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Turbulence : lois d’échelle, singularités
et

 extrapolation asymptotique



∂tu + u ·∇u = −∇p + ν∇2u
∇ · u = 0, Navier–Stokes (1823)

Navier-Stokes : singularités ?

⇒ singularités ? (1 M $)

+ conditions initiales et aux limites

Jean Leray (1934) : turbulence par les singularités ?

Turbulence développée :Re = LV
ν →∞

Diffusion visqueuse négligeable (Euler)
sauf aux plus petites échelles.
“Anomalie dissipative” (la dissipation moyenne
a une limite positive pour ν → 0) ?



Fluide non visqueux (Euler) : ça explose ?
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TextCauchy :
Dtω ≡ ∂tω + u · ω = ω ·∇u
ω ≡ ∇ ∧ u .

Trichons :
∇u ≈ ω, Dtω ≈ ω2 ⇒ Boum !

Burgers 1D :
∂tu + u∂xu = 0
w ≡ −∂xu

Dtw = ∂tw + u∂xw = w2 .
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FIGURE 1. A plot of the velocity and vorticity a t  t = 0 (a )  and t = 2 ( b )  on the y = 0 and z = 0 faces 
of the impermeable cube of the inviscid TG vortex. Vectors indicate the velocity field (which lies 
in the plane of the plot) while solid lines are contours of constant strain rate V * q  and total vorticity 
w2, as indicated in the figure. The initiai vorticity on the z = 0 plane is { ( t  = 0) = 2sinssiny; it 
decays a t  the centre of this face from its value 6 = 2 a t  t = 0 to 5 = 0.8 a t  t = 2. On this face w2 = e;  
contours are equally spaced in w2. On the y = 0 face the initial vorticity is { = sin J: sin z ;  its value 
a t  the centre grows from 5 = 1 a t  t = 0 to 5 = 1.7  a t  t = 2. The strain rate V * u l l  on the z = 0 face 
has changed from identically zero a t  t = 0 to a low of -0.833 a t  the corners and a high of 0.723 
a t  the centre at t = 2. On the y = 0 face the strain rate changes from - 1  < V'u,, < 1 at t = 0 to 
- 1.75 < V*ull < 0.94 a t  t = 2. The centre of the y = 0 face has become a point of convergence, 
-V.v l ,  = 0.53 a t  t = 2.  The labels L and H indicate lows and highs respectively of V * u l , .  

side faces (see figure 1).t The initial vorticity maximum a t  the centre of the bottom 
face decreases in time because of the consequent horizontal divergence of the flow 
(see (2.1)). New vorticity maxima appear close to the edges, where they build up 
dramatically because of the large strain-rate tensor there. (The vorticity must remain 
zero a t  the edges, but large gradients are not excluded.) A corresponding outflow on 
the top face and downflow from the top edges onto the side faces leads to a 
convergence of fluid near the horizontal centreline of each side face, from where i t  
is forced back into the centre of the box and subsequently back to the top and bottom 

t Without pressure effects and/or the z-variation of the initial conditions ( l . l ) ,  the initially 
two-dimensional TG flow would remain two-dimensional for all time. 

Euler 3D : la déplétion ralentit/empêche l’explosion 
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S(t ) ,  n(t), A ( t )  fitted 8(t) prescribed 
Ar/u 

44 n(t) n(t) (prescribed) 

42 84 42 84 42 84 42 84 

1.107 1.107 4.31 4.31 I .  106 4.35 4.35 0 0 
0.461 4.68 4.61 2 10 0.453 0.451 5.02 5.14 

0.193 0.192 4.79 4.86 0.192 4.85 4.84 0 0 
0.080 0.080 4.48 4.50 0.080 4.48 4.50 0 0 
0.020 0.034 4.71 4.18 0.034 4.13 4.18 65 0 

-0.022 0.005 5.63 4.59 0.014 4.06 3.96 127 162 
-0.007 -0.002 4.51 4.56 0.006 3.94 4.04 23 35 

TABLE 1. Three- and two-parameter fit for energy spectrum E(k ,  t )  
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FIGURE 5 .  The time dependence of the width of the analyticity strip S in (3.5) from the data of 
table 1. Circles are based on fits with k,,, = 84; plus signs are obtained with kmax = 42. The 
horizontal line is the ‘effective’ resolution A = n/k,,, = to indicate the expected resolution 
limit of S(t ) .  The solid line is the fit (3.6) to the data. 

fact, a t  early times the relatively large values of 8( t )  do not allow us to separate the 
exponential and power-law terms accurately (cf. (3.5)). 

The latter result may also be seen from the results given in table 2 ,  which show 
the sensitivity of the least-squares fit to the range of k-values Kmin < k < K,,, that 
is used for the fit. Results are from the k,,, = 84 computation. Clearly, at early times 
t 5 1, the values of n ( t )  and 8(t) fluctuate significantly as Kmin and K,,, are varied. 
For 1.5 5 t 5 2.5 both n ( t )  and 8( t )  appear to be reasonably independent of the range 

Formation d’une crèpe de vorticité
La plus petite échelle diminue 

exponentiellement

M.E. Brachet et al. J. Fluid Mech. 103 (1983) 411-452

Bardos, Benachour (1976-1979) :  les singularités réelles sont 
précédées de singularités complexes

Peut-on identifier des singularités (réelles ou complexes) à  partir
de données de simulations ?



Extrapolation asymptotique
• Soit une fonction G(k) au comportement asymptotique (k →∞)

G(k) # Ck−αe−δk

sur une grille régulière 1D k0, 2k0, ..., Nk0

Gn = G(nk0), n = 1, 2, ..., N

pouvons nous déterminer C, α et δ numériquement avec une haute précision ? Quid
des termes sous-dominant?

• Méthode naı̈ve : ajustement des moindres carrés

• Amélioration : rapports seconds (Shelley, Caflisch, Pauls–Matsumoto–Frisch–Bec)

Rn #
GnGn−2

G2
n−1

=
(

1− 1
(n− 1)2

)−α

En ignorant les corrections sous-dominantes

α = − lnRn

ln(1− 1/(n− 1)2)

• Y a-t-il une approche plus systématique ?
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Extrapolation asymptotique de Joris van der Hoeven
J. van der Hoeven, Algorithms for asymptotic extrapolation, J. Symbolic Computation, sous presse

• Extrapoler la suite Gn dans la région “la plus asymptotique” n = L, ..., N

• Transformations :

I Inverse: Gn −→ 1
Gn

R Rapport: Gn −→ Gn
Gn−1

SR Rapport second: Gn −→ GnGn−2
G2

n−1

D Différence: Gn −→ Gn −Gn−1

• Descente (en supposant Gn > 0):

– Test 1: si Gn < 1 appliquer I

– Test 2: Gn croı̂t-il plus vite que n7/2?
∗ Oui: si croissance exponentielle appliquer SR, sinon R
∗ Non: appliquer D

– Continuer jusqu’à obtention de données faciles à extrapoler et propres

• Remonter en inversant les transformations I, R, SR et D
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Pauls-Frisch J. Stat. Phys. 127 (2007) 1095–1119

Mise oeuvre/test pour l’équation de Burgers
• Équation de Burgers inviscide

∂tu + u (∂xu) = 0, u(0, x) = u0(x) = −1
2

sinx

• Représentation Fourier–Lagrangienne (Platzman, Fournier–Frisch)

u(t, x) =
∑

k=±1,±2,...

eikxûk(t), ûk(t) = − 1
2iπkt

∫ 2π

0
e−ik(a+tu0(a))da

• Solution explicite ûk(t) = 1
iktJk(kt/2) avec la fonction de Bessel Jk d’ordre k ce

qui donne asymptotiquement (Debye)

ûk(t) ∼ 1
it

1√
2π

√
1− (t/2)2

k−
3
2 e−k(arccosh 2

t−
√

1−(t/2)2)



1 +
∞∑

n=1

γn

(
1√

1−(t/2)2

)

kn



 ,

les γn sont des polynômes connus (cf. Abramowitz–Stegun).

Un bon candidat pour tester l’extrapolation asymptotique: coefficients de Fourier
calculés à haute précision (80 chiffres) à t = 1 et |k| ≤ 1000.
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Six stades d’extrapolation



Termes sous-dominants
• La procédure d’extrapolation peut être continuée pour améliorer la précision sur α, δ

et pour déterminer les termes sous-dominants

• Transformations appliquées

SR, -D, I, D, D, D, D, I, D, D, D, D, D

• Comparaison résultats théoriques et numériques

α δ C

6 stades 1.49999999993 0.4509324931404 0.4286913791

13 stades 1.49999999999999995 0.450932493140378061868 0.4286913790524959

Val. théor. 3/2 0.450932493140378061861 0.42869137905249585643

γ1 γ2 γ3

6 stades −0.17641252 0.17295 −0.401

13 stades −0.17641258225238 0.172968106990 −0.406446182

Val. théor. −0.176412582252385 0.1729681069958 −0.4064461802

γ4 γ5 γ6

13 stades 1.384160933 −6.192505762 34.5269751

Val. théor. 1.3841609326 −6.1925057618568063655 34.526975286449930956
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50 W. Pauls et al. / Physica D 219 (2006) 40–59

from quadrants other than the first one since they only
contribute subdominant terms in the short-time expansion of the
hydrodynamic fields. When such terms are taken into account
it is likely that singularities obtained at leading order will be
mostly advected by a modified velocity field which carries the
singularities slightly out of the y-plane without changing their
nature, as happens in the work of Tanveer and Speziale [18].
Of course, positivity of the Fourier coefficients will be lost but
not necessarily their scaling properties. Observe also that the y-
plane being a plane of symmetry, this picture implies that there
are several pieces of the singular manifold very close to the
y-plane. In Fourier space they produce a kind of interference
pattern which at first has very long wavelength (in k). This
wavelength becomes shorter and shorter as time advances and
the singular manifold moves further away from the y-plane.18

4. The geometry of the pseudo-hydrodynamic flow

In two-dimensional simulations of hydrodynamics, consid-
erable insight is usually obtained by looking at flow features
in the physical space. This is much simpler in two dimen-
sions than in three, provided that the relevant features are in the
real R2 space. Here the most important features are in the com-
plex C2 space, which is equivalent to having four real dimen-
sions. Fortunately, as explained in Section 2, we can make use
of only two real dimensions by working in the y-plane above
(z1, z2) = (π, 0) which extends in the (pure) imaginary di-
rections. As already briefly mentioned in Section 4 of MBF,
the positivity of all the Fourier coefficients F̂(k1, k2) (except
F̂(1, 0)) and the exponential decrease with the wavenumber im-
ply that the solution to the (short-time asymptotic) Euler equa-
tion has a line of singularities S in the (y1, y2)-plane. Indeed,
since only harmonics with non-negative k1 and k2 are present,
we may rewrite (13) and (14) as a Taylor series in two variables

ψ(y) − 1
2

y1 + y2 =
∞∑

k1=0

∞∑

k2=0

F̂(k1, k2) ζ
k1
1 ζ

k2
2 , (39)

ζ1 ≡ ey1 , ζ2 ≡ ey2 . (40)

If we now hold y2 (and thus ζ2) fixed and sum over k2, we
obtain a Taylor series in ζ1 such that all its coefficients (except
possibly the first one) are positive. By Vivanti’s theorem [33],
if such a series has a finite radius of convergence (as is the
case here because of the aforementioned exponential decrease),
the singularity in the complex ζ1-plane nearest to the origin
is on the positive real axis at a location y1 = y$

1(y2), which
depends on y2. The function y$

1(y2) defines an object which
we here call the singular manifold and is the edge of the
analyticity domain y1 < y$

1(y2).19 A standard theorem about
multi-dimensional Taylor series states that their domain of
convergence is logarithmically convex (see, e.g., Ref. [34]).

18 Somewhat similar interference patterns are obtained when the short-time
asymptotics is extended to the Navier–Stokes equation (with viscosity scaling
as 1/t).
19 More correctly, the singular manifold is a (perhaps analytic) manifold in
C2 whose intersection with the y-plane is designated here by the same name.

Fig. 14. Global geometry of the flow in the y-plane. Streamlines (solid lines)
and iso-vorticity lines (thin-dotted lines) are shown. Thick-solid-crenated line:
singular manifold; thick-solid line: U-turn separatrix (ψ ≈ 0.5); thick-dashed
line: vorticity separatrix (ω = 0 and ψ = ln 2). The ticks on the two
axes correspond to coordinate 0.25. Inset: Contours of absolute value of the
cotangent of the angle between the streamlines and the iso-vorticity lines as a
measure of depletion of nonlinearity.

In our case this just means that the analyticity domain in the
y-plane is convex. As shown in MBF using slightly different
notation, the singular manifold can be constructed either as the
envelope of the family of straight lines y1 cos θ + y2 sin θ =
δ(θ) (where the decrement δ has been defined in Section 3) or
as the envelope of analyticity disks.

To numerically construct the pseudo-hydrodynamic solution
in the y-plane from the Fourier data we use (14) for the
stream function, (18) for the velocity and (20) for the vorticity.
Although our Fourier data typically have 35 decimal digits,
it suffices to truncate them to 16 digits to obtain the various
relevant fields in y-space with a good accuracy.

4.1. Presentation of the y-plane results

We begin with global topological features and then turn to
a more local and more quantitative description. Fig. 14 gives
a global view of the flow in the y-plane.20 The outer edge of
the flow region, which passes very close to the origin is the
singular manifold. At large distances on the upper left and the
lower right, respectively, the singular manifold has logarithmic
branches. Close to the singular manifold, the streamlines follow
it until they make a U-turn and eventually plunge into the third
quadrant (y1 < 0, y2 < 0) where they become straight with
slope 1/2 at large distances. An important feature is the U-
turn separatrix, above which stream lines make U-turns which

20 When magnifying this figure, ADOBE READER R© 7 or higher is
recommended.

Carte des singularités complexes (non universelles)

y!

variété singulière

|ω| ∼ |y − y!|−β

vorticité explose

condition initiale

loi d’échelle

1/2 < β < 1 dépend des conditions initiales

Ψ0(x1, x2) =
1
2

(
e−ix1 + e−2ix2

)

pxpxpxpxpxpx

Pauls-Matsumoto-Frisch-Bec Physica D, 219 (2006) 40-59


