Temperature anisotropy in the solar wind

Petr Hellinger

Institute of Atmospheric Physics & Astronomical Institute AS CR, Prague, Czech Republic

Kinetic Instabilities, Plasma Turbulence and Magnetic Reconnection, Vienna, February 17, 2009

- 1 Introduction
 - Solar wind
 - Linear theory
- 2 Observations
 - Protons
 - Linear Theory
 - Waves
 - Electrons
- 3 Simulations of proton fire hose instabilities
 - 1-D hybrid simulations
 - Hybrid expanding box simulations

4 Summary

Solar wind

Solar wind

- weak collisions
- temperature anisotropies $T_{\parallel} \neq T_{\perp}$
- particle beams/drifting populations
- signatures of wave-particle interactions
- signatures of kinetic instabilities
- important wave activity/turbulence

Instabilities driven by $T_{\parallel s} \neq T_{\perp s}$

Linear Vlasov-Maxwell system in the long-wavelength, low-frequency limit

• Mirror instability with the threshold

$$\sum_{s} \beta_{s\perp} \left(\frac{T_{s\perp}}{T_{s\parallel}} - 1 \right) > 1 + \frac{\left(\sum_{s} \rho_s \frac{T_{s\perp}}{T_{s\parallel}} \right)^2}{2 \sum_{s} \frac{\rho_s^2}{\beta_{s\parallel}}}$$

different from MHD-CGL prediction

• Fire hose instabilities with the threshold

$$eta_{\parallel} - eta_{\perp} > 2$$

as in MHD-CGL

Full linear Vlasov-Maxwell system

 $T_{\parallel p} < T_{\perp p}$ Proton cyclotron instability

- LH circular polarization
- cyclotron resonance
- $\Re\omega\lesssim\omega_{cp}$
- wavelengths $\sim c/\omega_{pp}$

Mirror instability

- linear polarization $\delta \boldsymbol{B} \cdot \boldsymbol{B}_0 \neq 0$
- Landau resonance
- $\Re \omega = 0$
- threshold for $k \rightarrow 0$

 $T_{\parallel p} > T_{\perp p}$

Parallel fire hose

- RH circular polarization
- anomalous cyclotron resonance
- $\Re \omega \sim \omega_{cp}$
- wavelengths $\sim c/\omega_{pp}$

Oblique fire hose

- linear polarization $\delta \boldsymbol{B} \perp \boldsymbol{B}_0$
- both cyclotron resonances
- $\Re \omega = 0$
- wavelengths $\sim c/\omega_{pp}$

Both fire hoses unstable even for $\beta_{\parallel} - \beta_{\perp} < 2$

WIND/SWE observations

Wind spacecraft, 1995–2001

- two Faraday Cup instruments in the Solar Wind Experiment (*Kasper et al.*, 2002; 2006)
- + Magnetic Field Experiment
- non-linear least-squares fitting assuming bi-Maxwellian (core) proton distribution function
 - proton density
 - proton temperatures $T_{\parallel p}$ and $T_{\perp p}$
 - parallel beta $\beta_{\parallel p}$

Slow solar wind proton anisotropy at 1 AU

WIND/SWE data $v_{sw} < 600$ km/s

Slow solar wind vs linear theory I

Proton cyclotron instability ($\gamma_{max} \ge 10^{-3} \omega_{cp}$)

Slow solar wind vs linear theory II

Mirror instability ($\gamma_{max} \ge 10^{-3} \omega_{cp}$)

Slow solar wind vs linear theory III

Parallel fire hose ($\gamma_{max} \ge 10^{-3} \omega_{cp}$)

Slow solar wind vs linear theory IV

Oblique fire hose ($\gamma_{\text{max}} \ge 10^{-3} \omega_{cp}$)

Comparison

Linear theory:

- Dominant proton cyclotron instability for $T_{\parallel p} < T_{\perp p}$
- Dominant parallel fire hose for $T_{\parallel p} > T_{\perp p}$

WIND/SWE Observations – Slow solar wind:

- Constrained by the mirror instability for $T_{\parallel p} < T_{\perp p}$?
- Constrained by the oblique fire hose for $T_{\parallel p} > T_{\perp p}$?

Discussion

Limitations

- Linear theory assumes
 - bi-Maxwellian protons
 - homogeneous, stationary medium
 - no waves
- Observations:
 - often proton core/beam distributions
 - alpha particles and other minor ions
 - important turbulence/wave activity
 - shell/quasilinear plateau distributions
 - expanding solar wind

+ nonlinear effects? \rightarrow numerical simulations

Alpha particles and cyclotron instabilities

Proton cyclotron instability ($\gamma_{max} \ge 10^{-3} \omega_{cp}$)

Alpha particles and cyclotron instabilities

5 % of alpha particles ($\gamma_{max} \ge 10^{-3} \omega_{cp}$)

Instability driven waves?

Magnetic field fluctuations, RMS over 3 s (*Bale et al.*)

- enhancements in amplitude near the thresholds
- compressible fluctuations near the mirror threshold – evidence of the mirror mode?
- more collisional protons are more isotropic

Full linear Vlasov-Maxwell system

$$T_{\parallel e} < T_{\perp e}$$

Whistler instability

- RH circular polarization
- cyclotron resonance
- $\Re\omega\lesssim\omega_{ce}$
- wavelengths $\sim c/\omega_{pe}$

Mirror instability

- linear polarization $\delta \boldsymbol{B} \cdot \boldsymbol{B}_0 \neq 0$
- Landau resonance
- $\Re \omega = 0$
- threshold for $k \rightarrow 0$

 $T_{\parallel e} > T_{\perp e}$ (Quasi-)parallel fire hose

- LH circular polarization
- on non-resonant
- $\gamma \sim \omega_{cp}$
- wavelengths $\sim c/\omega_{pe}$

Oblique fire hose

- linear polarization $\delta \boldsymbol{B} \perp \boldsymbol{B}_0$
- both cyclotron resonances
- $\Re \omega = 0$
- wavelengths $\sim c/\omega_{pe}$

Oblique fire hose unstable even for $\beta_{\parallel} - \beta_{\perp} < 2$

Solar wind electrons I

Solar wind electrons:

- bi-Maxwellian core
- bi-κ halo
- strahl populations Wind/3DP observations (*Bale et al.*)
 - core more isotropic
 - halo constraints by whistler and oblique fire hose instabilities

Solar wind electrons II

Helios, Cluster & Ulysses (*Štverák et al.*, 2008)

- Core electrons constrained by whistler and oblique fire hose instabilities
- Similarly for halo electrons
- role strahl?

Standard 1-D hybrid simulations

Hybrid simulation:

- ions kinetic treatment (particle-in-cell method)
- electrons massless, charge-neutralizing fluid

Nonlinear properties of the proton fire hose instabilities:

- Parallel fire hose instability
 - quasi-linear saturation
 - weak reduction of temperature anisotropy
- Oblique fire hose instability
 - self-destructive evolution
 - inverse cascade of Alfvénic fluctuations
 - strong reduction of temperature anisotropy

1-D hybrid simulations, $\beta_{p\parallel} = 2.8$

Evolution of $A_p = T_{p\perp}/T_{p\parallel}$ and δB^2

1-D hybrid simulations

Evolution of oblique fire hose

Radial evolution in the solar wind

Expansion – fast solar wind (*Matteini et al.*, 2007)

- $T_{p\perp}/T_{p\parallel}$ decreases and $\beta_{p\parallel}$ increases with the distance
- evolution is not CGL
- a signature of the cyclotron heating?
- Coulomb collisions
- at larger distances controlled by fire hose instabilities

Expanding box model

Schematic view – spatial vs temporal: Spherical expansion

Expanding box

Hybrid expanding box model

Solar wind expansion

- assuming a constant solar wind velocity
- transverse scale expands linearly with time
- hybrid approximation, kinetic ions & fluid electrons

Slow expansion

- CGL evolution when no wave activity is present
- low frequency waves follow WKB
- natural generation of temperature anisotropy
- self-consistent competition between the expansion and instabilities.

2-D Hybrid Expanding Box Simulation I

Expansion vs the parallel fire hose (cf., Matteini et al., 2006)

2-D Hybrid Expanding Box Simulation II

Expansion vs the oblique fire hose (Hellinger & Travnicek, 2008)

2-D Hybrid Expanding Box Simulation III

Evolution of wave energy

Summary

Proton temperature anisotropy

- constrained by mirror and proton cyclotron instabilities
- constrained by both fire hose instabilities.
- oblique fire hose sets the final frontier for the anisotropy
- signatures of generated waves.
- Simulation results explain the apparent discrepancy between the linear prediction and WIND/SWE observations.

Electron temperature anisotropy

- constrained by whistler and oblique fire hose instability
- observation of generated waves?