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Introduction
We study magnetic reconnection in the presence of a guide field using gyrokinetic code
AstroGK.

Guide field reconnections (or component reconnections) areoften observed in
astrophysical situations, not to mention in fusion experiments.

Gyrokinetics includes various kinetic effects, such as FLR, electron inertia, tensorial
pressures, important to understand collisionless magnetic reconnection.

Gyrokinetics assumes strong guide field. Reconnection process may differ in gyrokinetics
from anti-parallel reconnection (no guide field). Understanding of gyrokinetic
reconnection complements that by weak guide field cases, andcontributes to gain insights
for how kinetic processes play roles in magnetic reconnection.

Even though reconnection process occurs in collisionless situation, collisions are still
important to smooth out velocity space structures.

Relation between microscopic collisions and macroscopic resistivity is not trivial. We also
intensively investigate the relation of them.
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AstroGK: Basic equations

The distribution function of particles is given byf =
“

1 − qφ
T0

”

f0 + h, where

f0 = n0/(
√

πvth)3 exp(−v2/v2
th) is the Maxwellian, and the thermal velocity is given by

vth =
p

2T0/m. The equations to solve are the gyrokinetic equation forh = h(R, V⊥, V‖),

∂h

∂t
+ V‖

∂h

∂Z
+
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{〈χ〉R , h} − 〈C(h)〉R = q

f0

T0

∂〈χ〉R
∂t

, (1)

χ = φ − v · A and the field equations forφ(r), A‖(r), andδB‖(r),
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»

− q2
sn0sφ
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+ qs

Z

〈hs〉rdv

–
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⊥A‖ = −µ0

X

s

qs

Z
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B0∇⊥δB‖ = −µ0∇⊥ ·
X

s

Z

〈mv⊥v⊥hs〉rdv. (4)
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AstroGK: Normalization
Time and Space

t =
a0

vth0
t̂ (vth0 =

p

2T00/m0), z =a0ẑ, x =ρ0x̂. (5)

Species temperature, mass, charge

ms =m0m̂s, T0s =T00T̂0s, qs =q0q̂s. (6)

Fields

a0

ρ0

q0φ

T00
=φ̂,

a0

ρ0
vth0

q0A‖

T00
=Â‖,

a0

ρ0
δB‖ =B0δB̂‖. (7)

Distribution function

hs =
ρ0

a0
f0sĥs, (f0s =

1

π3/2

n0s

v3
th,s

e−v2/v2

th,s ). (8)
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Collision Operator

Recently, linearized collision operators for gyrokineticsimulations, which satisfies physical
requirements are established and implemented inAstroGK. [Abel et al, Phys. Plasmas15,
122509 (2008), Barneset al, submitted to Phys. Plasmas (2008).]

The operators are the pitch-angle scattering (Lorentz), the energy diffusion, and moments
conserving corrections to those operators for like-particle collisions. Electron-ion collisions
consists of pitch angle scattering by background ions and ion drag are also included.

We, here, mainly discuss the electron-ion collisions sinceit contributes to resistivity. The operator
is given by (in Fourier space)

Cei(he,k) = νei

“vth,e

V

”3
 

1

2

∂

∂ξ
(1 − ξ2)

∂he,k

∂ξ
− 1

4
(1 + ξ2)

V 2

v2
th,e

k2
⊥ρ2

ehe,k

+
2V‖J0(αe)u‖,i,k

v2
th,e

f0e

!

(9)

We examine how this collision operator relates with resistivity which decays the current.
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Spitzer Resistivity

From the fluid picture current decays due to collisional resistivity as

∂J

∂t
= − η

µ0
k2J, (10)

and the decay rate isτ−1
decay = (η/µ0)k2. Using the Spitzer resistivity given by

η =
me

1.98τenee2
(11)

whereτe = 3
√

π/(4νei), the decay rate is casted into the following form,

τ−1
decay = Cνei(dek)2 (12)

where the constantC = 4/(1.98 × 3
√

π) ∼ 0.380. We will determineC from numerical
simulations.
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Resistivity Estimate

We start the test with the following parametersνei = 10, β = 10−4, k⊥ = 1, mi = 1,
me = 10−4, n0i = 1, n0e = 1, qi = 1, qe = −1 T0i = 1, T0e = 1, andu‖,e(t = 0) = −1,

u‖,i(t = 0) = 0 (ion drag is off). For such a smallβ value, the magnetic fluctuation and its
temporal change is very small, and we may approximate

∂he

∂t
= Cei,

∂hi

∂t
= 0. (13)
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Effects of e-e collisions and ion drag

We include ee collisions (Lorentz and energy diffusion) in addition to ei collision. EstimatedC is
aboutC ∼ 1.15 (w/ L), C ∼ 2 (w/ L+E) (C ∼ 0.84 w/o ee collisions)
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Even if we include the ion drag effect, current decay rate does not change as long asJ ≫ J∞.
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Parameter Dependence of Resistivity

Resistivity is proportional toνei and inversely proportional toβ as expected.
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0.000426 / β

Linearity toνei is exactly held

By fitting 1/β function, we obtainC ∼ 0.426, which is fairly close to Spitzer
(C ∼ 0.380).

Conservation of momentum was relatively bad inAstroGK, which causes overestimate of
resistivity. This is fixed very recently.

1/β does not fit for smallβ . 0.001.
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Collisional Tearing Mode Theory

Time Scales

Hydromagnetic time scale:τH ≡ τA/(kLB0y/B0)

Resistive time scale:τR ≡ µ0L2/η

Assumptions

Time scale separations

1/τR ≪ ω ≪ 1/τH (14)

Scale separations
ℓη ≪ a (15)

whereℓη is the resistive layer width

Dispersion relation

∆′a = −π

8
γ5/4τ

1/2
H τ

3/4
R

Γ((λ3/2 − 1)/4)

Γ((λ3/2 + 5)/4)
(16)

λ = γτ
2/3
H τ

1/3
R
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Collisionless Tearing Mode Theory

Mirnov et al., Phys. Plasmas,11, 4468 (2004).

Γ2ρs

G(Γ/
√

β)
+

2

∆′
=

2G(Γ/
√

β)δ

πΓ
(17)

Γ = γτA/(ρsk), δ2 = d2
e + η/(µ0γ), β = µ0(γep

(0)
e + γip

(0)
i )/(B(0))2,

G(x) = (
√

x/2)(Γ(1/4 + x/4)/Γ(3/4 + x/4)).

Fitzpatrick and Porcelli, Phys. Plasmas,11, 4713 (2004).

Q2dβ

G(Q/cβ)
+

2

∆′
=

2G(Q/cβ)de

πQ
(18)

Q = γτA/(dβk), dβ = cβdi, cβ =
p

β/(1 + β), β = µ0γep
(0)
e /(B(0))2.

If β << 1, dβ → ρs, andQ → Γ. Thus, for cold ion and collisionless limit, the
dispersion relation is same as Mirnov’s.

Later Fitzpatrick and Porcelli removedG in the RHS by taking into account gyroviscous
cancellation. [PoP,14, 049902 (2007).]
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Simulation Setting

Equilibrium profile

he = he,0 cosh−2
“x

a

”

2V‖ (19)

yields the fieldsφ = δB‖ = 0,

A‖ = A0 cosh−2
“x

a

”

(20)

he,0 (proportional toA0) is determined such that it gives a desiredB0y .

Stability Index∆′

∆′a = 2

„

6k̄2 − 9

k̄(k̄2 − 4)
− k̄

«

(21)

k̄2 = a2k2 + 4
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Simulation Setting

Parameters

n0e = n0i = 1, T0e = T0i = 1, −qe = qi = 1 (22)

me = 10−2, mi = 1, (23)

β0 = 0.3 (24)

which yield the following spatial scales

ρi =1 ρe =0.1 (25)

di =1.8 de =0.18. (26)

Interpretation ofAstroGK time scales

τH/t0 =

√
n0imiβ0

kB0y
(27)

τR/t0 =2.63ν−1
ei a2 n0eq2

e

me
β0 (28)
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Results
Lines are for different kinetic effects (a/ρi = 5 anda/ρi = 50)
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We must further reduce kinetic effect to observe resistive scaling scaling

Collisionless scaling qualitatively fit to numerical results

Red line does not change by ion temperature (result not shown)
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Summary

We have confirmed that e-i collisions in addition to full e-e collisions yield expected
macroscopic behavior. The resistivity is quantitatively same as Spitzer’s value.

We have performed collisionless and collisional tearing mode simulations, and have
scanned forνei.

We have observed transition from collisional regime (collision dependent growth rate) to
collisionless regime (collision independent growth rate).

Due to kinetic effects, growth rate does not fit to resistive scaling even in the collisional
regime. Further decrease of kinetic effect (largera/ρi) needed.

We have also compared the results with collisionless scaling by Fitzpatrick’s and Mirnov’s.
Numerical results agree with the theories qualitatively, but are different by a factor.

Workshop “Kinetic Instabilities, Plasma Turbulence, and Magnetic Reconnection” @ WPI, Vienna, 16-20 February (2009) – p. 15/15


	Introduction
	{	t AstroGK}: Basic equations
	{	t AstroGK}: Normalization
	Collision Operator
	Spitzer Resistivity
	Resistivity Estimate
	Effects of e-e collisions and ion drag
	Parameter Dependence of Resistivity
	Collisional Tearing Mode Theory
	Collisionless Tearing Mode Theory
	Simulation Setting
	Simulation Setting
	Results
	Summary

