

∗
L = RR(M)χcL . (5.38)

Hence, the conjugation of a left-handed Weyl spinor is a right-handed Weyl spinor (and vice
versa).

How do we construct Lorentz invariants from Weyl spinors. A quadratic expression in two
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left-handed Weyl spinors transforms in the representation (1/2, 0) ⊗ (1/2, 0) = (0, 0) ⊕ (1, 0)
which contains the singlet (0, 0). Hence, there must be a corresponding invariant. Eq. (5.34)
suggests its form is χTLσ2ψL. We have

χTLσ2ψL 7→ (RL(M)χL)
Tσ2(RL(M)ψL) = χTLRL(M)Tσ2RL(M)ψL

= χTLσ2RL(M)−1RL(M)ψL

= χTLσ2ψL ,

so this term and its right-handed counterpart

χTLσ2ψL , χTRσ2ψR , (5.39)

called Weyl mass terms, are indeed Lorentz-invariants. Alternatively, considering that

χTLσ2 = −(σ2χL)
T = (σ2χ

∗
L)

† = (χcL)
†

and that χcL is, in fact, a right-handed Weyl spinor, a Weyl mass term can be re-written in
the form (χcL)

†ψL or, if right-handed Weyl spinor χL.R and ψR,L are available, as

χ†
RψL , χ†

LψR . (5.40)

The tensor of a left and right-handed Weyl spinor, (1/2, 0)⊗ (0, 1/2) = (1/2, 1/2), is a vector
so we should be able to make this more explicit. Eq. (5.35) suggests the right way forward.

χ†
RσµψR 7→ (RR(M)χR)

†σµ(RR(M)ψR) = χ†
R(RR(M)†σµRR(M))ψR

(5.35)
= Λµ

ν χ†
RσνψR

This (and a similar calculation for the left-handed case) shows that

χ†
Lσ̄µψL , χ†

RσµψR (5.41)

transform as Lorentz vectors, so we can obtain invariants by contracting these into another
Lorentz vector. This facilitates the construction of Lorentz-invariant kinetic terms of the form

χ†
Lσ̄µ∂

µψL , χ†
Rσµ∂

µψR . (5.42)

For vector fields Aµ, which transform as Aµ 7→ Λµ
νAν , kinetic terms should be bilinears in

∂µAν but gauge invariance (see later) dictates that we should only consider Lagrangians which
depend on the field strength, that is, on the anti-symmetric combination Fµν = ∂µAν−∂νAµ
with transformation Fµν 7→ Λµ

ρΛν
σFρσ. With this restriction, there are only two possible

Lorentz-invariant terms, namely

FµνF
µν , ϵµνρσFµνFρσ . (5.43)

The first of these is the standard kinetic term and it is invariant under L. Note that the
second term is only invariant under SO(3, 1) = L↑

+ ∪L↓
+ since it transforms as ϵµνρσFµνFρσ 7→

det(Λ) ϵµνρσFµνFρσ and, hence, changes sign under parity.

What about terms of higher order than quadratic in the fields, that is, the coupling terms?
Couplings among scalars are already contained in the Lagrangian density (5.36). To couple
scalars to spinors, we can use any of the above bi-linear spinor invariants and multiply them
with any function of the scalars. In particular, terms of the form

ϕχTLσ2ψL , ϕ χTRσ2ψR , (5.44)
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are Lorentz-invariant and are referred to as Yukawa couplings. Lorentz-invariant couplings
of scalars with vectors are straightforwardly written down, by just contracting indices, for
example, schematically

Aµϕ∂µϕ , AµAν∂µϕ∂νϕ . (5.45)

Finally, in order to couple vectors to fermions we can use the fermion bilinears (5.41) which
transform as vectors and this leads to expressions of the form

Aµχ†
Lσ̄µψL , Aµχ†

RσµψR (5.46)

Everything so far has been formulated in terms of Weyl spinors but it is easy to combine the
above Lorentz invariants into Lorentz invariants for Dirac spinors which are of the form

ψD =

(
χL
χR

)
(5.47)

To do this explicitly, it is useful to introduce the Dirac matrices

γµ =

(
0 σµ
σ̄µ 0

)
⇒ {γµ, γν} = 2ηµν . (5.48)

In this context, it is also useful and customary to introduce the conjugation of Dirac spinors
defined by

ψ̄D = ψ†
Dγ0 . (5.49)

Exercise 5.1. Write down Lorentz invariant terms for Dirac spinors, using gamma matrices.
Examine under which conditions combinations of Lorentz-invariant terms of (left- and right-
handed) Weyl spinors can be written in terms of Dirac spinors.

Recall that for a left-handed Weyl spinor χL, the conjugate χ
c
L is a right-handed Weyl spinor.

This means we can construct a Dirac spinor

χM =

(
χL
χcL

)
(5.50)

which contains only one Weyl-spinor, rather than two. Such a spinor is called a Majorana
spinor and can be used as an alternative (and somewhat redundant) way to describe Weyl
spinors. All the above Weyl terms can be re-written in terms of Majorana spinors but we will
refrain from doing so.

Yet another way to describe Weyl spinors in terms of Dirac spinors is to project to the left-
or right handed part. To this end we note that with

γ5 := iγ0γ1γ2γ3 =

(
−12 0

0 12

)
(5.51)

we can define the projection operators PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5) which act on a
Dirac spinor (5.49) as

ψD,L := PLψD =

(
χL
0

)
, ψD,R := PRψD =

(
0
χR

)
(5.52)

that is, they project onto the left- and right-handed Weyl-spinors within χD. In this way,
expressions in terms of Weyl-spinors χL and χR can be written with left- and right-handed
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Diract spinors ψD,L and ψD,R.

You may be interested in field theories with a different underlying symmetry such as, for
example, just rotational symmetry. The rules for building field theories for other symmetries
follow similar lines so the above discussion for the Lorentz group can be used as a template.

5.2 The Poincaré group

You may wonder why our discussion of Lorentz-invariant model building did not mention
terms with explicit coordinate dependence, such as xµ∂µϕ, where ϕ is a scalar field. Such
terms, provided indices are contracted properly, are Lorentz invariant. However, they are
not invariant under translations xµ 7→ xµ + Aµ, another symmetry apparently preserved by
fundamental laws of physics. Lorentz transformations together with translations form a group
called the Poincaré group which is really the full group of space-time symmetries normally
assumed for model building.

Definition of Poincaré group

The Poincaré group P consists of all pairs of Lorentz transformations and translations, so

P = {(Λ, A) |Λ ∈ L, A ∈ R4} , (5.53)

and it acts on R4 as
R4 ∋ x 7→ Λx+A . (5.54)

A short calculation for (Λ, A), (λ, a) ∈ P based on this action

(Λ, A)((λ, a)x) = (Λ, A)(λx+ a) = Λλx+ Λa+A = (Λλ,Λa+A)x

leads to the group multiplication law

(Λ, A)(λ, a) = (Λλ,Λa+A) ⇒ e = (14, 0) , (Λ, A)−1 = (Λ−1,−Λ−1A) (5.55)

for the Poincaré group.

Lie algebra of the Poincaré group

As it stands the Poincaré group is not a matrix Lie group - it consists of pairs of matrices and
vectors. One way to calculate the Lie algebra in this case is to go back to our general formalism
and work out the left-invariant vector fields on P. This can, in fact, be done. Alternatively,
we can define an injective map p : P → GL(R5) by

p((Λ, A)) =

(
Λ A
0 1

)
. (5.56)

and note that due to

p((Λ, A))P ((λ, a)) =

(
Λ A
0 1

)(
λ a
0 1

)
=

(
Λλ Λa+A
0 1

)
= p((Λλ,Λa+A))

= p((ΛA)(λ, a))
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this is actually a group homomorphism which defines an embedding of P into GL(R5). Hence,
we can identity the Poincaré group with the set of matrices (5.56) and use our standard
techniques for matrix Lie groups to determine the Lie algebra.

Parametrising the Lorentz group with six parameters, as before, and the translations by
themselves the generators of the Poincaré group are

Jµν =

(
σµν 0
0 0

)
, Pµ =

(
0 eµ
0 0

)
, (5.57)

where eµ are the four-dimensional standard unit vectors and σµν are the Lorentz group gen-
erators (5.9). Hence, the Lie algebra of the Poincaré group is L(P) = Span(Jµν , Pµ) with
dimension dim(P) = 10. The commutation relations can be obtained by straightforward
matrix calculations (and the Mµν of course commute exactly like the σµν) and this leads to 1

[Jαβ, Jγδ] = i(ηαδJβγ + ηαγJδβ + ηβδJγα + ηβγJαδ)
[Jµν , Pρ] = i(ηνρPµ − ηµρPν) = (σµν)ρ

σPσ
[Pµ, Pν ] = 0

(5.58)

These relations show that the Poincaré algebra can be written as a semi-direct sum L(P) =
T ⊕S L(L) of the translations T = Span(Pµ) which form the radical and the Lorentz group
algebra L(L) = Span(Jµν) which is semi-simple, in accordance with Eq. (4.1). It is worth
noting that the Poincaré commutation relations (5.58) are also realised by the operators

P̂µ = −i∂µ , Ĵµν = −i(xµ∂ν − xν∂ν) , (5.59)

which are frequently used in the physics literature.

Casimir operators

The Pauli-Lubanski vector is defined by

Wµ = −1

2
ϵµ
νρσJνρPσ (5.60)

and it turns out that its square W 2 = WµW
µ, as well as P 2 = PµP

µ are Casimir operators,
in the sense that they commute with the entire Poincaré algebra. This can be verified by
straightforward calculation using the commutation relations (5.58)

Exercise 5.2. Verify that W 2 and P 2 commute with all Pµ and Jµν .

This means P 2 and W 2 assume certain values (times the unit matrix) on irreps, which can be
used to characterise the representation.

Representations: mass and momentum

We are interested in unitary representations of the Poincaré group and for a group element
(Λ, a) we denote the representation matrix by R(Λ, a) which acts on a representation vector
space V . (We will not proceed with the same mathematical rigour here - it would be too
much effort and take too long - but the argument outlined can be cast in a rigorous form.)

1To stay in line with physics conventions we have here performed the rescaling Jµν 7→ −iJµν and Pµ 7→ −iPµ

in order to end up with hermitian (rather than anti-hermitian) quantities.
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We consider vectors |m, p⟩ which are common eigenvectors under Pµ (and, hence, under P 2)
so that

Pµ|m, p⟩ = pµ|m, p⟩ , P 2|m, p⟩ = −m2|m, p⟩ (5.61)

with eigenvalues pµ and −m2 = pµp
µ. Physically, pµ is identified with the four-momentum

and m with the mass. We would like to work out what happens to such eigenvectors of Pµ
under the action of the other generators, Jµν .

Pρ(1+ iϵµνJµν)|m, p⟩ = (Pρ + iϵµνJµνPρ + iϵµν [Jµν , Pρ]) |m, p⟩
(5.58)
= (pρ + iϵµνJµνpρ + iϵµν(σµν)ρ

σpσ) |m, p⟩
= (δσρ + iϵµν(σµν)ρ

σ)pσ(1+ iϵµνJµν) |m, p⟩+O(ϵ2)

Exponentiating this result shows that

R(Λ, 0) |m, p⟩ is a state of type |m,Λp⟩ with momentum Λp . (5.62)

Massive representations

If m2 = −pµpµ ̸= 0 there exists a Lorentz transformation Λ with Λp = (m, 0) and the corre-
sponding states |m, (m, 0)⟩ are, from Eq. (5.62), rotated into states with the same momentum
(m, 0) by R(Q, 0), where Q is a rotation (contained in the rotation subgroup of the Lorentz
group). Hence, the states |m, (m, 0)⟩ form a representation of SO(3) and, demanding that
this representation be irreducible, finite and have spin j we can write

R(Q, 0)|m, (m, 0), j, µ⟩ =
∑
µ′

R(j)(Q)µ′µ |m, (m, 0), j, µ′⟩ , (5.63)

where R(j)(Q) are the spin j representation matrices. The group O(3) in this context, as
a subgroup of the Lorentz group which leaves vectors (m, 0) invariant, is also referred to as
little group. A quick calculation shows that

W0|m, (m, 0), j, µ⟩ = 0
Wi|m, (m, 0), j, µ⟩ = mJi |m, (m, 0), j, µ⟩

}
⇒ W 2 |m, (m, 0), j, µ⟩ = m2j(j+1) |m, (m, 0), j, µ⟩ ,

so, while P 2 gives the total mass (squared) of the representation, W 2 pulls out the total spin.

To complete the story, we still have to consider states with more general momenta p which we
define as |m, p, j, µ⟩ = R(B(p), 0) |m, (m, 0), j, µ⟩, where B(p) is a boost with B(p)(m, 0) = p.
The claim is that these states, for all p with p2 = −m2 and all µ = −j, . . . ,+j span the desired
representation characterised by mass m and spin j. To verify this we have to show that these
states close under Poincaré transformation. We begin with Lorentz transformations.

R(Λ, 0) |m, p, j, µ⟩ = R(Λ, 0)R(B(p), 0) |m, (m, 0), j, µ⟩
p′=Λp
= R(B(p′), 0)R(B(p′), 0)−1R(Λ, 0)R(B(p), 0) |m, (m, 0), j, µ⟩

= R(B(p′), 0)R(B(p′)−1ΛB(p)︸ ︷︷ ︸
rotation

, 0) |m, (m, 0), j, µ⟩

=
∑
µ′

R(j)(B(Λp)−1ΛB(p)︸ ︷︷ ︸
Wigner rotation

)µ′µ |m,Λp, j, µ′⟩
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Further, by exponentiating Pµ |m, p, j, µ⟩ = pµ |m, p, j, µ⟩ we can derive the effect of transla-
tions. In summary we have

R(Λ, 0) |m, p, j, µ⟩ =
∑

µ′ R
(j)(B(Λp)−1ΛB(p))µ′µ |m,Λp, j, µ′⟩

R(0, a) |m, p, j, µ⟩ = eia·p |m, p, j, µ⟩ (5.64)

In summary, the massive representation of the Poincaré group are labelled by the mass m ̸= 0
and by a spin j ∈ Z/2 and they are spanned by the states |m, p, j, µ⟩, for all p with p2 = −m2

and µ = −j, . . . ,+j and with the Poincaré group acting as in Eqs. (5.64). Physically, these
corresponds to massive states with mass m, four-momentum p satisfying the mass on-shell
condition and with total spin j and spin “orientation” µ = −j, . . . ,+j. In particular, this
means a massive particle has 2j + 1 spin states.

Massless representations

For representations with zero mass, m = 0, the discussion proceeds along similar lines, how-
ever, momenta p with p2 = 0 cannot be transformed into the “rest frame” but instead can
always be Lorentz transformed to a four-vector of the form (1, 1, 0, 0). This leads to a different
little group - the subgroup of the Lorentz group which leaves the vector (1, 1, 0, 0) invariant -
which is the Euclidean group E(2) in two dimensions, consisting of two-dimensional orthogo-
nal maps and two-dimensional translations. In addition to momenta p with p2 = 0 massless
representations are then determined by representation of this little group, which are labelled
by a spin j ∈ Z/2 and consist of two “helicity states” with µ = ±j. We refrain from going
into the details. The interested reader can, for example, look at Ref. [11], vol. 1, Section 2.5.

5.3 Unitary groups and tensor methods

We now discuss our first class of Lie groups - the unitary groups. After setting up the basics, we
will determine their Lie algebras and develop the entire formalism related to the introduction
of the Cartan-Weyl basis for these cases.

General properties

Definition of unitary groups

If we introduce the metric
η = diag(1, . . . , 1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

) (5.65)

with signature (p, q) and in n = p + q dimensions we can define the unitary group leaving
those metrics invariant by

U(p, q) = {U ∈ GL(Cn) | U †ηU = η︸ ︷︷ ︸
⇒|det(U)|=1

}

SU(p, q) = {U ∈ U(p, q) | det(U) = 1}

The more familiar standard unitary groups are the special cases for Euclidean signature (p, q) =
(n, 0) given by

U(n) = U(n, 0) = {U ∈ GL(Cn) |U †U = 1n}
SU(n) = SU(n, 0) = {U ∈ U(n) | det(U) = 1}
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As usual, the n-dimensional representation defined by these matrices is referred to as the
fundamental representation.

Application 5.3: (Unitary groups in physics)

The groups SU(n) make a frequent appearance in physics, as groups underlying gauge theories
(see later) but also sometimes as global symmetries, for example as in the SU(3) quark model
(see later). The groups (S)U(p, q) for the non-Euclidean cases are not as common but, as so
many other mathematical features, appear in string theory, in the context of string duality
symmetries.

All group (S)U(p, q) are path-connected, the groups (S)U(n) are compact (since U †U = 1n

means every row of U is normalised to 1 under the standard complex scalar product) but the
groups (S)U(p, q) with p, q ̸= 0 are non-compact (due to the presence of positive and negative
signs in η which means there are no bounds on the matrix entries).

Relation between SU(n) and U(n)

Define the map f : U(1) × SU(n) → U(n) by f(z, U) = zU , where z ∈ U(1) and U ∈ U(n).
It follows that Im(f) = U(n), since a U ∈ U(n) is the image of (ζ, ζ−1U), where ζ is any
solution of ζn = det(U). On the other hand, if (z, U) ∈ Ker(f) it follows that zU = 1n so
that det(zU) = zn = 1. Hence, z is any of the nth roots of unity and U = z−1

1n, so we learn
that Ker(f) ∼= Zn. In summary, from the isomorphism theorem we have

U(n) ∼=
SU(n)× U(1)

Zn
. (5.66)

Lie algebras

Proceeding in the usual fashion by writing U = 1 + T + · · · and working out the linearised
constraint on T amounts to the same calculation we carried out for SU(2). The constraint
U †ηU = η implies that T = −ηT †η and det(U) = 1 leads to tr(T ) = 0, so the Lie algebra is

su(p, q) = L(SU(p, q)) = {T ∈ End(Cn) |T = −ηT †η, tr(T ) = 0} . (5.67)

These matrices are traceless and anti-hermitian in the (++) and (−−) entries, relative to the
metric η and hermitian in the (+−) and (−+) entries. The dimension only depends on n and
can be counted as follows.

dimR(su(p, q)) =
n(n− 1)

2︸ ︷︷ ︸
above diagonal

2 + (n− 1)︸ ︷︷ ︸
diagonal

= n2 − 1 . (5.68)

For much of our discussion we will use the complexification of this algebra. Since allow-
ing factors of i washes out the difference between hermitian and anti-hermitian matrices all
complexifications su(p, q)C for a fixed n = p+ q are, in fact, the same and are given by

su(p, q)C = su(n)C = {T ∈ End(Cn) | tr(T ) = 0} = sl(n,C) =: An−1 . (5.69)

The standard name for these algebras is An−1 (labelled by their rank, hence the one taken off)
and their dimension (with respect to the complex field) is unchanged, dimC(An−1) = n2 − 1.
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Cartan-Weyl formalism

Cartan decomposition of An−1

For convenience of notation, we introduce the standard unit vector ei, where i = 1, . . . , n on
Cn, the matrices Hi = diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 appears in the ith position on
the diagonal, and the matrices Eij with a 1 in entry (ij) and zero everywhere else. We also
define a basis (Li) dual to the basis (Hi), so that we have the relations Li(Hj) = δij . With
this notation the Cartan subalgebra of An−1 can be written as

H =

{∑
i

biHi | bi ∈ C,
∑
i

bi = 0

}
⇒ rk(An−1) = n− 1 . (5.70)

The sum constraint of the coefficients bi is of course the zero trace condition. The dual Cartan
H′ is spanned by the Li but we have to divide out multiples of L1 +L2 + · · ·+Ln which acts
as the zero functional on H due to the zero trace constraint.

H′ =
C(L1, . . . , Ln)

C(L1 + · · ·+ Ln)
. (5.71)

(Here, C(L1, . . . , Ln) just means the span of all vectors in the list with coefficients in C.) The
claim is now that

An−1 = H⊕
⊕
i ̸=j

C(Eij) (5.72)

is the correct Cartan-Weyl decomposition for An−1. To check this we first note that An−1 is
indeed spanned by all the traceless diagonal matrices in H and the Eij for i ̸= j. To check the
defining eigenvalue property of the Cartan-Weyl decomposition start with H =

∑
i biHi ∈ H

and work out
ad(H)(Eij) = [H,Eij ] = (bi − bj)Eij = (Li − Lj︸ ︷︷ ︸

=:Lij

)(H)Eij .

This shows that the Eij are indeed eigenvectors with associated roots Lij = Li − Lj . Hence,
the roots space for An−1 is

∆ = {Lij = Li − Lj | i ̸= j} . (5.73)

Killing form

Since we know the root space we can now work out the Killing form on the Cartan, using the
result from Theorem 4.6 (vi). With H =

∑
i biHi and H̃ =

∑
j b̃jHj (where

∑
i bi =

∑
i b̃i = 0)

this gives

Γ(H, H̃) =
∑
i ̸=j

Lij(H)Lij(H̃) =
∑
i ̸=j

(bi − bj)(b̃i − b̃j) =
∑
i,j

(bi − bj)(b̃i − b̃j) = 2n
∑
i

bib̃i

To find the Killing form on H′ we start with L =
∑

i liLi ∈ H′ and find the element HL =∑
i ciHi ∈ H, which corresponds to L under the isomorphism in Theorem 4.6 (i).

Γ(HL, H) = L(H) ∀H ∈ H ⇔
∑
i

(2nci − li)bi = 0 ∀bi with
∑
i

bi = 0 .
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This implies that 2nci − li must be constant, independent of i and this constant should be
fixed so that

∑
i ci = 0, as is appropriate for an element of H. This gives

L =
∑
i

liLi , HL =
∑
i

ciHi ⇔ ci =
1

2n
(li − k) , k =

1

n

∑
j

lj . (5.74)

From Theorem 4.6 (i), the Killing form on H′ is defined in terms of the Killing form on H via
this isomorphism, so for L =

∑
i liLi and L̃ =

∑
j l̃jLj we have

(L, L̃) = Γ(HL, HL̃) =
1

2n

∑
i

(li − k)(l̃i − k̃) =
1

2n

∑
i

li l̃i −
1

n

∑
i

li
∑
j

l̃j

 (5.75)

Positive and negative roots

To distinguish positive from negative roots we need to choose a direction ℓ =
∑

i ℓiHi ∈ H
(with

∑
i ℓi = 0) and all we have to demand is that ℓ1 > ℓ2 > · · · > ℓn. Since ℓ (

∑
i liLi) =∑

i ℓili it follows that the positive and negative roots are

∆+ = {Lij | i < j} , ∆− = {Lij | i > j} . (5.76)

Further, the positive simple roots are

αi = Li,i+1 where i = 1, . . . , n− 1 . (5.77)

It is not hard to see that all positive roots can be obtained as sums of the αi, for example
L13 = L1 − L3 = (L1 − L2) + (L2 − L3) = α1 + α2.

Cartan matrix

We should work out the Dynkin label for a weight λ =
∑

i λiLi, from Eq. (5.75). Since the
simple positive root αi corresponds to a vector (li) = (0, . . . , 0, 1,−1, 0, . . . , 0) we know from
Eq. (5.75) that (αj , αj) = 1/n and (λ, αj) = (λj − λj+1)/(2n). Combining these results we
find for the Dynkin label of λ

aj =
2(λ, αj)

(αj , αj)
= λj − λj+1 ∈ Z . (5.78)

The Cartan matrix is obtained by evaluating this for λ = αi which gives

Aij =
2(αi, αj)

(αj , αj)
= (αi)j − (αi)j+1 =


2 for i = j

−1 for |i− j| = 1
0 otherwise

. (5.79)

or, as a matrix,

A(An−1) =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


. (5.80)

Cartan matrices can also be represented graphically, by aDynkin diagram. This is a diagram
with rk(L) nodes, where node i and node j are connected by −Aij links for i < j. Following
this rule the Dynkin diagram of An−1 is
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Weights

Eq. (5.78) shows that λ =
∑

i λiLi is in the weight lattice iff all differences λi − λi+1 are
integer. Using the quotient in Eq. (5.71) we can always choose a representative such that all
λi are integers, simply by subtracting the non-integer part times L1 + . . . + Ln. This still
leaves us to divide out integer multiplies of L1 + · · ·+ Ln so that the weight lattice is

ΛW =
Z(L1, . . . , Ln)

Z(L1 + · · ·+ Ln)
. (5.81)

The remaining quotient can be used to choose a representative with λn = 0 and then
Eqs. (5.78) can be solved for λi in terms of the Dynkin label ai. The result is that a Dynkin
label (a1, . . . , an−1) corresponds to a weight

λ =
∑
i

λiLi = (a1 + · · ·+ an−1)L1 + (a2 + · · ·+ an−1)L2 + · · ·+ an−1Ln−1 . (5.82)

Representations

We know that representations are classified by highest weight Dynkin labels (a1, . . . , an−1)
with all ai ≥ 0. But how does such a seemingly abstract statement actually help? As we
will see, it is actually quite powerful when combined with tensor methods which allow us to
construct the irreps of An−1.

We start modestly by looking at the fundamental representation on V ∼= Cn. Since Eije1 = 0
for all i < j we learn that e1 is the highest weight vector of the fundamental. (To see this
recall the definition of the highest vector from Def. 4.8 and from Eq. (5.76) that Eij for i < j
are the raising operators). Further, we have

Hei =

∑
j

bjHi

 ei = biei = Li(H)ei ,

which shows that ei is a vector with weight Li. In conclusion, we see that the fundamental
is a representation with highest weight L1 which, from Eq. (5.82), corresponds to a highest
weight Dynkin label (1, 0, . . . , 0).

This does not seem like much progress yet but let’s take symmetric and anti-symmetric tensor
powers. First note that if a vector space U carries a representation, then so do the anti-
symmetric rank k tensors ΛkU and the symmetric rank k tensors SkU (every index is acted on
by the same representation matrix so symmetrisation and anti-symmetrisation are preserved
under the action of the representation).

Consider the anti-symmetric power ΛkV of the fundamental. Since Eijel = δjlei for i < j
its highest weight is e1 ∧ e2 ∧ · · · ∧ ek with weight L1 + L2 + · · · + Lk (recall that ei has
weight Li and that weights add under tensoring) which, from Eq. (5.82) translates into the
highest weight Dynkin label (0, . . . , 0, 1, 0, . . . 0) with the 1 in the kth position. So in short,
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the anti-symmetric powers ΛkV of the fundamental for k = 1, . . . , n − 1 provide us with the
“unit vector” Dynkin labels.

Consider a representation on a vector space U with highest weight vector u ∈ U and highest
weight λ. Then, the representation on SkU has highest weight vector uk with highest weight
kλ.

Combining these statements we see that the An−1 irrep with highest weight Dynkin label
(a1, . . . , an−1) is contained in the tensor product

Sa1(V )⊗ Sa2(Λ2V )⊗ · · · ⊗ San−1(Λn−1V ) (5.83)

of the fundamental V and it has highest weight vector

v = ea11 ⊗ (e1 ∧ e2)a2 ⊗ · · · ⊗ (e1 ∧ · · · en−1)
an−1 . (5.84)

So with a few short arguments we have shown that all An−1 representations can be obtained
as tensors of the fundamental, suitably symmetrised and anti-symmetrised. The space (5.83)
is not always irreducible but it certainly contains the irrep with highest weight Dynkin label
(a1, . . . , an−1). We will soon discuss more sophisticated methods to symmetrise which lead
to irreps but for now it is useful to include some discussion on how to calculate with tensors
explicitly.

Tensors, hands-on

Basic set-up

Consider the fundamental representation n and the complex conjugate of the fundamental 2

n̄ of SU(n). If we denote elements in the underlying representation vector spaces by ϕµ for n
and ϕµ for n̄, where µ, ν = 1, . . . n, then their SU(n) transformation is

ϕµ 7→ Uµ
νϕν , ϕµ 7→ Ūµνϕ

ν (5.85)

where U ∈ SU(n) with entries Uµ
ν and Ū is the complex conjugate of U with entries Ūµν . A

(p, q) tensor in np ⊗ n̄q carries p lower and q upper indices, ϕ
ν1···νq
µ1···µp , and transforms as

ϕ
ν1···νq
µ1···µp 7→ Uµ1

ρ1 · · ·Uµpρp Ūν1σ1 · · · Ū
νq
σq ϕ

σ1···σq
ρ1···ρp (5.86)

Symmetrisation and anti-symmetrisation in any number of lower or upper indices is preserved
under this action since all lower and upper indices are acted upon by the same matrix.

Exercise 5.3. Let ϕµν be an SU(n) tensor with ϕµν = ±ϕµν . Show explicitly that the (anti-
)symmetry of the tensor is preserved under the action of SU(n).

Another useful ingredient is that the Kronecker delta δνµ and the Levi-Civita tensors ϵµ1···µn
and ϵµ1···µn are SU(n) invariant, as a direct result of the defining relations U †U = 1n and
det(U) = 1 of SU(n). For this reason, they can be used to construct new tensors from given
ones. The point is that the transformation property of a tensor - and the corresponding SU(n)
representation - can be read off from the index structure.

2It is common in physics to denote representations by their dimensions (in boldface, say). This is not the
greatest notation as representations are certainly not always uniquely characterised by their dimensions. But
it is fairly widely used and physicists are ruthless that way, so here we go.
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Examples of SU(n) tensors

(1) For a (1, 1) tensor ϕνµ the contraction ϕµµ = δµνϕνµ is an invariant.

(2) For an (n, 0) tensor ϕµ1···µn and a (0, n) tensor ϕµ1···µn the contractions ϵµ1···µnϕµ1···µn
and ϵµ1···µnϕ

µ1···µn are invariants.

(3) For an (n−1, 0) tensor ϕµ1···µn−1 we can define a (0, 1) tensor by ϕµ = ϵµµ1···µn−1ϕµ1···µn−1 ,
which, hence, transforms as an n̄ representation. We have seen that the fundamental,
n, realised on a vector space V ∼= Cn, has a highest weight Dynkin label (1, 0, . . . , 0).
Now it is clear that the complex conjugate of the fundamental, n̄ is realised on ∧n−1V .
This fits with the tensor classification in Eq. (5.83) and shows that the highest weight
Dynkin label of n̄ is (0, . . . , 0, 1).

(4) Consider a (1, 1) tensor ϕνµ. Written as a matrix it transforms as ϕ 7→ UϕU †, so like the
adjoint. But its dimension is n2 while the dimension of the adjoint is n2 − 1. This is an
example for a representation on one of the tensor spaces in Eq. (5.83), in this case on
V ⊗ (∧n−1V ), which leads to a reducible representation. We can extract the irreducible
pieces by writing

ϕνµ =

(
ϕνµ −

1

n
δνµϕ

ρ
ρ

)
︸ ︷︷ ︸

adjoint

+
1

n
δνµ ϕρρ︸︷︷︸

singlet

(5.87)

This gives us a Clebsch-Gordan decomposition n⊗ n̄ = 1⊕ adj and also shows that the
highest weight Dynkin label of the adjoint is (1, 0, . . . , 0, 1).

(5) Consider SU(3) and a (2, 0) tensor ϕµν = ϕ(µν)+ϕ[µν], where the round (square) brackets
around indices denote symmetrisation (anti-symmetrisation). The symmetric tensor
ϕ(µν) is six-dimensional and denoted by 6. It lives in S2V and, hence, has Dynkin label
(2, 0). The anti-symmetric part ϕµ = ϵµνρϕ[νρ] is a 3̄ complex conjugate fundamental,
so we have the Clebsch-Gordan decomposition 3⊗ 3 = 3̄⊕ 6.

(6) Repeating this discussion with SU(5), the (2, 0) tensor ϕµν = ϕ(µν) + ϕ[µν] now has a
symmetric piece ϕ(µν) in S

2V of dimension 15 and Dynkin label (2, 0, 0, 0) and an anti-
symmetric piece ϕ[µν] in ∧2V of dimension 10 and with Dynkin label (0, 1, 0, 0). Hence,
we have the Clebsch-Gordon decomposition 5⊗ 5 = 10⊕ 15. There is also the complex
conjugate fundamental 5̄ with tensor ϕµ and Dynkin label (0, 0, 0, 1).

Constructing SU(n) invariants

The tensor notation makes it quite simple to write down the SU(n) invariants which can be
constructed from given tensors. For example, consider SU(5) with tensors ϕ[µν], ϕ̃[µν] in 10,
tensor H̄µ and ψµ in 5̄ and a tensor Hµ in 5. Then, obvious SU(5) invariants are

ϵµνρστϕ[µν]ϕ̃[ρσ]Hτ , ϕ[µν]ψ
µH̄ν , ϕ̃[µν]ψ

µH̄ν . (5.88)

Branchings for SU(n)

It is easy to embed smaller unitary groups into larger ones and then work our branchings of
representations. This is best illustrated with an example, say SU(2) × SU(3) ⊂ SU(5), with
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the explicit embedding

SU(2)× SU(3) ∋ (U3, U2) 7→
(
U3 0
0 U2

)
∈ SU(5) .

Let µ, ν = 1, . . . , 5 denote SU(5) indices, a, b, . . . = 1, 2, 3 are SU(3) indices and i, j, . . . = 4, 5
are SU(2) indices. Hence, indices are “broken up” as µ = (a, i). Branchings can then be easily
worked out by specialising the SU(5) indices on a tensor to all possible combinations of SU(2)
and SU(3) indices and reading off the resulting representation.

5 ∋ ϕµ 7→ (ϕa, ϕi) 5 7→ (3,1)⊕ (1,2)
5̄ ∋ ϕµ 7→ (ϕa, ϕi) 5̄ 7→ (3̄,1)⊕ (1,2)

10 ∋ ϕ[µν] 7→ (ϕ[ab], ϕai, ϕ[ij]) 10 7→ (3̄,1)⊕ (3,2)⊕ (1,1)
(5.89)

For the second line we note that 2 and 2̄ of SU(2) are equivalent, so the bar has been dropped.
In the last line, ϕ[ab] is, in fact, a 3̄ of SU(3) from point (3) above. Finally, ϕ[ij] is indeed an
SU(2) singlet from point (2) above.

Tensors systematically

As we have seen the tensor (5.83) contains the An−1 irrep with highest-weight Dynkin label
(a1, . . . , an−1) but it is unfortunately not always irreducible, as the decomposition (5.87) of
the (1, 1) tensor shows. To get to irreducible tensors we need a more sophisticated method to
symmetrise/anti-symmetrise than provided by Eq. (5.83).

Tensors and Young tableaux

To do this we start with a vector space V ∼= Cn carrying the fundamental representation
and rank d tensors in V ⊗d carrying the induced tensor representation. We can represent the
permutation group Sd on V ⊗d, basically by the elements of Sd permuting the d tensor indices
or, more formally, by σ(v1 ⊗ · · · ⊗ vd) = vσ(1) ⊗ · · · ⊗ vσ(d). This action of Sd commutes with
the action of An−1 since every vector in the tensor product is transformed with the same
representation matrix (or, in index notation, every index transforms with the same matrix).
We can now recycle some of the formalism we have seen in the context of representations for
permutation groups. Consider a partition λ = (λ1, . . . , λn−1) of d, that is, d = λ1+ · · ·+λn−1

with λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0. To such a partition we can assign a Young tableau with at
most n− 1 rows, and each row with length λi, for example, for d = 9 and λ = (4, 2, 2, 1), we
have the tableau

1 2 3 4
5 6
7 8
9 .

We can then define the map Pλ : V ⊗d → V ⊗d by

Pλ = c

∑
σ∈Rλ

σ

 ∑
σ∈Cλ

sgn(σ)σ

 (5.90)

where Rλ and Cλ are the sets of permutations which leave the rows and columns of the Young
tableau λ invariant. This map is a projector (for a suitable choice of the number c) and it
commutes with the action of An−1 (since every permutation does) and hence

Pλ(V ) := PλV
⊗d (5.91)
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is an An−1 representation. Note that this amounts to symmetrising the tensor in the in-
dices that correspond to each row and anti-symmetrising in the indices corresponding to each
column.

Theorem 5.4. The representation Pλ(V ) defined above has the following properties.

(i) It contains the irrep with highest weight λ =
∑

i λiLi and highest weight Dynkin label
ai = λi − λi+1.
(ii) It is irreducible.

Proof. (i) It is enough to show that Pλ(V ) contains the highest weight vector

v = ea11 ⊗ (e1 ∧ e2)a2 ⊗ · · · ⊗ (e1 ∧ · · · ∧ en−1)
an−1

of the irrep with highest weight Dynkin label (a1, . . . , an−1). This amounts to showing that
Pλv = v and the reason this is true is indicated in the figure below.

Note that the length differences of the Young tableau rows are precisely the highest weight
Dynkin labels of the irrep. It is therefore easy to convert between the Young tableau and
Dynkin label picture.

(ii) See Ref. [1], p. 223.

Corollary 5.1. The Young tableaux with less than n rows are in one-to-one correspondence
with the irreps of An−1.

Dimension of representations

We can find the dimension of an irrep with Young tableau λ by counting the independent
components of the associated vector. This can be done by filling in the numbers 1, . . . n into
the boxes of the Young tableau in a way that respects the symmetries enforced by Pλ, that
is, symmetries along the rows and anti-symmetry along the columns.

Definition 5.1. A standard tableau for a Young tableau λ is the Young tableau with the
numbers 1, . . . , n filled into the boxes such that

(i) numbers do not decrease from left to right in each row (symmetry in the rows)
(ii) numbers increase from top to bottom in each column (anti-symmetry in the columns)

Then the dimension of a Young tableau λ equals the number of its standard tableaux, so

dim(Pλ(V )) = #standard tableaux for λ . (5.92)
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Examples

It is useful to practice this with a few examples, to start with for An−1 for generic n.

representation Young tableau tensor standard tableaux dimension

n m ϕm 1 , 2 , . . . , n n

(n⊗ n)symm
m n ϕ(mn) 1 1 , 1 2 , . . . n(n+ 1)/2

(n⊗ n)anti−symm

m
n ϕ[mn]

1
2 ,

1
3 , . . . n(n− 1)/2

Some more specific example for the case SU(3) are:

representation Young tableau tensor Dynkin label

1

m
n
p ϕ[mnp] = ϵmnpϕ (0, 0)

3 m ϕm (1, 0)

3̄

m
n ϕ[mn] (0, 1)

6 m n ϕ(mn) (2, 0)

6̄

m n
p q ϕ([mp][nq]) = ϵmprϵnqsϕ

rs (0, 2)

8

m n
p ⋆ (1, 1)

Let us illustrate how to get the tensor for 8 from projecting with P(2,1) we label the three
boxes of the Young tableau as

1 2
3 ⇒ R(2,1) =

{
e,

[
1 2 3
2 1 3

]}
, C(2,1) =

{
e,

[
1 2 3
3 2 1

]}
.

From Eq. (5.90) the projector for this representation is then

P(2,1) =

(
e+

[
1 2 3
2 1 3

])(
e−

[
1 2 3
3 2 1

])
= e+

[
1 2 3
2 1 3

]
−
[
1 2 3
3 2 1

]
−
[
1 2 3
3 1 2

]
Applying this to (the indices of) the tensor ϕµ1µ2µ3 gives

Pλϕµ1µ2µ3 = ϕµ1µ2µ3 + ϕµ2µ1µ3 − ϕµ3µ2µ1 − ϕµ3µ1µ2 .

To illustrate the counting of dimensions, we write down all eight standard tableaux for λ =
(2, 1), which are

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3 .

91



Clebsch-Gordan decomposition

Now that we have described representation in terms of Young tableaux we should be able to
formulate tensor products and their Clebsch-Gordan decompositions in this language, so write

Pλ(V )⊗ Pµ(V ) =
⊕
v

NλµνPν(V ) , (5.93)

where the integers Nλµν describe how many times the irrep Pν(V ) appears in the tensor prod-
uct of the irreps Pλ(V ) and Pµ(V ). There is a practical algorithm for how to extract these
numbers called the Littlewood-Richardson rule (for a proof see Ref. [1], App. A) which pro-
ceeds as follows.

Algorithm (Clebsch-Gordan decomposition from Young tableaux) To tensor An−1 represen-
tations for two Young tableaux λ and µ proceed as follows:

(1) Write the first Young tableau λ as

a a a a a a
b b b
c c .

(2) Attach boxes of λ to µ, starting with a’s, then b’s etc, such that (i) no two same letters
appear in the same column (ii) the result is always a Young tableaux.

(3) For each Young tableaux obtained in (2), read all letters from right to left and top to
bottom. This sequence must form a lattice permutation, that is, to the left of any symbol
there are no fewer a’ than b’s, etc. Otherwise the tableaux is discarded.

At least for low-dimensional examples this algorithm leads to the Clebsch-Gordon decompo-
sition quickly, as the following SU(3) examples show.

a ⊗ = a ⊕ a

3 ⊗ 3 = 3̄ ⊕ 6

a ⊗ = a ⊕
a

3 ⊗ 3̄ = 1 ⊕ 8

a ⊗ = a ⊕ a

3 ⊗ 6 = 8 ⊕ 10

(5.94)

SU(3) in detail

The Gell-Mann matrices

The group SU(3) is quite commonly used in physics, in the context of the quark model for
hadrons and also as a gauge theory, and it makes sense to look at it in more detail. There is an
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analogue of the Pauli matrices for the SU(3) case, and these are called Gell-Mann matrices.

λi =

(
σi 0
0 0

)
i = 1, 2, 3 suI(2)

λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 suV (2)

λ6 =

 0 0 0
0 0 1
0 1 0

 λ7 =

 0 0 0
0 0 −i
0 i 0

 suU (2)

λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2



(5.95)

The Lie-algebra su(3) is eight-dimensional and it consists of hermitian 3, traceless 3×3 matrices
and the above matrices clearly form a basis of this space. The first second and third line
correspond to the (non-diagonal) generators which span the su(2) algebras which originate
from the three different ways of embedding SU(2) into SU(3) (which are also conventionally
labelled by I (for isospin), V and U),

SUI(2) ∋ U 7→
(
U 0
0 1

)
∈ SU(3)

SUV (2) ∋ U =

(
α β
γ δ

)
7→

 α 0 β
0 1 0
γ 0 δ

 ∈ SU(3)

SUU (2) ∋ U 7→
(

1 0
0 U

)
∈ SU(3)

(5.96)

The Gell-Mann matrices satisfy the nice normalisation property

tr(λIλJ) = 2δIJ . (5.97)

The generators are taken to be TI = λI/2, so that su(3) = Span(TI) and group elements are
obtained by exponentiating,

U = exp(itITI) ∈ SU(3) , (5.98)

where tT ∈ R and the factor of i appears since we are working in the “physics convention”
where the generators are taken to be hermitian (rather than anti-hermitian).

Cartan-Weyl basis

The rank of su(3) is two, so the Cartan has a two-dimensional basis, H = Span(T3, Y ) which
are basically the two diagonal Gell-Mann matrices suitably normalised

T3 = diag(1/2,−1/2, 0) , Y =
2√
3
T8 = diag(1/3, 1/3,−2/3) . (5.99)

Another element in the Cartan which is worth defining is

Q = T3 +
1

2
Y = diag(2/3,−1/3,−1/3) ∈ H . (5.100)

3For the purpose of this part we stick to the physics convention by writing U = 1n + iT + · · · , so that the
generators T are hermitian.
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In the context of the SU(3) quark model, Q is identified with electrical charge. To find the
raising and lowering operators we can consider the three su(2) sub-algebras and define the
standard su(2) raising and lowering operator for each.

T± = T1 ± iT2 , V± = T4 ± iT5 , U± = T6 ± iT7 . (5.101)

Relating to the previous general notation for the Cartan-Weyl basis, the basis (Hi) for H is
here chosen to be (T3, Y ) and the raising and lowering operators (Eα) are (T±, U±, V±). To
check that this is indeed the correct Cartan-Weyl basis we should check that the eigenvalue
equations [Hi, Eα] = αiEα are satisfied - this will also allow us to read off the eigenvalues (the
components of the roots) αi. A straightforward matrix computation gives

[T3, T±] = ±T± [Y, T±] = 0 ⇒ αT± = (±1, 0)
[T3, U±] = ∓1

2U± [Y,U±] = ±U± ⇒ αU± = (∓1/2,±1)
[T3, V±] = ±1

2V± [Y, V±] = ±V± ⇒ αV± = (±1/2,±1)
(5.102)

The root system can be visualised by a root diagram, a simple drawing of all the roots vectors.

It contains three root diagrams of su(2), indicated by the blue ellipses, which correspond to
the three subalgebras suI(2), suV (2) and suU (2).

Fundamental representation and its complex conjugate

The fundamental representation acts on V ∼= C3 and we note the standard unit vector basis
by u = e1, d = e2 and s = e3. With the two Cartan generators in the 3 fundamental irrep

T
(3)
3 = diag(1/2,−1/2, 0) , Y (3) = diag(1/3, 1/3,−2/3) , Q(3) = diag(2/3,−1/3,−1/3) .

it is easy to work out the weights of u, d, s (which are of course common eigenvectors of T
(3)
3

and Y (3) as

T
(3)
3 u = 1

2u Y (3)u = 1
3u ⇒ λu = (1/2, 1/3)

T
(3)
3 d = −1

2d Y (3)d = 1
3d ⇒ λd = (−1/2, 1/3)

T
(3)
3 s = 0 Y (3)s = −2

3s ⇒ λs = (0,−2/3)

(5.103)

For the complex conjugate of the fundamental, 3̄, we introduce the basis ū = e1, d̄ = e2 and
s̄ = e3. From Eq. (5.98) the generators in 3̄ are obtained from those in 3 by T 7→ −T ∗, so in
particular

T
(3̄)
3 = diag(−1/2, 1/2, 0) , Y (3̄) = diag(−1/3,−1/3, 2/3) , Q(3̄) = diag(−2/3, 1/3, 1/3) .
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Hence, the weights of the 3̄ representation are

T
(3̄)
3 ū = −1

2 ū Y (3̄)ū = −1
3 ū ⇒ λū = (−1/2,−1/3)

T
(3̄)
3 d̄ = 1

2 d̄ Y (3̄)d̄ = −1
3 d̄ ⇒ λd̄ = (1/2,−1/3)

T
(3̄)
3 s̄ = 0 Y (3̄)s̄ = 2

3 s̄ ⇒ λs̄ = (0, 2/3)

, (5.104)

that is, the negative of the weights in the fundamental, in line with our general statement about
the weights of the dual representation. The weights of a representation can be visualised by a
weight diagram a simple drawing of the weight vectors, as in the figure below.

5.4 Applications

Application 5.4: (Quark model of mesons)

There are six quarks, q = (u, d, s, c, b, t)T (up, down, strange, charm, bottom, top) and we
could decide that they furnish a fundamental representation of SU(6), so transform as q 7→ Uq,
where U ∈ SU(6). In fact, much of the QCD Lagrangian is invariant under this “flavour
symmetry”, with the exception of the mass Lagrangian

Lmass =
∑

q=u,d,s,c,b,t

mq q̄q

If all mq were equal this Lagrangian would be SU(6) invariant but this is of course not the
case. However, it is true that mu,md,ms ≪ ΛQCD, where ΛQCD is the characteristic energy
scale of the strong interactions. For this reason, SU(3), with the quarks (u, d, s) forming
a fundamental representation 3 (and (ū, d̄, s̄) a complex conjugate fundamental, 3̄), is an
approximate symmetry of QCD. The masses of the remaining three quarks (c, b, t) are not
negligible compared to ΛQCD, so SU(3) for the three lightest quarks is the largest flavour
symmetry we should consider.

Mesons are quark-antiquark bound states so under SU(3), they should transform as

3⊗ 3̄ = 1⊕ 8 .

We can work out the weights in this tensor product by forming all possible sums of the weights
in 3 and 3̄ (as determined above). This leads to
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tensor state u⊗ ū u⊗ d̄ u⊗ s̄ d⊗ ū d⊗ d̄ d⊗ s̄ s⊗ ū s⊗ d̄ s⊗ s̄

(T3, Y ) (0,0) (1,0) (1/2,1) (-1,0) (0,0) (-1/2,1) (-1/2,-1) (1/2,-1) (0,0)

The resulting weight diagram is shown in the figure below, with the physical names for the
(spin 0) mesons included.

The electric charge of these states is given by the Cartan element

Q = T3 +
1

2
Y . (5.105)

Of course this diagram consists of the root diagram of SU(3) (since the 8 is the adjoint) plus
the weight for the additional singlet at the origin. From the three states u⊗ ū, d⊗ d̄ and s⊗ s̄
two linear combinations must be part of the octet (and they are called π0 and η0) and one
must be singlet (which is called η′). How can we identify those linear combinations? To see
this write down the following lowering operators

T
(3)
− =

 0 0 0
1 0 0
0 0 0

 T
(3̄)
− =

 0 −1 0
0 0 0
0 0 0


U

(3)
− =

 0 0 0
0 0 0
0 1 0

 U
(3̄)
− =

 0 0 0
0 0 −1
0 0 0

 (5.106)

in the 3 and 3̄ representation and then construct their counterparts in the 3⊗ 3̄ representation
given by

T
(3⊗3̄)
− = 13 × T

(3̄)
− + T

(3)
− × 13 , U

(3⊗3̄)
− = 13 × U

(3̄)
− + U

(3)
− × 13 . (5.107)

If we apply these operators to states in 8 the result remains in 8. In particular, applying

T
(3⊗3̄)
− to ud̄ and U

(3⊗3̄)
− to ds̄ should lead to two states with weight (0, 0) which are both in

the octet.

T
(3⊗3̄)
− (ud̄) = u(T

(3̄)
− d̄) + (T

(3)
− u)d̄ = −uū+ dd̄ , U

(3⊗3̄)
− (ds̄) = −dd̄+ ss̄
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Hence, normalising and forming orthogonal linear combinations, we conclude that

π0 =
1√
2
(uū− dd̄) ∈ 8 , η0 =

1√
6
(uū+ dd̄− 2ss̄) ∈ 8 , η′ =

1√
3
(uū+ dd̄+ ss̄) ∈ 1 .

Suppose, we would like to identify which isospin SUI(2) ⊂ SU(3) multiplets a given SU(3)
multiplet contains. The branchings

3 7→ 2⊕ 1 , 3̄ 7→ 2⊕ 1 ,

are immediately clear from the embedding (5.96). Just as easily it follows that

8⊕ 1 = 3⊗ 3̄ 7→ (2⊕ 1)⊗ (2⊕ 1) = 3⊕ 2⊕ 2⊕ 1⊕ 1

so that the octet branches under SUI(2) as

8 7→ 3⊕ 2⊕ 2⊕ 1 . (5.108)

Hence, the octet contains an isospin triplet (the pions π−, π0, π+), two isospin doublets
(K0,K+ and K−, K̄0) and an isospin singlet (η0).

Baryons are bound states of three quarks so they furnish the representation

3⊗ 3⊗ 3 = 3⊗ (3̄⊕ 6) = 1⊕ 8⊕ 8⊕ 10 , (5.109)

where the Clebsch-Gordan decomposition follows immediately from the Young tableau calcu-
lations (5.94). This leads to the baryon octet and decouplet and the details can be worked
out along similar lines as for the mesons. More details on the quark model of hadrons can be
found in most particle physics textbooks, for example in Ref. [12].

Application 5.5: (Model building with internal global (Lie) symmetries - another rough
guide)

In Application (5.2) we have considered the constraints imposed by Lorentz symmetry on field
theory Lagrangians. In this context, the Lorentz symmetry is also referred to as an external
symmetry - the symmetry acting on the space-time coordinates. Field theories can also have
symmetries which do not act on the space-time coordinates but on the “field space” coordi-
nates and such symmetries are also referred to as internal symmetries. In fact, the SU(3)
flavour symmetry we have just introduced is an example of such a symmetry (although it is
merely an approximate symmetry).

To discuss this more explicitly, consider a field ϕ = (ϕa), where a = 1, . . . , n. For simplicity,
we focus on scalar fields here but analogous considerations can be carried out for fermions. At
every point in space time the field takes values in a vector space, ϕ(x) ∈ Fn, (where F = R or
C, depending on whether the ϕa are real or complex valued). Let us assume that we have a
Lie group G with representation R : G → GL(Fn) and that the field ϕ transforms under this
representation, so ϕ(x) 7→ R(g)ϕ(x). Here we are using the same R(g) for every space-time
point x and such a symmetry G is also called a global symmetry. (We will discuss local
symmetries=gauge symmetries later.) How can we build G-invariant Lagrangians?

In general, we can allow a certain type of term if the Clebsch-Gordan decomposition of the
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corresponding representations contains a singlet. For example, a certain linear combination of
quadratic terms ϕaϕb is allowed if R ⊗ R contains a singlet. If R is a unitary representation
(this is usually the case in physics applications) then R∗ ⊗ R contains a singlet which is, in
fact, given by ϕ†ϕ (since R(g)†R(g) = 1n). This means the following terms

∂µϕ
†∂µϕ , ϕ†ϕ , (ϕ†ϕ)2 , (5.110)

are all G-invariant. The first of these is a kinetic term, the second a mass term and the third
a quartic coupling term. These may well not be all the allowed terms but details depend on
the symmetry.

As an example, consider G = SU(2) with ϕ = (ϕa), where a = 1, 2, transforming in the
fundamental, 2. Which terms, besides the ones in Eq. (5.110), are allowed in this case?
Since 2 ⊗ 2 = 1 ⊕ 3 a quadratic term must be allowed. From U∗ = σ2Uσ2 (recall that 2 is
pseudo-real) and U †U = 12 it follows that UTσ2U = σ2 for U ∈ SU(2) and, hence,

ϕTσ2ϕ , (ϕTσ2ϕ)
2 (5.111)

are invariants. On the other hand, since 2⊗ 2⊗ 2 = 2⊕ 2⊕ 4 contains no singlet there is no
invariant cubic in ϕ.

Next consider G = SU(3) with ϕ = (ϕa), where a = 1, 2, 3, transforming in the fundamental,
3. Since 3⊗ 3 = 3̄⊕ 6 contains no singlet no quadratic term of the form ϕ2 is allowed. (If we
use a complex conjugate we have of course ϕ†ϕ, as in Eq. (5.110), which matches the fact that
3 ⊗ 3̄ contains a singlet.) However, since 3 ⊗ 3 ⊗ 3 contains a singlet, there is an invariant
cubic term which is, in fact, given by

ϵabcϕ
a
1ϕ

b
2ϕ

c
3 . (5.112)

(Here, we are using three SU(3) triplet fields ϕi = (ϕai ), where i = 1, 2, 3, since the cou-
pling (5.112) vanishes due to anti-symmetry of ϵabc if only one field is used.)

Exercise 5.5. Construct invariant terms for other groups and representations.

Application 5.6: (Spontaneous breaking of (global) Lie symmetries)

Symmetries of field theory are typically (partially or completely) broken by specific solutions
to the theory. The simplest type of solutions to (scalar) field theories are minima of the scalar
potential and in this application we would like to discuss symmetry breaking by such solutions.

Suppose as before that we have a scalar ϕ which takes values in ϕ(x) ∈ Rn and a Lie group
G with representation R : G → GL(Rn) (and Lie-algebra counterpart r : L(G) → End(Rn))
under which ϕ transforms as ϕ 7→ R(g)ϕ 4. Assume a G-invariant Lagrange density

L = ∂µϕ
T∂µϕ− V (ϕ)

with a G-invariant scalar potential V , so that

V (ϕ) = V (R(g)ϕ) (5.113)

4For simplicity we work with real-valued scalar fields. Complex-valued fields can always be split up into two
real-valued fields, so our discussion remains general.
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for all g ∈ G. If v = ⟨ϕ⟩ is a minimum of V (that is, there is a neighbourhood of v such
that V (ϕ) ≥ V (v) for all ϕ in this neighbourhood), then so is R(g)v for all g ∈ G. Minima of
invariant potentials never come in isolation but in orbits generated by the invariance group! On
the set M of all minima of V (the “moduli space” of V ) we can define an equivalence relation
by saying that two minima v and ṽ are related if there exists a g ∈ G and a λ ∈ R such that
ṽ = λR(g)v. In this way M splits into disjoint equivalence classes {λR(g)v | g ∈ G, λ ∈ R} of
orbits under G. For a given v ∈ M the unbroken subgroup of G is

Hv = {g ∈ G |R(g)v = v} ⇒ L(Hv) = {T ∈ L(G) | r(T )v = 0} . (5.114)

It is easy to show that HλR(g)v = gHvg
−1, which means that the unbroken group (up to

conjugation) does not depend on v but only on the G-orbit of M (and we simply call it H
from now on). Since Eq. (5.114) implies that v is a singlet under the branching of R under H
there is an important group-theoretical constraint on symmetry breaking: For a scalar ϕ in a
G-representation R to be able to generate a breaking to a subgroup H ⊂ G it is a necessary
condition that the branching of R under H contains an H-singlet.

Write ϕ = v + φ and expand the potential around v as

V (ϕ) = V (v) +
1

2
Mabφ

aφb +O(φ3) , Mab =
∂2V

∂ϕa∂ϕb
(v) , (5.115)

where M is called the mass matrix. Writing Eq. (5.113) as V (ϕ) = V (R(g(t))ϕ), where
t = (ti) are the parameters of the group, and differentiating this equation with respect to ti

leads to

0 =
∂V

∂ϕa
(r(Ti)ϕ)a .

As this holds on a basis Ti of generators it holds for all generators T and taking a derivative
with respect to ϕb and evaluating at ϕ = v gives

M(r(T )v) = 0 . (5.116)

If T ∈ L(H) then r(T )v = 0 and this equation becomes trivial. However, for T /∈ L(H) we
have r(T )v ̸= 0 which is, hence, an eigenvector with eigenvalue zero of the mass matrix M .
This means that we have one massless mode for every “broken” generator. This statement
is referred to as Goldstone’s theorem and the massless modes are also called Goldstone
modes. We conclude that

dim(G)− dim(H) = # Goldstone modes . (5.117)

As an example consider the group G = SU(5) and the two obvious subgroups H1 = SU(4) ⊂
SU(5) and H2 = SU(3)× SU(2) ⊂ SU(5). If R = 5 we have the branchings

5 7→ [4⊕ 1]H1
, 5 7→ [(3,1)⊕ (1,2)]H2

.

From the above discussion this means that a scalar ϕ in the fundamental 5 can break to H1

but not to H2. A minimum value v transforms as v 7→ Uv, where U ∈ SU(5), and can,
hence, always be rotated (and scaled) to v = (0, 0, 0, 0, 1)T . This means that M has only
a single orbit on which SU(4) is unbroken since it leaves v = (0, 0, 0, 0, 1)T invariant. Since
dim(SU(5)) = 24 and dim(SU(4)) = 15, there are 9 Goldstone modes.

Consider the same set-up but with R = 24, the adjoint of SU(5). In this case ϕ takes values
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in the Lie algebra of SU(5), so the hermitian (say), traceless 5× 5 matrices and transforms as
ϕ 7→ UϕU †. Using standard tensor methods we have the branchings

24 7→ [15⊕ 4⊕ 4̄⊕ 1]H1
, 24 7→ [(8,1)⊕ (1,3)⊕ (3,2)⊕ (3̄,2)⊕ (1,1)]H2

Since both branchings contain a singlet the adjoint can facilitate breakings which preserve H1

and H2. To understand the orbits we can diagonalise to v = diag(v1, . . . , v5), where vi ∈ R and∑
i vi = 0. The values of the four independent vi (modulo overall scaling) classify the orbits.

For generic choices neither of H1 and H2 are unbroken and only U(1)4 survives (with 24-4=20
resulting Goldstone modes). For the non-generic choice v = diag(v, v, v, v,−4v) H1 × U(1)
is unbroken (with 24 − 15 − 1 = 8 Goldstone modes) and for v = diag(2v, 2v, 2v,−3v,−3v)
H2 × U(1) is unbroken (with 24− 8− 3− 1 = 12 Goldstone modes).

Application 5.7: (Local symmetries and gauge theories - a rough guide)

Consider a theory with external symmetry group G and fields ϕ transforming as ϕ 7→ R(g)ϕ
in the (unitary) representation R : G → GL(Fn) of G. The corresponding Lie algebra repre-
sentation is r : L(G) → End(Fn). In the case of a global symmetry ϕ transforms in the same
way for all space-time points x, so ϕ(x) → R(g)ϕ(x) for all x and with R(g) independent of
x. A local symmetry or gauge symmetry allows for transformations of ϕ which depend
on x, so we should think of the group elements g = g(x) and their representation matrices
G(x) = R(g(x)) as functions of x, while ϕ now transforms as ϕ(x) 7→ G(x)ϕ(x). Much of what
we have said about how to build theories invariant under global symmetries remains valid for
local symmetries 5. In particular, all Lagrangian terms without derivatives which are glob-
ally invariant remain locally invariant. However, we have to be careful with terms involving
derivatives since their transformation will produce additional contributions proportional to
∂µG. More specifically, we have

∂µϕ 7→ ∂µ(Gϕ) = G(∂µϕ+G−1∂µGϕ) . (5.118)

The second term is new, compared to the global case, and it prevents, for example, a standard
kinetic term ∂µϕ

†∂µϕ from being invariant under the local symmetry. The additional term
can be removed by introducing new fields with the right transformation. Since G−1∂µG takes
values in L(G) and carries a Lorentz index, the new field Aµ = AaµTa should be a vector field
taking values in L(G), where Ta are the generators of L(G). This field, called the gauge field,

together with its counterpart A
(r)
µ = r(Aµ) = AaµT

(r)
a in the representation r transform as

Aµ 7→ gAµg
−1 − ∂µg g

−1 , A(r)
µ 7→ GA(r)

µ G−1 − ∂µGG
−1 . (5.119)

The first term is just the standard transformation in the adjoint representation and the second
inhomogeneous term arises from the local nature of the symmetry. It is of course designed to
cancel the unwanted term in Eq. (5.118). With the gauge covariant derivative

D(r)
µ ϕ = ∂µϕ+A(r)

µ ϕ (5.120)

5We will take a somewhat informal approach to gauge theories here, to keep the mathematical overhead in
check. Mathematically, gauge theories are formulated in terms of principle and vector bundles over space-time
manifolds. In this context, fields“ transforming” under the gauge symmetry are sections of vector bundles and
the gauge field itself is a local manifestation of a bundle connection. More details can, for example, be found
in Ref. [13].
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a quick calculation shows that

D(r)
µ ϕ 7→ (∂µ +GA(r)

µ G−1 − ∂µGG
−1)(Gϕ) = GD(r)

µ ϕ (5.121)

so that the modified kinetic term (D
(r)
µ ϕ)†D(r)µϕ is gauge invariant. More generally, the

replacement ∂µ 7→ D
(r)
µ is the way to convert globally invariant theories into gauge invariant

ones. Note that this process introduces (cubic and quartic) interaction terms between ϕ and
the gauge field.

In order to introduce kinetic terms for the gauge field we introduce its field strength

Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] , Fµν 7→ gFµνg
−1 . (5.122)

A gauge-invariant kinetic term for the gauge field is then

− 1

4g2
tr(FµνF

µν) , (5.123)

where g is the gauge coupling constant 6.

In group-theoretical terms, a gauge theory is characterised by the gauge group G, the rep-
resentation RS of scalar fields and the representation RW of left-handed Weyl fermions 7,
with Lie algebra counterparts rS and rW . Since the gauge field takes values in the adjoint its
associated representation is the adjoint representation, ad, and the number of gauge fields is

# gauge fields = dim(ad) = dim(G) . (5.124)

Of course we can also consider Dirac spinors in a representation rD. However, if we split the
Dirac spinor up as ϕD = (χL, χR) into left- and right-handed Weyl spinors, it can also be
described by the left-handed Weyl spinors χL, χ

c
R with representation rW = rD ⊕ r̄D.

An interesting feature of gauge theories is the possibility of anomalies, that is, a break-down
of gauge symmetry at the quantum level. It can be shown that such anomalies can be detected
by the diagrams

with three external gauge fields Aa, Ab and Ac and the Weyl fermions in rW in the loop. It
turns out 8 these diagrams (setting r = rW ) are proportional to

A
(r)
abc = tr

(
T (r)
a {T (r)

b , T (r)
c }

)
, (5.125)

6A field redefinition Aµ 7→ gAµ moves the gauge coupling into the interaction terms which is the usual
convention in physics.

7Right-handed Weyl spinors χR can always be converted into left-handed ones, χc
R, by conjugation.

8See the QFT course.
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and only if these quantities vanish is the theory anomaly-free. How do the anomalies for r

and its complex conjugate r̄ relate? We have T
(r̄)
a = (T

(r)
a )∗, so

A
(r̄)
abc = tr

(
T (r̄)
a {T (r̄)

b , T (r̄)
c }

)
= tr

(
(T (r)
a )†{(T (r)

b )†, (T (r)
c )†}

)
= −A(r)

abc , (5.126)

where we use the convention with anti-hermitian generators. On the other hand, if r is real

or pseudo-real, so that T
(r̄)
a = PT

(r)
a P−1 it follows easily from the properties of the trace

that A
(r̄)
abc = A

(r)
abc. This means that a theory with Weyl fermions in a real or pseudo-real

representation rW is anomaly-free. In particular, a theory written in terms of Dirac spinors
is anomaly free since the representation rD translates into the representation rW = rD ⊕ r̄D
for Weyl fermions which is real.

An interesting special case is a gauge group of the form U(1) × G with Weyl spinors in

representations r with U(1) charge q and generators q1 for U(1) and T
(r)
a for G. In this case,

we have a “mixed anomaly” with one U(1) and two G gauge fields with anomaly coefficient

Aab = 2
∑
(r,q)

q tr(T (r)
a T

(r)
b ) = −2

∑
(r,q)

q c(r)δab , (5.127)

where c(r) is the index of r. In this case, the anomaly vanishes iff∑
(r,q)

q c(r) = 0 , (5.128)

For a gauge group U(1) with a set of Weyl fermions with U(1) charges qi the theory is anomaly-
free iff ∑

i

q3i = 0 . (5.129)

Another interesting effect for gauge theories is the running of the gauge coupling g with energy
µ, due to quantum effects, which is governed by the differential equation

µ
dg

dµ
= β(g) , (5.130)

where β(g) is referred to as the beta function. It can be computed in perturbation theory
and to one-loop level it is given by the formula

β(g) = − 1

16π2

[
11

3
c(ad)− 2

3
c(rW )− 1

6
c(rS)

]
g3 , (5.131)

where the three terms arise form the contributions of the gauge fields, the (Weyl) fermions
and the scalars, respectively. Deriving this formula is of course a task for a QFT course but
the point here is that the entire problem (to this order) is determined by group-theoretical
quantities, namely the indices of the representations involved.

Application 5.8: (The standard model of particle physics)

The standard model of particle physics is a gauge theory with gauge group GSM = SUc(3)×
SUW (2)×UY (1), where the first factor leads to dim(SU(3)) = 8 gauge bosons, called gluons
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which mediate the strong interaction and the other factors to dim(SU(2) × U(1)) = 4 gauge
bosons which mediate the electro-weak interactions (one combination of which is the photon).
A family of standard model (Weyl) fermions is contained in the GSM representation

(3,2)1 ⊕ (3̄,1)−4 ⊕ (3̄,1)2 ⊕ (1,2)−3 ⊕ (1,1)6

Qi =

(
uiL
diL

)
uicR dicR Li =

(
νiL
eiL

)
eicR

(5.132)

where the first and second entry correspond to the SUc(3) and SUW (2) representations and
the subscript is the UY (1) charge (normalised so that all charges are integers). The index
i = 1, 2, 3 labels the three families and the indices in the 3 or 3̄ representations have been
suppressed. The conventional electrical charge is given by

Q = τ3 +
1

6
Y , (5.133)

where τ3 = σ3/2 is the suW (2) generator in the fundamental and Y is the UY (1) charge, also
called the weak hypercharge. There is also a scalar multiplet, the Higgs multiplet in

H =

(
H+

H0

)
∼ (1,2)3 . (5.134)

Spontaneous symmetry breaking SUW (2)×UY (1) → UQ(1) is induced by the vacuum expec-
tation value ⟨H⟩ = (0, v)T . It satisfies Q⟨H⟩ = 0 and, therefore, does indeed leave the electric
charge (5.133) unbroken.

The standard model is anomaly free. For anomalies of the type SU(3)3 this follows since the
quarks can be combined into Dirac spinors (uiL, u

i
R) and (diL, d

i
R). For anomalies SU(2)3 it

follows because the only representations which occur are the SU(2) singlet and the fundamen-
tal which is pseudo-real. Anomalies SU(2)SU(3)2 and SU(3)SU(2)2 vanish from Eq. (5.125)
since the SU(2) and SU(3) generators are traceless and for the same reason anomalies of type
U(1)2SU(2) and U(1)2SU(3) vanish. The vanishing of the remaining anomalies is less trivial
and depends on the precise U(1) charges and from Eqs. (5.128), (5.129), we have

U(1)SU(2)2 : A ∼ 3YQ + YL = 0
U(1)SU(3)2 : A ∼ 2YQ + Yu + Yd = 2− 4 + 2 = 0
U(1)3 : A ∼ 6Y 3

Q + 3Y 3
u + 3Y 3

d + 2Y 3
L + Y 3

e

= 6− 192 + 24− 54 + 216 = 0

(5.135)

Most modern quantum field theory books, including Refs. [11, 12, 14], have sections on the
standard model. A dedicated book is Ref. [15].

Application 5.9: (Unification)

Unification is the attempt of obtaining the standard model from a (spontaneously broken)
gauge theory with a gauge group G which contains GSM as a sub-group and whose matter
field representations r branch under GSM into the representation (5.132) for a standard model
family (or at least a representation that contains (5.132)). The idea is of course to have a
simple (or at least semi-simple) G and a matter representation r which looks less baroque
than (5.132).
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Let us consider a very simple-minded attempt with G = SUc(3) × SUW (3) ⊃ GSM, where
we keep the colour group SUc(3) unchanged and try to “unify” the electro-weak group into
SUW (3) ⊃ SUW (2)×UY (1), using the embedding

SUW (2) ∋ U 7→
(
U 0
0 1

)
∈ SUW (3) , UY (1) ∋ α 7→ diag(α, α, α−2) ∈ SUW (3) .

(5.136)
Such a theory has dim(SU(3)×SU(3)) = 16 gauge bosons, four more than the standard model.
Its basic representations branch as

(3,3) 7→ (3,2)1 ⊕ (3,1)−2 , (3̄,1) 7→ (3̄,1)0 , (1,3) 7→ (1,2)1 ⊕ (1,1)−2

While we can obtain the correct SUc(3)×SUW (2) representations this way (although we need
three SU(3)×SU(3) irreps for this) the UY (1) charges are clearly not consistent with the ones
in Eq. (5.132). So this simple attempt fails for basic group-theoretical reasons.

Exercise 5.6. Explore other possibilities for unification, for example based on the groups
SU(5) or SU(6).

Basic unification models are described in some quantum field theory books, for example,
Refs. [12, 15]. Much of the underlying group theory is described in Ref. [4]. A dedicated book
is Ref. [16].

5.5 Orthogonal groups and spinors

General properties

Definition of orthogonal groups

As for the unitary groups we start slightly more general than usual and introduce the metrics

η = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

) (5.137)

with signature (p, q), where n = p+ q. Then we define

O(p, q) = {A ∈ GL(Rn) |AT ηA = η} , SO(p, q) = {A ∈ O(p, q) |det(A) = 1} (5.138)

as well as the more standard orthogonal group for the Euclidean case, η = 1n,

O(n) = {A ∈ GL(Rn) |ATA = 1n} , SO(n) = {A ∈ O(n) |det(A) = 1} . (5.139)

As usual, the n-dimensional representation these matrices define is referred to as fundamen-
tal representation. For A ∈ O(p, q) it follows that det(A) ∈ {±1} so these group consists
of (at least) two path-disconnected parts, the positive determinant part SO(p, q) (which is
connected) and the part which consists of negative determinant matrices.
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Application 5.10: (Orthogonal groups in physics)

Orthogonal groups SO(n) are used both as global and as gauge symmetries. The group
SO(10) is a prominent unification group for the standard model of particle physics. The
group (S)O(n− 1, 1) is the Lorentz group in n dimensions which underlies n-dimensional rela-
tivistic theories in much the same way (S)O(3, 1) underlies four-dimensional covariant physics.
The groups SO(p, q) also make an appearance as string duality symmetries.

Lie algebra

Following the usual approach and writing A = 1n+T + · · · and inserting into AT ηA = η leads
to T = −ηT T η so that the Lie algebra is given by

so(p, q) = {T ∈ End(Rn) |T = −ηT T η} = Span(σµν) ⇒ dim(so(p, q)) =
1

2
n(n− 1) ,

where the basis matrices σµν are defined exactly as their Lorentz group counterparts (Eq. (5.9))
and also satisfy the same commutation relations, Eq. (5.10). The Cartan sub-algebra is
spanned by the matrices (σ12, σ34, . . . , σ2m−1,2m) which contain non-trivial 2× 2 blocks along
the diagonal, with all other entries zero. For example, for so(n), these matrices are of the form

σ12 =



0 1 0 0 · · · 0
−1 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0


, σ34 =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 1 · · · 0
0 0 −1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0


, . . . (5.140)

Of course, the number of 2× 2 blocks which fit along the diagonal equals m both for the even
case, n = 2m, and the odd case, n = 2m + 1, so that rk(so(2m)) = m and rk(so(2m + 1)) =
m. This means that odd and even dimensions are quite different and have to be discussed
separately. The effects of the signature of η are wiped out by complexification, just as in the
unitary case, so

so(p, q)C = so(n)C =:

{
Dm for n = 2m
Bm for n = 2m+ 1

(5.141)

with Bm and Dm the standard names for the complexified Lie algebras for the odd- and
even-dimensional cases, respectively.

Cartan-Weyl formalism

This story is quite analogous to the one for An, so we will be concise.

Cartan decomposition of Bm and Dm

Analysing these algebras efficiently requires good conventions for generators - otherwise cal-
culations can descend into a mess. It turns out, working with signature (p, q) = (m,m) in
the even case and (p, q) = (m + 1,m) in the odd case is the way to go, as well as using an
off-diagonal metric

Dm : η =

(
0 1m

1m 0

)
, Bm : η =

 0 1m 0
1m 0 0
0 0 1

 . (5.142)
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This form of the metric results from a basis transformation

P Tdiag(1m,−1m)P =

(
0 1m

1m 0

)
where P =

1

2

(
1m 1m

1m −1m

)
. (5.143)

With this choice for the metric, the condition T = −ηT T η leads to Lie-algebra elements of
the form

Dm : T =

(
A B
C −AT

)
, Bm : T =

 A B E
C −AT F

−F T −ET 0

 (5.144)

where A, B, C, D are m × m matrices with B = −BT and C = −CT and E, F are n-
component vectors. One of the advantages of working in this basis is that the elements of the
Cartan are actually diagonal matrices (unlike the σ2k,2k+1 matrices considered earlier) and we
can write down the Cartan subalgebra as

H =

{
m∑
i=1

biHi | bi ∈ C

}
where Hi = Eii − Em+i,m+i , (5.145)

and Eij are the standard unit matrices. As in the unitary case, we define the dual basis (Li)
with Li(Hj) = δij , so that

H′ =

{
m∑
i=1

liLi | li ∈ C

}
. (5.146)

A basis for the off-diagonal parts in the matrices (5.144) can also be constructed from the
standard unit matrices and this leads to the following list of generators and roots.

algebra generator root constraint part in Eq. (5.144)

Bm and Dm Xij = Eij − Em+j,m+i Li − Lj i ̸= j A

Bm and Dm Yij = Ei,m+j − Ej,m+i Li + Lj i < j B

Bm and Dm Zij = Em+i,j − Em+j,i −Li − Lj i < j C

Bm only Ui = Ei,2m+1 − E2m+1,m+i Li E

Bm only Vi = Em+i,2m+1 − E2m+1,i −Li F

This means for Dm we have the Cartan-Weyl decomposition and root space

Dm = H⊕
⊕

i ̸=j CXij ⊕
⊕

i<j CYij ⊕
⊕

i<j CZij
∆ = {±Li ± Lj | i ̸= j} (5.147)

and for Bm we have

Bm = H⊕
⊕

i ̸=j CXij ⊕
⊕

i<j CYij ⊕
⊕

i<j CZij ⊕
⊕

iCUi ⊕
⊕

iCVi
∆ = {±Li ± Lj | i ̸= j} ∪ {±Li}

. (5.148)

Killing form

The Killing form can be determined by a sum over the roots from Theorem 4.6 (v), just as
we did for the An algebras, and this leads to

Γ

∑
i

biHi,
∑
j

b̃jHj

 = N(n)
∑
i

bib̃i where N(n) =

{
2n− 2 for n = 2m+ 1
2n− 4 for n = 2m
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For an element L =
∑

i liLi ∈ H′ the dual is given by HL = 1
N(n)

∑
i liHi and, hence, the

Killing form on the dual space is

Γ

∑
i

liLi,
∑
j

l̃jLj

 =
1

N(n)

∑
i

li l̃i . (5.149)

To distinguish between positive and negative roots we introduce ℓ ∼ (ℓ1, . . . , ℓm) with ℓ1 >
ℓ2 > · · · > ℓm > 0, so that

ℓ

(∑
i

liLi

)
=
∑
i

ℓili . (5.150)

Simple roots and Cartan matrix for Dm

From Eqs. (5.147) and (5.150) the positive roots are

∆+ = {Li + Lj | i < j} ∪ {Li − Lj | i < j} . (5.151)

and for the simple positive roots we can select

αi = Li − Li+1 , i = 1, . . . ,m− 1 , αm = Lm−1 + Lm . (5.152)

For λ =
∑

i λiLi it is then straightforward to work out the Killing forms

(αi, αi) =
2

N(n)
, i = 1, . . . ,m , (λ, αi) =

1

N(n)

{
λi − λi+1 for i = 1, . . . ,m− 1
λm−1 + λm for i = m

so that the Dynkin label of λ is

aj =
2(λ, αj)

(αj , αj)
=

{
λj − λj+1 for j = 1, . . . ,m− 1
λm−1 + λm for j = m

∈ Z . (5.153)

Note that all simple positive roots have the same length. Inserting λ = αi into this formula
gives the entries of the Cartan matrix which reads

A(Dm) =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 −1
0 0 0 · · · −1 2 0
0 0 0 · · · −1 0 2


. (5.154)

This is very similar to the An Cartan matrix except for the entries in the right-lower 3 × 3
block. The Dynkin diagram which represents this matrix (following the earlier rules for how
to associate Dynkin diagrams to Cartan matrices) is
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Simple roots and Cartan matrix for Bm

From Eq. (5.148) and and (5.150) we have the positive roots

∆+ = {Li + Lj | i < j} ∪ {Li − Lj | i < j} ∪ {Li} (5.155)

and due to the additional positive roots Li, compared to the Dm case, the set of positive
simple roots is now

αi = Li − Li+1 , i = 1, . . . ,m− 1 , αm = Lm . (5.156)

For the length of these roots we find from Eq. (5.149) that

(αi, αi) =
1

N(n)

{
2 for i = 1, . . . ,m− 1 (longer roots)
1 for i = m (shorter root)

(5.157)

and for the Dynkin label of a weight λ =
∑

i λiLi we have

aj =
2(λ, αj)

(αj , αj)
=

{
λi − λi+1 for i = 1, . . . ,m− 1
2λm for i = m

∈ Z . (5.158)

Inserting the simple roots λ = αi into this result leads to the Cartan matrix

A(Bm) =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −2
0 0 0 · · · −1 2


(5.159)

with associated Dynkin diagram

This is our first example of an algebra with different lengths for the roots and this is encoded
in the Dynkin diagram by an empty (filled) node for the longer (shorter) roots.

Weight lattice

To find the weight lattice we should determine all λ ∈ H′ for which the expressions (5.153)
for Dm and (5.158) for Bm are integer for all αi. For both Dm and Bm this leads to the same
result, namely

ΛW = Z(L1, . . . , Lm, α) where α =
1

2
(L1 + · · ·+ Lm) . (5.160)
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Representations of Dm

Inverting the Eqs. (5.153) which relates a weight λ to its Dynkin label (a1, . . . , am) we have

λ = (a1 + · · · am−2)L1 + (a2 + · · ·+ am−2)L2 + · · ·+ am−2Lm−2 + am−1β + amα (5.161)

where

α =
1

2
(L1 + · · ·+ Lm) , β =

1

2
(L1 + · · ·+ Lm−1 − Lm) . (5.162)

The first m − 2 terms in this expression are in complete analogy with the corresponding
result (5.82) for An. Hence, for this part we can use the same tensor construction, starting
with the fundamental representation acting on a vector space V ∼= Cm, in order to obtain the
irreps. More precisely, the Dm irrep with highest weight Dynkin label (a1, . . . , am) is contained
in the tensor

Sa1V ⊗ Sa2(∧2V )⊗ · · · ⊗ Sam−2(∧m−2V )⊗ Sam−1Γα ⊗ SamΓβ , (5.163)

where Γα and Γβ are, as yet, unknown and to be constructed representations with highest
weights α and β and corresponding highest weight Dynkin labels (0, . . . , 0, 1) and (0, . . . , 0, 1, 0).
In fact, Γα and Γβ are the left- and right-handed Weyl spinor representations which we will
construct soon.

Representations of Bm

We can proceed in analogy with the Dm case, except now we should invert the relations (5.158)
which gives the weight

λ = (a1 + · · · am−1)L1 + (a2 + · · ·+ am−1)L2 + · · ·+ am−1Lm−1 + amα (5.164)

where

α =
1

2
(L1 + · · ·+ Lm) . (5.165)

The Bm irrep with highest weight Dynkin label (a1, . . . , am) is then contained in the tensor

Sa1V ⊗ Sa2(∧2V )⊗ · · · ⊗ Sam−1(∧m−1V )⊗ SamΓα , (5.166)

where Γα is a representation with highest weight α and corresponding highest weight Dynkin
label (0, . . . , 0, 1). This is the Dirac spinor representation (no Weyl spinors in odd dimensions
n = 2m+ 1 as we will see) which will be constructed below.

While we have now constructed all Dm and Bm representations the tensors (5.163) and (5.166)
are not, in general, irreducible, just as in the An case, but they do contain the irrep with highest
weight Dynkin label (a1, . . . , am). For the An case the refinement of symmetrisation/anti-
symmetrisation facilitated by Young tableaux led to irreducible tensors. These methods can
also be employed here and they typically lead to a reduction in the size of the tensor but,
unlike in the An case, not necessarily to an irrep. We will not pursue this further since the
general methods to be developed later will cover these cases. However, we should complete
the discussion by constructing the so far unknown spinor representations Γα and Γβ.
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Spinor representations

Due to the importance of spinors for physics in d space-time dimensions, we will carry this
discussion out for a metric η = diag(−1, 1, . . . , 1) with Lorentzian signature (p, q) = (d− 1, 1),
so consider the group SO(d− 1, 1). We will also use a somewhat low-key approach, common
in physics, rather than roll out the full formalism of Clifford algebras. It is useful to introduce
the numbers

k =

[
d

2

]
− 1 =

{
d−2
2 for d even
d−3
2 for d odd

. (5.167)

Gamma matrices

A set of d matrices γµ, where µ = 0, . . . , d − 1, of size 2k+1 × 2k+1 is called a set of gamma
matrices iff

{γµ, γν} = 2ηµν (5.168)

(Here the bracket {·, ·} denotes the anti-commutator, defined as {A,B} := AB + BA.) The
relations (5.168) imply that different gamma matrices anti-commute, γµγν = −γνγµ, for µ ̸= ν,
and that they square to the identity (or minus the identity in the time direction), γ2µ = ηµµ1.
The algebra generated by these matrices is also referred to as a Clifford algebra.

Construction of gamma matrices

Of course we should demonstrate that gamma matrices exist in all dimensions d and we do
this by induction in d, starting with d = 2. To keep track of dimensions we denote the gamma

matrices in d dimensions by γ
(d)
µ . The gamma matrices γ

(2)
µ in d = 2 dimensions are 2 × 2

matrices (since k = 0 form Eq. (5.167)) and they are easy to construct starting from the Pauli
matrices. A viable choice is

γ
(2)
0 =

(
0 −1
1 0

)
= −iσ2 , γ

(2)
1 =

(
0 1
1 0

)
= σ1 . (5.169)

Note that these two matrices do indeed anti-commute, while (γ
(2)
0 )2 = −12 and (γ

(2)
i )2 = 12,

as required.

For the next step we assume that gamma matrices γ
(d)
µ in even d dimensions have been

constructed and we construct the gamma matrices in dimension d+ 2. A possible choice is

γ(d+2)
µ = γ(d)µ × σ3, µ = 0, . . . , d , γ

(d+2)
d = 1× σ1 , γ

(d+2)
d+1 = 1× σ2 . (5.170)

Note that tensoring with the 2 × 2 Pauli matrices doubles the size of the matrices, precisely
as required from Eq. (5.167). That these matrices satisfy the correct relations (5.168) follows

from the fact that γ
(d)
µ do, that the Pauli matrices anti-commute and square to 12 and the

second property (1.32) of the Kronecker product. This provides us with gamma matrices in
all even dimensions.

To obtain gamma matrices in odd dimensions, we start with an even dimension d and

gamma matrices γ
(d)
µ and construct gamma matrices in d + 1 dimensions. To this end we

define the matrix

γ = i−kγ
(d)
0 γ

(d)
1 · · · γ(d)d−1 ⇒ {γ, γ(d)µ } = 0 , γ2 = 1 , (5.171)

the analogue of γ5 in four dimensions. Clearly, this matrix anti-commutes with all gamma ma-

trices since γ
(d)
µ commutes with itself which leaves an odd number, d−1, of anti-commutations
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and, hence, an overall minus sign. Also it is clear that γ must square to ±1 (just anti-commute

and use that the γ
(d)
µ square to ±1). The factor in Eq. (5.171) is precisely such that γ squares

to +1. Note that the gamma matrices in an even dimension d and in d+1 have the same size
(see Eq. (5.167)) so for the gamma matrices in d+ 1 dimensions we can take

γ(d+1)
µ = γ(d)µ , µ = 0, . . . , d− 1 , γ

(d+1)
d = γ . (5.172)

Generators of so(d− 1, 1)

How are the gamma matrices related to representations of so(d− 1, 1)? If we define

σµν =
i

4
[γµ, γν ] (5.173)

then a straightforward calculation, using only the anti-commutation relations (5.168), shows
that the σµν satisfy the commutation relations (5.10) of so(d−1, 1) and, hence, define a repre-
sentation of this algebra. This representation is referred to as theDirac spinor representation
in d dimensions. It acts on Dirac spinors ψ ∈ C2k+1

as

δψ = iϵµνσµνψ (5.174)

with parameters ϵµν . The Dirac spinor in d dimensions is a representation with complex
dimensions 2k+1. As we will see it is reducible for d even (leading to the left- and right-
handed Weyl spinors), but for d odd it is, in fact, irreducible (as a complex representation)
and corresponds to the irrep Γα in Eq. (5.166).

Proposition 5.1. For d = 2m + 1, the matrices σµν in Eq, (5.173) generate the spinor
representation Γα.

Proof. The idea of the proof is to identify the highest weight vector in the representation
defined by the σµν and to show that its weight equals α. Recall that elements of the Cartan
are of the form

H =

 B 0 0
0 −B 0
0 0 0

 , B = diag(b1, . . . , bm) .

The other generators we need from the Cartan-Weyl decomposition (5.148) are the generators

Ui =

 0 0 0
0 0 ei
eTi 0 0

 ,

which correspond to the positive roots Li. Of course these generators are written in a basis
where the metric is off-diagonal so we should rotate back using the basis transformation P in
Eq. (5.143) to obtain

Ĥ = PHP =

 0 B 0
−B 0 0

0 0 0

 =
m∑
i=1

biσi,m+i

Ûi = PUiP =

 0 0 ei
0 0 −ei

−eTi eTi 0

 = σi,2m+1 − σm+i,2m+1

111



The highest weight state v must satisfy Uiv = 0, for i = 1, . . . ,m which translates to γiγm+iv =
v. Hence

Hv =

m∑
i=1

biσi,m+iv =
1

2

m∑
i=1

biγiγm+1v =
1

2

m∑
i=1

biv
(5.165)
= α(H)v ,

so the weight of v is indeed α, as required.

It is useful to think about the hermitian conjugate of the gamma matrices. From our
recursive construction of γµ it is clear that γ†0 = −γ0 and γ†i = γi for i = 1, . . . , d − 1. These
equations can be conveniently summarised by writing

γ†µ = γ0γµγ0 ⇒ σ†µν = −γ0σµνγ0 . (5.175)

Weyl spinors

In odd dimensions d the Dirac spinor is irreducible (as a complex representation). However,
for even d the matrix γ in Eq. (5.171) is not among the gamma matrices, yet anti-commutes
with them. This means that [σµν , γ] = 0, so γ commutes with the entire representation. Also,
since γ2 = 1 and tr(γ) = 0 (this follows from anti-commutation and cyclicity of the trace) we
can define projectors

PL,R =
1

2
(1± γ) ⇒ P 2

L,R = PL,R , tr(PL,R) = 2k (5.176)

so we have two projectors onto sub-representations, each with the (complex) dimension 2k (so
half the complex dimension 2k+1of the Dirac spinor). These representations are called left-
and right-handed Weyl spinor representations and the spinors ψL,R = PL,Rψ are called left-
and right-handed Weyl spinors. The left- or right-handedness of the spinor is also referred to
as the chirality of the spinor. These are, in fact, irreducible representations which correspond
to the representations Γα and Γβ in Eq. (5.163). The proof is similar to the one in Prop. 5.1.

Complex conjugation and Majorana spinors

We would like to understand if we can impose a reality condition on spinors, so if we can
reduce the complex spinor representations obtained so far to real representations. The first
useful observation is that the gamma matrices and their complex conjugates (which also satisfy
Eq. (5.168)) are related by a basis transformation with

B1 = γ3γ5 · · · , B2 = γB1 (5.177)

such that (for d even and µ = 0, . . . , d− 1)

B1γµB
−1
1 = (−1)kγ∗µ B2γµB

−1
2 = (−1)k+1γ∗µ

B1γB
−1
1 = (−1)kγ∗ B2γB

−1
2 = (−1)kγ∗

(5.178)

Translating this to the generators σµν it follows that

BσµνB
−1 = −σ∗µν where B =

{
B1 or B2 for d even
B1 for d odd

. (5.179)

Note that for even dimensions we can use either B1 or B2 (since we only need the γµ for
µ = 0, . . . , d− 1) while for d odd only B1 works, since we need both γµ and γ but the signs in
Eq. (5.178) differ for B2.
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For a Dirac spinor ψ in d dimensions we can now define the charge conjugate spinor

ψc = Cψ := B−1ψ∗ , (5.180)

with the matrix B from Eq. (5.179). This is basically just the complex conjugate spinor but
the matrix B is included to account for the fact that the generators σµν might not be real.
The point is that charge conjugation commutes with the so(d − 1, 1) transformation as the
following short calculation shows.

[iσµν , C]ψ = iσµνB
−1ψ∗ −B−1(iσµνψ)

∗ = i σµνB
−1︸ ︷︷ ︸

=−B−1σ∗
µν

ψ∗ + iB−1σ∗µνψ
∗ = 0 .

What happens if charge conjugation is applied twice? Since (ψc)c = (B−1ψ∗)c = (B∗B)−1ψ
and, on the other hand, explicit calculations, using the matrices (5.177), leads to

B∗
1B1 = (−1)k(k+1)/2

1 B∗
2B2 = (−1)(k(k−1)/2

1

= 1 for k = 0, 3 mod 4 = 1 for k = 0, 1 mod 4

we see that applying charge conjugation twice is either the identity or minus the identity. The
former is the case if k satisfies the above constraints and translating these into constraints
on the dimension d, via Eq. (5.167), we learn that a matrix B with B∗B = 1 is available iff
d = 0, 1, 2, 3, 4 mod 8. In such dimensions we can define a Majorana spinor by imposing on
a Dirac spinor ψ the constraint

ψc = ψ . (5.181)

(In the other case, when (ψc)c = −ψ, Eq. (5.181) leads to ψ = −ψc which implies ψ = 0.)
This defines a 2k+1 real-dimensional representation of so(d− 1, 1).

Majorana-Weyl spinors

Can Majorana and Weyl conditions be imposed simultaneously on a Dirac spinor? Clearly,
this can only be attempted if the dimension d is even (so that Weyl spinors exist) and
d = 0, 1, 2, 3, 4 mod 8 so that Majorana spinors exist and, hence, only in dimensions d =
0, 2, 4 mod 8. In addition, in order to be able to impose both conditions, we require that
[γ,C] = 0. This implies

[γ,C]ψ = γB−1ψ∗ −B−1γ∗ψ∗ !
= 0 ⇔ BγB−1 = γ∗ ⇔ k even

The dimensions d = 0, 2, 4 mod 8 for which k is even are precisely d = 2 mod 8 so only in those
dimensions can Majorana-Weyl spinors be defined. They are spinors with 2k real components.

Spinors in diverse dimensions

We have seen that there is considerable structure in spinors, with the existence of certain types
of spinors related to the dimension d. The results, for the case of Lorentzian signature 9, are
summarised in Table 5.1.

9Weyl spinors always exist in even dimensions for any signature of the metric η. However, the existence of
Majorana (and Majorana-Weyl) spinors depends on the signature and our results here are for the Lorentzian
signature.
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spinor type real dimension exist in dimensions

Dirac 2k+2 d

Weyl 2k+1 d even

Majorana 2k+1 d = 0, 1, 2, 3, 4 mod 8

Majorana-Weyl 2k d = 2 mod 8

Table 5.1: Types of spinors, their dimensions and the Lorentzian space-time dimensions d
they exist in. Here, k is defined in terms of d by Eq. (5.167).

Application 5.11: (Lorentz-invariant spinor terms in d dimensions)

The above result on spinors can be used to construct Lorentz invariant theories for spinors
in d (Lorentzian) dimensions. To this end it is useful to define, for a Dirac spinor ψ, the
conjugate spinor ψ̄ = ψ†γ0. (This is just the hermitian conjugate where the additional γ0
factor is included to take care of the negative signature in the time direction, as suggested by
Eq. (5.175).) As an example, we would like to show that the term ψ̄ψ is Lorentz-invariant,
using the transformation δψ = iϵµνσµν .

δ(ψ̄ψ) = δψ ψ + ψ̄ δψ = (iϵµνσµνψ)
†γ0ψ + ψ†γ0(iϵ

µνσµν)ψ

= iϵµν
(
−ψ†σ†µνγ0ψ + ψ†γ0σµνψ

)
(5.175)
= 0

Application 5.12: (Supersymmetry in diverse dimensions)

Supersymmetry is a symmetry parametrised by spinors and is quite unlike the symme-
tries (= groups) discussed here. We will not discuss supersymmetry in any detail but merely
capitalise on the insights we can gain from the above classification of spinors in diverse di-
mensions. The minimal amount of supersymmetry in a given dimension d, also referred to as
N = 1 supersymmetry, is parametrised by the smallest spinor available in that dimension. Let
us consider this in a few relevant dimensions (using the results from Table (5.1)) by writing
down the spinor types and their real dimensions.

d k Dirac Weyl Majorana Majorana-Weyl

4 1 8 4 4 -

5 1 8 - - -
...

...
...

...
...

...

10 4 64 32 32 16

11 4 64 - 32 -

The smallest spinor in d = 4 dimensions has 4 real components (Weyl or Majorana) and it
parametrises N = 1 supersymmetry in d = 4 which is the framework considered for super-
symmetric models of particle physics. Note that the minimal spinor in d = 5 dimensions
has 8 real components, so minimal N = 1 supersymmetry in d = 5 has twice as many su-
percharges as N = 1 supersymmetry in d = 4. The minimal spinor in d = 10 dimensions
is the Majorana-Weyl spinor with 16 real components. It parametrises the minimal N = 1
supersymmetry in 10-dimensions. The effective ten-dimensional supergravity theories for the
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heterotic and the type I string theories are precisely of this type. Non-minimal N = 2 su-
persymmetry in d = 10 is parametrised by two Majorana-Weyl spinors and, hence, has 32
supercharges. There are two choices here, namely to use two Majorana-Weyl spinors with the
same or with different chiralities. The former option is realised for the type IIA supergravity
(the effective ten-dimensional supergravity of the type IIA superstring) and the latter for the
type IIB supergravity (the effective ten-dimensional supergravity of the type IIB superstring).
Finally, the minimal N = 1 supersymmetry in d = 11 has 32 supercharges and this is realised
by 11-dimensional supergravity, the low-energy effective theory of M-theory.
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Chapter 6

Classification and Dynkin formalism

In this chapter, we would like to pull together the various strands of our discussion by clas-
sifying simple, complex Lie algebras and by describing their representations in a systematic
way. The approach relies on understanding roots and weights, following on from where we left
off in Chapter 4, and it puts some of the examples developed in the previous chapter into a
systematic context.

6.1 Classification of simple, complex Lie algebras

The classification of simple, complex Lie algebras is based on studying the allowed root systems
for such algebras with the goal of finding all allowed root diagrams. We are working in a
complex, semi-simple Lie algebra L with root space ∆ and Cartan-Weyl decomposition

L = H⊕
⊕
α∈∆

Lα . (6.1)

Geometry of roots

To classify root systems we need to study their geometry and in this context the following
quantities (for α, β ∈ ∆) are helpful.

||α|| = (α, α)1/2 , cos θαβ =
(α, β)

||α|| ||β||
, nβα =

2(β, α)

(α, α)
∈ Z (6.2)

Evidently, these are the length ||α|| of a root α and the angle θαβ between two roots. We
know that nβα must be integer (see Eq. (4.38)). Between those quantities, we have the obvious
relations

nβα = nαβ
||β||2

||α||2
, nβα = 2

||β||
||α||

cos θαβ ⇒ nαβnβα = 4 cos2 θαβ ∈ [0, 4] . (6.3)

The equation on the right puts a strong constraint on nβα which, in addition to being an
integer, must also satisfy nαβnβα ∈ [0, 4]. For definiteness, let us assume that ||β|| ≥ ||α||,
so that |nβα| ≥ |nαβ|. If nαβnβα = 4 then cos θαβ = ±1 which means that β = ±α. Apart
from this trivial case, the solutions for nαβ are listed in Table 6.1 (with the other quantities
calculated from Eqs. (6.3)). This shows that two roots can be parallel or anti-parallel (the
trivial case nαβnβα = 4) or else must form one of seven possible angles, as in Table 6.1, in each
case with a specific ratio ||β||/||α|| of the two lengths. Hence, the basic building blocks for
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nβα 3 2 1 0 -1 -2 -3

nαβ 1 1 1 0 -1 -1 -1

||β||/||α||
√
3

√
2 1 - 1

√
2

√
3

cos θαβ
√
3/2

√
2/2 1/2 0 −1/2 −

√
2/2 −

√
3/2

θαβ π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6

Table 6.1: Possible angles and length ratios between roots.

Figure 6.1: The building blocks for root diagrams.

root diagrams are the ones shown in Fig. 6.1. The following is a useful piece of terminology
to describe root systems.

Definition 6.1. For two roots α, β ∈ ∆ the α-string through β is the list of all elements in
∆ ∪ {0} of the form

β − pα, β − (p− 1)α, . . . , β − α, β, β + α, . . . , β + (q − 1)α, β + qα . (6.4)

Theorem 6.1. For α ̸= ±β the α-strings through β has the following properties.

(i) The α-string through α consists of −α, 0, α.
(ii) p− q = nβα with p, q as in Eq. (6.4).
(iii) p+ q ≤ 3 so the string has at most length four.
(iv) If (β, α) > 0 then α− β is a root and if (β, α) < 0 then α+ β is a root.

Proof. (i) This was already shown in Theorem 4.6 (v).

(ii) Recall that (Hα, Eα, E−α) span an su(2)C subalgebra with [Hα, E±α] = ±(α, α)E±α. The
α-string through β must form an irrep under this su(2)C with the roots at the end of the string
transforming as

ad(Hα)(Eβ−pα) = (β − pα, α)Eβ−pα , ad(Hα)(Eβ+qα) = (β + qα, α)Eβ+qα

The eigenvalues (β − pα, α) and (β + qα, α) must correspond to a spin ±j ∈ Z/2 or, more
precisely, we must have

(β − pα, α) = −(α, α)j , (β + qα, α) = (α, α)j ⇒ p− q = nβα .

(iii) Set β′ = β − pα (the left-hand end of the string) and focus on the α string through β′,
given by β′, β′+α, · · · , β′+qα. Applying (ii) to this string immediately gives q = |nβ′α| ≤ 3.

(iv) From (ii) we have p− q = nβα = 2(β,α)
(α,α) . So if (β, α) > 0 then p > 0 and α − β is a root.

On the other hand, if (β, α) < 0 then q > 0 and α+ β is a root.
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Classification by drawing

With the information about the structure of root diagrams we have collected we can attempt
a classification by drawing all diagrams. This is only really practical in dimensions one and
two, so for algebras with rk(L) = 1 and rk(L) = 2.

For rk(L) = 1 Theorem 6.1 (i) only leaves one possibility,

A1
∼= su(2)C

which is of course the root diagram for A1.

Things become more interesting for rk(L) = 2. We can start by drawing two roots, α and
β with (say) ||β|| ≥ ||α||, choosing one of the angles ≤ π/2 available from Table 6.1. The
negatives are always also roots, so −α and −β can immediately be added to the diagram.
Thereafter, the basic rules for drawing are provided by Theorem 6.1, in particular part (iv)
which says that we should add the sum γ + kδ, for k = 1, . . . ,−nγδ of two roots γ, δ to the
diagram provided they form an angle θγδ > π/2 (so that (γ, δ) < 0).

angle root diagram algebra

θ = π/2 D2
∼= A1 ⊕A1

∼= su(2)C ⊕ su(2)C

θ = π/3 A2
∼= su(3)C

θ = π/4 C2
∼= B2

∼= so(5)C

θ = π/6 G2

We have already encountered the first three of these rank two algebras. The last one, G2, is new
and is one of the exceptional Lie algebras which will emerge from the systematic classification
below.

Simple positive roots

Classification of simple Lie algebras by drawing their root diagrams becomes impractical for
rk(L) > 2 so we need more sophisticated methods to proceed. The way forward is to focus on
the simple positive roots, rather than the entire root system.
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Lemma 6.1. If α, β ∈ ∆+ are positive simple roots we have the following statements.

(i) α− β and β − α are not roots.
(ii) (α, β) ≤ 0.

Proof. (i) We can write α = β + (α− β) and since α is simple we conclude that α− β /∈ ∆+

(otherwise we have written α as a sum of two positive roots which contradicts simplicity of
α). Similarly, β = α + (β − α) implies that β − α /∈ ∆+ and, hence α − β /∈ ∆−. Since
∆ = ∆+ ∪∆− we conclude that α − β /∈ ∆, so it is not a root. Then its negative, β − α, is
also not a root.

(ii) From Theorem 6.1 (iv) we know (β, α) > 0 implies that α− β is a root. Since part (i) of
the present Lemma says that α− β is not a root we conclude that (β, α) ≤ 0.

Recall that for rank n we have n simple, positive roots (α1, . . . , αn) which form a basis of H′.
The previous Lemma says that simple positive roots α, β satisfy nβα ≤ 0 and, therefore, for
such roots only the possibilities in the four rightmost columns of Table 6.1 are relevant.

Dynkin diagrams

These four possible relationships between positive simple roots can be represented graphically,
by assigning nodes to β and α and connecting them by lβα := −nβα lines (assuming ||β|| ≥
||α||), as summarised in Table 6.2. The four diagrams in this table are the basic building

θβα nβα = −lβα nαβ β α

π/2 0 0

2π/3 −1 −1

3π/4 −2 −1

5π/6 −3 −1

Table 6.2: Basic building blocks of Dynkin diagrams for two positive simple roots α, β with
||β|| ≥ ||α||, covering the four rightmost columns in Table 6.1. If ||β|| > ||α||, the open node
represents the longer root β, and the filled node the shorter root α.

blocks of Dynkin diagrams. A Dynkin diagram for n simple roots (α1, . . . , αn) consists of n
nodes, one for each root, connected by one of the four elements in the table. As we will see,
only two root lengths are required in any Dynkin diagram, so using open and filled nodes will
be sufficient to describe all cases.

The Cartan matrix can be inferred from the Dynkin diagram, by reading off the number of
lines lαiαj between each pair of nodes (αi, αj) for i ̸= j and then combining the four cases in
Table 6.2 with the definition of nβα in Eq. (6.2). The result is

Aij =
2(αi, αj)

(αj , αj)
=


2 for i = j
−lαiαj for i ̸= j, ||αi|| ≥ ||αj ||
−1 for i ̸= j, ||αi|| < ||αj ||, lαiαj ̸= 0
0 otherwise

(6.5)
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Conversely, given a Cartan matrix A the Dynkin diagram can be immediately read off. From
the first Eq. (6.3) we have

Aij =
||αi||2

||αj ||2
Aji

and this can be used to determine the relative lengths of the roots and assign open and filled
nodes accordingly. Then we should draw lαiαj = max(−Aij ,−Aji) lines between nodes αj and
αj for i ̸= j.

Admissible Dynkin diagrams

We would like to classify all simple complex Lie algebras by drawing all Dynkin diagrams, so
we have to think about which of these diagrams correspond to actual Lie algebras. In this
context it is useful to observe that the angle between two roots β and α (as computed from
the inner product on H′) and the lines they are connected with in the Dynkin diagram are
related by

cos θβα = −
√
lβα

2
. (6.6)

This can be verified by just going through the four cases in Table 6.2. This relation constraints
Dynkin diagrams and this motivates the following definition.

Definition 6.2. A Dynkin diagram with n nodes is called admissible if there exist n lin-
early independent vectors α1, . . . , αn ∈ H′, associated to the n nodes, such that cos θαiαj =
−
√
lαiαj/2 for all i ̸= j, where cos θαiαj is computed from the inner product on H′ and the

number of lines, lαiαj , is read off from the Dynkin diagram.

In view of Eq. (6.6) all Dynkin diagrams associated to actual Lie algebras must be admissible,
so this is a necessary condition for a Dynkin diagram to describe a Lie algebra. It is by
no means clear that it is also sufficient but this is not really required for the purpose of
classification. All we need is a sufficiently strong necessary condition which reduces the number
of cases to a manageable amount. Perhaps surprisingly, the simple condition of admissibility
is sufficiently strong in this sense, as the classification below will show.

Constraints on admissible diagrams

We will now proof a series of lemmas which constrain admissible Dynkin diagrams more and
more to a point where we can just compile a list of the remaining admissible diagrams. We
begin with a simple statement about sub-diagrams.

Lemma 6.2. All sub-diagrams of admissible diagrams are admissible.

Proof. This follows immediately from the definition of “admissible”.

The following is a strong upper bounds on the number of links in an admissible diagram.

Lemma 6.3. An admissible diagram with n nodes has at most n− 1 links (where two nodes
connected by a single, double, or triple line count as one link).
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Proof. Define the vector α =
∑n

i=1
αi

||αi|| which must be non-zero since the αi are linearly
independent. It follows that

0 < ||α||2 =
n∑

i,j=1

(αi, αj)

||αi|| ||αj ||
= n+ 2

∑
i,j linked

(αi, αj)

||αi|| ||αj ||
= n+ 2

∑
i,j linked

cos θαiαj

= n−
∑

i,j linked

√
lαiαj ≤ n−# links

It follows that # links < n which is the desired statement.

Remark 6.1. Lemma 6.3 excludes all diagrams which are loops, such as

From Lemma 6.2 this also excludes all diagrams which contain loops as sub-diagrams.

Lemma 6.4. A node in an admissible diagrams is connected to at most three lines.

Proof. Consider a root α of the admissible diagram and roots β1, . . . , βp of the diagram linked
to α (by a single, double or triple line) so a configuration such as

Note that we must have (βi, βj) = 0 for all i ̸= j. Otherwise, if (βi, βj) ̸= 0, we have lβiβj ̸= 0
from Eq. (6.6) so that (α, βi, βj) would form a loop, a possibility excluded by the previous two
lemmas. Let α0 be the projection of α onto Span(β1, . . . , βp), so that γ := α−α0 is orthogonal
to all βi, that is, (γ, βi) = 0 for all i = 1, . . . , p. Hence, the vectors (γ, β1, . . . , βp) are pairwise
orthogonal and we can write

α =
(γ, α)

||γ||2
γ +

p∑
i=1

(βi, α)

||βi||2
βi ⇒ ||α||2 = (γ, α)2

||γ||2
+

p∑
i=1

(βi, α)
2

||βi||2

Using the second equation (divided by ||α||2) it follows that

p∑
i=1

lαβi = 4
4∑
i=1

cos2 θαβi = 4

p∑
i=1

(βi, α)
2

||α||2||βi||2
= 4

(
1− (γ, α)

||α||2||γ||2

)
< 4 ,

where the last inequality follows since (α, γ) ̸= 0. (Otherwise α ∈ Span(β1, . . . , βp) which
contradicts linear independence.) In conclusion, we have

∑p
i=1 lαβi < 4 which is the desired

statement.

Remark 6.2. Lemma 6.4 excludes diagrams with four (or more) lines connected to one node
such as
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Lemma 6.5. If a chain with single-line links in an admissible diagram is replaced by a single
node (attaching lines from other nodes to ends of the chain to the single, replacing node) the
resulting diagram is admissible.

Proof. Say that the nodes in the chain correspond to vectors α1, . . . , αp which are then replaced
by a single node with associated vector α. Schematically, the replacement process changes the
diagram as follows.

We have to show that the new diagram on the right is admissible given that the original one
is, so we have to show that the new diagram satisfies Eq. (6.6) for a suitable definition of the
vector α. If we define α =

∑p
i=1

αi
||αi|| , then a calculation similar to the one in Lemma 6.3

implies that

||α||2 = p−
∑

i,j linked

√
lαiαj = p− (p− 1) = 1 .

Suppose β is a vector for one of the nodes not contained in the single-line chain. For its angle
with the vector α we find

cos θβα =
(β, α)

||β|| ||α||
=

p∑
i=1

(β, αi)

||β|| ||αi||
=

 cos θβα1 = −
√
lβα1

2 if β connected to α1

cos θβαp = −
√
lβαp

2 if β connected to αp

 = −
√
lβα

2
.

The last equality follows since the lines from β to either α1 or αp are preserved under the
contraction and attached to α. Equality of the left- and right-hand side shows that the
contracted diagram is admissible.

Remark 6.3. The operation described in Lemma 6.5 excludes the following examples.

The contracted diagrams on the right are excluded from Lemma 6.4 since they have four lines
attached to the node in the middle. Therefore, from Lemma 6.5, the diagrams on the left must
also be excluded. More generally, any chain with single line connections which has more than
a total of three lines attached to the two nodes at its ends is excluded.
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Lemma 6.6. The diagram is not admissible.

Proof. The proof is not exactly intuitive and relies on defining the two vectors

v = c1
α1

||α1||
+ c2

α2

||α2||
, w = c3

α3

||α3||
+ c4

α4

||α||
+ c5

α5

||α5||
,

(corresponding to the two “arms” of the diagram at either side of the double line) and choosing
the coefficients ci such that v and w violate the Cauchy-Schwarz inequality. The quantities
which enter this inequality are

||v||2 = c21 + c22 − c1c2 , ||w||2 = c23 + c24 + c25 − c3c4 − c4c5 , (v, w) = −c2c3/
√
2 .

These results follow by remembering that the number of lines in the diagram under consider-

ation equals −2(αi,αj)
(αj ,αj)

for ||αi|| ≥ ||αj ||. If we choose c1 = 1, c2 = 2, c3 = 3, c4 = 2 and c5 = 1

(don’t ask!) then
(v, w)2 = 18 , ||v||2 = 3 , ||w||2 = 6 ,

which violates (v, w)2 < ||v||2||w||2.

Remark 6.4. We conclude that all diagrams of the form

with a double line and single line arms with lengths at least 2 and 3 are not admissible since
they can be contracted, from Lemma 6.5, to the diagram ruled out by Lemma 6.6.

Lemma 6.7. The diagram is not admissible.

Proof. Define the three vectors

u =
1√
3

(
2
α2

||α2||
+

α1

||α1||

)
, v =

1√
3

(
2
α4

||α4||
+

α5

||α5||

)
, w =

1√
3

(
2
α6

||α6||
+

α7

||α7||

)
,

which correspond to the three “arms” of the diagram. As in the proof of Lemma 6.4 it follows
from α3 /∈ Span(u, v, w) that

1 >
(α3, u)

2

||α3||2||u||2
+

(α3, v)
2

||α3||2||v||2
+

(α3, w)
2

||α3||2||w||2

However, given that α3 is only connected to α2, α4 and α6 the expression on the right-hand
side evaluated to 1, which is a contradiction.

Lemma 6.8. The diagrams , are not admissible.

Proof. This can be shown similarly to Lemma 6.7. For details see Ref. [1].
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Classification of simple Lie algebras

We are now ready to classify simple Lie algebras by writing down all Dynkin diagrams which
are consistent with the statements in Lemma 6.2 – Lemma 6.8. All these statements are
consistent with the diagrams for An, Bn and Dn which we have already shown correspond
to actual Lie algebras. In addition, there is a fourth infinite series, Cn, which corresponds to
the symplectic groups, Sp(2n) which we have not considered explicitly. Apart from these
four classical series, our rules only allow for five additional diagrams which correspond to the
five exceptional algebras. All this is summarised in Table 6.3. Since our classification was

Dynkin diagram LC L Cartan matrix A

An su(p, q), p+ q = n+ 1 Eq. (5.80)

Bn so(p, q), p+ q = 2n+ 1 Eq. (5.159)

Cn sp(2n) A(Cn) = A(Bn)
T

Dn so(p, q), p+ q = 2n Eq. (5.154)

G2 G2

(
2 −3

−1 2

)
F4 F4

 2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2


E6 E6


2 −1 0 0 0 0

−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2



E7 E7


2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 −1
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 −1 0 0 0 2



E8 E8


2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2


Table 6.3: List of all simple, complex Lie algbras, their Dynkin diagrams, some of their real
sub-algebras and their Cartan matrices.

based on a necessary criterion we have to show, in principle, that all these diagrams do indeed
correspond to simple, complex Lie algebras. We have done this explicitly for the An, Bn and
Dn series. The Cn algebras follow from analysing the Lie algebras of the symplectic groups.
Finally, it turns out that the five exceptional cases also correspond to actual algebras (and
underlying groups) although we do not attempt an explicit construction here.

Another step is the classification of all real algebras (also called real forms) associated to
the complexified algebras L, which is a further part of the classification programme. We have
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done some of this explicitly in the context of examples. For instance, we have seen that the
complex Lie algebras An contains all real Lie algebras su(p, q), where p+ q = n+ 1. Some of
these real forms are indicated in column three of the above table but we will not pursue this
systematically.

Relations between low-rank algebras

The Lie algebra is determined by the Dynkin diagram - as we will see soon the full set of
roots can be reconstructed from the simple roots whose properties are encoded by the Dynkin
diagram. Some entries in the above table degenerate at low rank and Dynkin diagrams which
generically belong to a different series become identical. This indicates isomorphisms between
specific low-rank algebras and some examples are listed in the following table.

so(3)C ∼= B1
∼= ∼= ∼= A1

∼= su(2)C

so(4)C ∼= D2
∼= ∼= A1 ⊕A1

∼= su(2)C ⊕ su(2)C

so(5)C ∼= B2
∼= ∼= C2

∼= sp(4)C

so(6)C ∼= D3
∼= ∼= A3

∼= su(4)C

(6.7)

The final example, so(6)C ∼= su(4)C, might be somewhat infuriating given how easy the equiv-
alence follows here and how tricky it is to find the explicit isomorphism of the two matrix
algebras.

We have found four infinite series and 5 exceptional examples. Why can’t we extend those
exceptional algebras by adding nodes so that they form infinite series as well? At some level
the answer is of course that Lemmas 6.2 – 6.8 exclude such a possibility. Adding more nodes
to the G2, the F4 or the E8 diagram leads to inadmissible diagrams. However, some of these
higher exceptional algebras do exist as infinite-dimensional algebras, so called Kac-Moody
algebras. For more information on this see, for example, Ref. [9].

Another question is why some of the exceptional algebras with low ranks appear to be
missing. The simple answer is that these diagrams degenerate and are already part of
one of the infinite series. For example, the algebra one would call G1 has a single dot
Dynkin diagram so is, in fact, A1. Likewise, the diagrams for what should be called Fn,
with n < 4, obtained by removing dots from the F4 diagram, are diagrams already con-
tained in the A, B or C series. For exceptional E groups the story is more interesting.

Application 6.1: (Exceptional groups and unification)

If we continue the En series down to n < 6 by successively removing dots from the right-hand
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side of the E8 diagram we obtain the following.

E8
∼=

E7
∼=

E6
∼=

E5
∼= ∼= D5

∼= so(10)C

E4
∼= ∼= A4

∼= su(5)C

E3
∼= ∼= A2 ⊕A1

∼= su(3)C ⊕ su(2)C

(6.8)

As for the other exceptional algebras, the lower rank algebras En with n < 6 are indeed already
contained in the other series. However, the above list does show an interesting pattern, with
E3 the standard model gauge group (the U(1) factor does not appear since we are considering
semi-simple algebras), E4 and E5 the two favourite grand unification gauge groups and E8 a
prominent gauge group in string theory. Perhaps this suggests that exceptional E groups play
an important role in physics - but of course this is speculation at this point.

6.2 Representations and Dynkin formalism

We have already discussed how representations can be described by weights. We would now
like to approach this more systematically and work out how to construct weight systems of
irreps, starting with the highest weight. We will generally be working with a semi-simple
complex Lie algebra L of rank n with positive simple roots (α1, . . . , αn) and study irreps
r : L → End(V ).

Structure of weight systems

We start by generalising the definition of α-strings to weights.

Definition 6.3. For a root α of L and a weight w of r the α-string through w is the
(maximal) subset of {w + kα | k ∈ Z} which consists of weights of r. It is of the form

w − pα, w − (p− 1)α, . . . , w − α, w, w + α, . . . , w + (q − 1)α, w + qα . (6.9)

For these strings we have the analogue of Lemma 6.1.

Lemma 6.9. For a root α ∈ ∆, let w ∈ H′ be a weight of r such that w + α is not a weight
of r. Then, the α-string through w has the form w,w − α, . . . , w − pα, where

p =
2(w,α)

(α, α)
. (6.10)
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Proof. The proof is similar to the proof of Lemma 6.1. We focus on the su(2)C subalgebra of L
spanned by (Hα, Eα, E−α) under which the states vw, . . . , vw−pα ∈ V with weights w, . . . , w−
pα must form a representation with a certain spin j, such that the state vw corresponds to
eigenvalue −j and vw−pα corresponds to +j. Since

r(Hα)(vw) = (w,α)vw , r(Hα)(vw−pα) = (w − pα, α)vw−pα ,

we have (w,α) = −(α, α)j and (w− pα, α) = (α, α)j and adding these equations immediately
leads to Eq. (6.10).

The point of this lemma is that it tells us how many times we can take away a root from a
given weight and still obtain weights of the representation in question. Knowing this is key to
the algorithm which generates the entire weight system of a representation. This algorithm
needs a bit of bookkeeping which is what the next definition is about.

Definition 6.4. Let λ be the highest weight of r and w = λ−
∑n

i=1miαi a weight of r. The
sum

∑n
i=1mi is called the level of the weight w.

So the level equals the number of times we have to subtract simple roots from the highest
weight in order to arrive at the weight in question. We are now ready to formulate the
algorithm for computing weight systems.

Algorithm (Computing weight systems of irreps)

(1) Choose an irrep by choosing a highest weight λ (a Dynkin label with all entries ≥ 0).
This fixes the weight at level 0.

(2) Assume that all weights up to level s have been constructed and proceed as follows.
(a) Find all weights w at level s and all αi such that w + αi is not a weight. (Since
w + αi is at level s− 1 this can be decided.)
(b) For w and αi as in (a) add the weights w − αi, . . . , w − aiαi to the list of weights,

where ai =
2(w,αi)
(αi,αi)

.

(3) Iterate the process until no more new weights are found.

The reason this algorithm works is of course Eq. (6.10). It is particularly convenient to carry
out if all roots and weights are represented by Dynkin labels. The Dynkin labels of the
positive simple roots αi are simply the rows of the Cartan matrix A of L. If the weights w
are represented by Dynkin labels (a1, . . . , an) then the entry ai of the Dynkin label equals the
number of times αi can be subtracted from w, in accordance with step (2b) of the algorithm.

Examples

We would like to practice the above algorithm with a few examples, starting with the simplest
case, L = A1.

Weights of A1 representations

The Cartan matrix of A1
∼= su(2)C is A(A1) = (2). Suppose we consider an irrep with highest

weight Dynkin label (a), where a ≥ 0. Then, according to our algorithm, the single root (2)
can be subtracted from (a) precisely a times and this leads to the weight system

(a), (a− 2), . . . , (−a+ 2), (−a) .
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The dimension of the representation is dim(r) = a + 1 and, by comparing dimensions, we
conclude that a = 2j, where j ∈ Z/2 is the spin normally used in physics to label su(2)C
representations.

Weights of A2 representations

The Cartan matrix of A2
∼= su(3)C is given by

A(A2) =

(
2 −1

−1 2

)
,

and the Dynkin label of the two simple roots are the two rows α1 ∼ (2,−1) and α2 ∼ (−1, 2) of
A(A2). For the fundamental and complex conjugate fundamental with highest weight Dynkin
label (1, 0) and (0, 1), respectively, we find the weight systems

3 : (1, 0)︸ ︷︷ ︸
u

α1→ (−1, 1)︸ ︷︷ ︸
d

α2→ (0,−1)︸ ︷︷ ︸
s

, 3̄ : (0, 1)︸ ︷︷ ︸
s̄

α2→ (1,−1)︸ ︷︷ ︸
d̄

α1→ (−1, 0)︸ ︷︷ ︸
ū

. (6.11)

(We have indicated underneath, in quark notation, which vectors these weights correspond
to.) For the two-index symmetric tensor representation 6 with highest weight Dynkin label
(2, 0) we find

6 : (2, 0)
α1→ (0, 1)

α2

↗ (1,−1)
α1

↘
α1

↘ (−2, 2)
α2

↗
(−1, 0)

α2→ (0,−2) . (6.12)

For the adjoint, 8, with highest weight Dynkin label (1, 1) we have

8 : (1, 1)

α2

↗ (2,−1)
α1→ (0, 0)

α1→ (−2, 1)
α2

↘
α1

↘ (−1, 2)
α2→ (0, 0)

α2→ (1,−2)
α1

↗
(−1,−1) (6.13)

Tensor products - again

Once the weight systems of irreps are know it is straightforward (although tedious for larger
representations) to work out the weight systems of tensor products and their Clebsch-Gordan
decomposition. As a simple example, consider the A2 tensor product 3× 3̄ = 8⊕ 1. Forming
all sums of the 3 and 3̄ weights in Eq. (6.11) gives the weights of the 9 tensor states

(1, 1), (2,−1), (0, 0), (−1, 2), (0, 0), (−2, 1), (0, 0), (1,−2), (−1,−1) . (6.14)

The highest weight in this representation is (1, 1) since neither (1, 1) + α1 nor (1, 1) + α2

appears in this list. We immediately conclude that the 3 × 3̄ must contain the irrep with
highest weight Dynkin label (1, 1), that is, the adjoint 8. From the above algorithm, we can
now generate all the weights of the 8 representation, as we have done in Eq. (6.13), and these
should be taken away from the list (6.14). These steps can then be repeated for the remaining
weights, in the present case just a single weight (0, 0) which, of course, corresponds to the
trivial representation 1.
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Dynkin and dual basis

A weight w can be represented by a Dynkin label (a1, . . . , an) or by a dual vector (w̄1, . . . , w̄n)
with components each defined by

ai =
2(w,αi)

(αi, αi)
, w =

n∑
i=1

w̄i
2αi

(αi, αi)
. (6.15)

So the dual vector is just the coordinate vector of the weight relative to the basis of simple
positive roots. The factor 2/(αi, αi) has been included for convenience, and is based on
the convention that the longer roots in a Dynkin diagram are normalised to length 2. It is
straightforward to find the relation between the Dynkin labels and the dual vector, by inserting
the second Eq. (6.15) into the first.

ai =
∑
j

w̄j
2Aji

(αj , αj)
⇒ w̄j =

∑
i

aiGij where Gij =
(αj , αj)

2
(A−1)ij . (6.16)

The matrix G is also called the metric tensor and it can be used to express the Killing form
of two weights w, w′,

(w,w′) =
∑
i,j

2w̄i
(αi, αi)

(αi, αj)
2w̄′

j

(αj , αj)
=
∑
i,j

2w̄i
(αi, αi)

Aij︸ ︷︷ ︸
→ aj

w̄′
j =

∑
i

aiw̄
′
i =

∑
i,j

a′iGijaj , (6.17)

in terms of their Dynkin labels. The metric tensors can be explicitly worked out from the
Cartan matrices, basically inverting it, and the complete list of metric tensors can be found
in Ref. [4]. For example, for A2 the metric tensor is given by

G(A2) =
1

3

(
2 1
1 2

)
. (6.18)

Charges

By a charge, Q, we mean an element of the Cartan H, so a generator of a U(1). When
a representation r is given in terms of a list of weights w it is often desirable to compute
the charge values w(Q) of these weights and this can be done easily using Dynkin labels. A
convenient way to represent the charge Q is relative to the basis (Hαi) of the Cartan and write

Q =
∑
i

2q̄i
(αi, αi)

Hαi , w =
∑
j

w̄j
2αj

(αj , αj)

so that the charge Q is represented by a vector (q̄1, . . . , q̄n). A short calculation then shows
that the charge of the state with weight w can be computed as

w(Q) =
∑
i,j

2q̄i
(αi, αi)

2w̄j
(αj , αj)

αj(Hαi)︸ ︷︷ ︸
=(αj ,αi)

=
∑
i,j

q̄iw̄j
2Aji

(αj , αj)
=
∑
i

q̄iai . (6.19)

In conclusion, the charge w(Q) of the weight w can simply be computed by a dot product
between the dual basis vector (q̄1, . . . , q̄n) which represents the charge and the Dynkin label
of the weight w.
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Application 6.2: (Charges in the quark model)

To illustrate how the above formalism for charges works in practice, let us determine some
charges in the SU(3) quark model. Suppose we are interested in isospin, T3, and electrical
charge Q. First we have to determine the associated dual basis vectors T̄3 and Q̄ which we
can just dot into Dynkin labels to obtain charge values, as in Eq. (6.19). This can be done in
various ways but one quick method is to use two known values of the charges, for example,
the u-quark has isopsin 1/2 and electrical charge 2/3 and and s̄-quark isospin 0 and electrical
charge 1/3. (These conditions might be viewed as a definition of what we mean by isospin
and electrical charge in this context.) Comparing with Eq. (6.11) this translates into the
constraints

T̄3 · (1, 0) = 1
2 , T̄3 · (0, 1) = 0 ⇒ T̄3 = 1

2(1, 0)

Q̄ · (1, 0) = 2
3 , Q̄ · (0, 1) = 1

3 ⇒ Q̄ = 1
3(2, 1)

.

The point is that the so-determined charge vectors now work for all weights in all represen-
tations. For example, consider the weight (−1, 2) in the 8 representation in Eq. (6.13). Its
charges are

T̄3 · (−1, 2) = −1

2
, Q̄ · (−1, 2) = 0

which identifies (−1, 2) as the weight of a state with isospin −1/2 and electrical charge 0, that
is, as a Kaon K0.

Dimensions and degeneracies

So far we have glossed over a subtlety: weights can be degenerate, that is, the associated
eigenspaces may have dimensions larger than one. If such degenerate weights are present in
a representation, simply counting the weights does not give us the dimension of the repre-
sentation. In fact, we already know that this happens. For the adjoint representation, all
non-zero weights (= roots) are non-degenerate while the zero weight (which corresponds to
the Cartan) has degeneracy equal to the rank of the algebra. This is evident in the weight
system (6.13) of the adjoint 8 of A2, where we find 6 non-zero weights, and the weight zero
has degeneracy two. While we know the degeneracies for the adjoint the same is not true for
all other representations, so we need additional information. Also note that the degeneracy
does not, in general, equal the number of times a certain weight is produced by our algorithm.
All the algorithm does is produce a list of the distinct weights - their degeneracies still have
to be determined. This can be done with the Freudenthal formula.

Theorem 6.2. (Freudenthal formula) For an irrep with highest weight λ the degeneracies gw
of weights w are given by the recursion formula

[(λ+ δ, λ+ δ)− (w + δ, w + δ)] gw = 2
∑

α∈∆+,k≥0

gw+kα(w + kα, α) , (6.20)

where δ = 1
2

∑
α∈∆+

α and the Dynkin label of δ is (1, 1, . . . , 1, 1).

Proof. For the proof see Ref. [1], 25.1.
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The Freudenthal formula allows for a recursive calculation of degeneracies, starting with the
highest weight λ which we know has degeneracy gλ = 1 and then proceeding level by level. It
is also useful to have a formula for the dimension of a representation in terms of the highest
weight, the Weyl formula.

Theorem 6.3. (Weyl formula) The dimension dim(λ) of an irrep with highest weight λ is
given by

dim(λ) =
∏
α∈∆+

(λ+ δ, α)

(δ, α)
(6.21)

where δ is as defined in Theorem (6.2).

Proof. See Ref. [1], 24.1.

If the dimension calculated from this formula coincides with the number of different weights
then it is clear that all weights must be non-degenerate, so in this case there is no need to
use the Freudenthal formula. There is also a related and useful formula for the value of the
quadratic Casimir.

Theorem 6.4. The value C(λ) of the quadratic Casimir for an irrep with highest weight λ is
given by C(λ) = (λ, λ+ 2δ).

Proof. The quadratic Casimir can be written in terms of the Cartan-Weyl basis as

C = γIJTITJ =
∑
i,j

γijHαiHαj +
∑
α∈∆

EαE−α

where we have been using the result Eq. (4.27) for the Killing form and γij = Γ(Hαi , Hαj ) =

(αi, αj) = Aij
(αj ,αj)

2 . Inserting the inverse, γij , into the above formula for C gives

C =
∑
i,j

Gij
2Hαi

(αi, αi)

2Hαj

(αj , αj)
+
∑
α∈∆

EαE−α

To find C(λ) it is enough to evaluate C on the highest weight vector v (it takes the same value
on the entire representation vector space) with highest weight λ and highest weight Dynkin

label ai =
2(λ,αi)
(αi,αi)

. This leads to

C(v) =
∑
i,j

Gijaiajv +
∑
α∈∆+

[Eα, E−α]︸ ︷︷ ︸
=Hα

(v) =

(λ, λ) + ∑
α∈∆+

(λ, α)

 v = (λ, λ+ 2δ)v .

Example: dimensions and Casimir for A2

The positive roots (written as Dynkin labels) of A2 are

∆+ = {α1 = (2,−1)T , α2 = (−1, 2)T , β = α1 + α2 = (1, 1)T } ,

the metric tensor G has already been given in Eq. (6.18) and δ = (1, 1)T . It follows that

Gα1 = (1, 0)T , Gα2 = (0, 1)T , Gβ = (1, 1)T ,
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and inserting all this into the Weyl formula for an irrep with highest weight Dynkin label
(a1, a2) gives

dim(a1, a2) =
(a1 + 1, a2 + 1)Gα1

δTGα1

(a1 + 1, a2 + 1)Gα2

δTGα2

(a1 + 1, a2 + 1)Gβ

δTGβ

=
1

2
(a1 + a2 + 2)(a1 + 1)(a2 + 1) (6.22)

As a sanity check we insert (a1, a2) = (1, 1) for the adjoint and find dim(1, 1) = 8, as ex-
pected. To have a closed formula for the dimensions of all A2 representations is not a minor
accomplishment.

For the Casimir we have from Theorem 6.4

C(a1, a2) = (a1, a2)G

(
a1 + 2
a2 + 2

)
=

2

3
(a21 + a22 + a1a2 + 3a1 + 3a2) , (6.23)

and combining the above result, the index, Eq. (4.13), can be written as

c(a1, a2) =
dim(a1, a2)

dim(1, 1)
C(a1, a2)

=
1

24
(a1 + a2 + 2)(a1 + 1)(a2 + 1)(a21 + a22 + a1a2 + 3a1 + 3a2) . (6.24)

For the index of the fundamental and complex conjugate fundamental this gives c(1, 0) =
c(0, 1) = 1 while the index of the adjoint is c(1, 1) = 6.

6.3 Subgroups and branching

Can subalgebras and the branching of representations be described in terms of the Dynkin
formalism of roots and weights? Unfortunately, this does not work in all cases and depends on
whether a subalgebra is regular, that is, whether its Cartan-Weyl decomposition is consistent
with the Cartan-Weyl decomposition of the original algebra. As we will see, not all subalgebras
are regular in this sense and for such cases special considerations are required. However, many
subalgebras are regular and for all these cases a uniform formalism can be developed. We will
now explain how this works.

Regular subalgebras

We call a subalgebra L′ ⊂ L of a semi-simple complex Lie algebra L maximal if a subalgebra
L̃ with L′ ⫋ L̃ ⫋ L does not exist. We will be interested in understanding such maximal
subalgebras - smaller algebras can be obtained by iterating the process and applying it to the
maximal subalgebras and so forth.

If we want to describe subalgebras in terms of the Dynkin formalism we require that Cartan-
Weyl decompositions of algebra and subalgebra are compatible, for example if L′ ⊂ L then
the Cartan of the subalgebra should be contained in the Cartan of the algebra, so H′ ⊂ H. To
see that this is not automatic, consider the obvious group embedding SO(3) ⊂ SU(3), induced
by the fact that orthogonal matrices are also unitary. The Cartan of SO(3) is one-dimensional
and generated, for example, by the off-diagonal matrix σ12 in Eq. (5.140). The Cartan of
SU(3), on the other hand, consists of diagonal, traceless matrices and this set clearly does not
contain σ12. The following discussion excludes such “irregular” cases and focuses on regular
subalgebras defined as follows.
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Definition 6.5. A maximal algebra L′ ⊂ L of L is called regular if H′ ⊂ H and Span(E′
α) ⊂

Span(Eα).

The following examples show that regular subalgebras come in (at least) two types. First,
consider the subgroup SU(n− 1)×U(1) ⊂ SU(n) with embedding

SU(n− 1) ∋ U 7→
(
U 0
0 1

)
∈ SU(n) , U(1) ∋ z 7→ diag(z, . . . , z, z−n+1) ∈ SU(n) .

The Cartan-Weyl compatibility is apparent and maximality can be shown from commutation
relations, so the embedding is regular. This means we can have regular subalgebras of the
type L′ ⊕ u(1)C ⊂ L, which consist of a semi-simple algebra L′ one rank lower than L and a
u(1) part.

As an example of the other type, consider the embedding SO(2n) ⊂ SO(2n+1) defined by

SO(2n) ∋ R 7→
(
R 0
0 1

)
∈ SO(2n+ 1) .

Maximality can be shown from the commutation relations and Cartan-Weyl compatibility
follows from our discussion of the Lie algebras of orthogonal groups. In conclusion, we see
that Dn is a regular subalgebra of Bn - so this is a case where the regular subalgebra is semi-
simple, has the same rank as the original algebra and there is no u(1) part.

It turns out both types of regular subalgebras can be obtained from Dynkin diagrams. Roughly
the idea is that removing a node from the Dynkin diagram for L will give the Dynkin diagram of
a regular subalgebra L′. As we will see, this is in fact precisely how it works for the first above
type of regular subalgebras. For the second type we need to preserve the rank, while removing
a node from the Dynkin diagram lowers the rank by one. This problem can be resolved by
considering extended Dynkin diagrams which are the original Dynkin diagrams plus one
additional node.

Extended Dynkin diagrams

If we add one additional node to a rank n Dynkin diagram for L with simple positive roots
(α1, . . . , αn) the resulting diagram is of course not admissible, since n + 1 vectors cannot be
linearly independent in H′ which is of dimension n. However, we can try to ensure that the
additional node is added such that subsequently removing one (any) node from the extended
Dynkin diagram leads to a viable Dynkin diagram for a semi-simple Lie algebra. In view
of Lemma 6.1 there is only one way to do this: add to the Dynkin diagram the node which
corresponds to the lowest root θ, that is the root for which all θ−αi are not roots. The resulting
diagram with n + 1 nodes and corresponding roots (α1, . . . , αn, θ) is called the extended
Dynkin diagram of L. If any one of the roots (α1, . . . , αn, θ) of the extended diagram is
removed we remain with a basis of H′ and the resulting system is guaranteed to satisfy the
requirements on simple positive roots stated in Lemma 6.1. This is not sufficient to guarantee
that we always end up with viable Dynkin diagrams but this can be checked explicitly by
constructing all extended Dynkin diagrams and then removing one node.

To see how this works let us construct the extended Dynkin diagram of A2. The simple
positive roots of A2 (as Dynkin labels) are α1 = (2,−1) and α2 = (−1, 2) and inspection of
the root system in Eq. (6.13) shows that θ = (−1,−1) is the lowest root. Hence, the extended
Dynkin diagram corresponds to the roots (α1, α2, θ). To work out the diagram we need to
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check the lengths of these roots and the number of lines between them. Using the metric
tensor (6.18) we find that (θ, θ) = (α1, α1) = (α2, α2) = 2, so all three roots have the same
length 2. Further (θ, α1) = (θ, α2) = −1 implies that

nθαi
=

2(θ, αi)

(αi, αi)
= −1

for i = 1, 2 which means that θ should be connected to α1 and α2 with one line each. Hence,
the resulting extended Dynkin diagram for A2 is

The process just described for A2 can be carried out for all algebras and associated Dynkin
diagrams in our classification, Table 6.3. The resulting list of extended Dynkin diagrams is
provided in Table 6.4. It can be checked by inspection that removing one node from any of
these extended diagrams leads to a viable Dynkin diagram for a semi-simple algebra.

Finding regular subalgebras

Regular subalgebras can be obtained from the Dynkin diagram and the extended Dynkin
diagram.

Theorem 6.5. The regular subalgebras of L are

(i) semi-simple algebras L′ whose Dynkin diagram is found by removing one node (and the
lines to it) from the extended Dynkin diagram of L.
(ii) a sum L′⊕u(1)C, where L′ is a semi-simple algebra whose Dynkin diagram is obtained by
removing one node (and the lines to it) from the Dynkin diagram of L.

Proof. See, for example, Ref. [4].

An example for how to apply this theorem, for the case of E8, is given in the Table 6.5.

Branching

For a regular subalgebra L′ ⊂ L the compatibility of the Cartan-Weyl decomposition means
that any set of basis generators for the Cartan H′ can be written as linear combinations
of basis generators of H. This means that weights of representations of L and the weights
which emerge by branching to L′ must be related linearly. In other words, if n = rk(L) and
n′ = rk(L′) there exists a n′ × n projection matrix P (L′ ⊂ L) which maps the Dynkin
labels of weights in any L irrep r to the weights of the L′ representation r′ it branches to.
This matrix only depends on the algebras and their embedding but not on the representation
r. Once determined, for example by looking at the branching of simple low-dimensional irreps,
it can be applied to all representations.

This is probably best illustrated by a simple example. Consider the isospin sub-algebra
suI(2)C ⊂ A2 = su(3)C. In this case, the projection matrix is just a 1 × 2 matrix, map-
ping two-dimensional Dynkin labels of A2 to one-dimensional Dynkin label of A1. If we start

134



L extended Dynkin diagram

An

Bn

Cn

Dn

G2

F4

E6

E7

E8

Table 6.4: Extended Dynkin diagrams. The new node which corresponds to the lowest root θ
is indicated by an x.

with P = (p1, p2) and require that

P

u︷ ︸︸ ︷(
1
0

)
= 1 , P

s̄︷ ︸︸ ︷(
0
1

)
= 0 ,

which means, in quark model language, the u quark has isospin 1/2 and the s̄ quark has
isospin 0 (this is one way to specify what we mean by the isospin subalgebra) we have

P (suI(2)C ⊂ su(3)C) = (1, 0) . (6.25)
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extended E8 diagram semi-simple subalgebra

E6 ⊕A2
∼= E6 ⊕ su(3)C

D5 ⊕A3
∼= so(10)C ⊕ su(4)C

A4 ⊕A4
∼= su(5)C ⊕ su(5)C

E8 diagram non semi-simple subalgebra

D7 ⊕ u(1)C ∼= so(14)C ⊕ u(1)C

A7 ⊕ u(1)C ∼= su(8)C ⊕ u(1)C

Table 6.5: Some regular semi-simple subgroups of E8, obtained by deleting a node from the
extended E8 Dynkin diagram and some regular non semi-simple subgroups of E8, obtained by
deleting a node from the E8 Dynkin diagram.

Applying this matrix, for example, to the weights of the 6 representation in Eq. (6.12) we find

(2, 0) (2) (2)
(0, 1) (1) (1)

(−2, 2), (1,−1)
P−→ (0), (0) = (0) ⊕ ⊕ (0)

(−1, 0) (−1) (−1)
(0,−2) (−2) (−2)

6 −→ 3 ⊕ 2 ⊕ 1

so the 6 of A2 branches into an su(2)C triplet, a doublet and a singlet.
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