Turbulence : lois d'échelle, singularités

et extrapolation asymptotique

Uriel Frisch

Réunion "Turbulence" de la section Sciences mécaniques et informatiques (20 janvier 2009)

Navier-Stokes : singularités?

$\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \nabla^{2} \mathbf{u}$
$\nabla \cdot \mathbf{u}=0$, Navier-Stokes (1823)

+ conditions initiales et aux limites
$\Longrightarrow \quad$ singularités ? ($1 \mathrm{M} \$$)
Jean Leray (1934) : turbulence par les singularités ?
Turbulence développée : $R e=\frac{L V}{\nu} \rightarrow \infty$
Diffusion visqueuse négligeable (Euler) sauf aux plus petites échelles.
"Anomalie dissipative" (la dissipation moyenne a une limite positive pour $\nu \rightarrow 0)$?

Cauchy :
$D_{t} \omega \equiv \partial_{t} \omega+\mathbf{u} \cdot \omega=\omega \cdot \nabla \mathbf{u}$
$\omega \equiv \nabla \wedge \mathbf{u}$.
Trichons:
$\nabla \mathbf{u} \approx \omega, \quad D_{t} \omega \approx \omega^{2} \Rightarrow$ Boum !

Burgers 1D:
$\partial_{t} u+u \partial_{x} u=0$
$w \equiv-\partial_{x} u$
$D_{t} w=\partial_{t} w+u \partial_{x} w=w^{2}$.

Euler 3D : la déplétion ralentit/empêche l'explosion

M.E. Brachet et al. J. Fluid Mech. 103 (I983) 4II-452

Formation d'une crèpe de vorticité

La plus petite échelle diminue exponentiellement

Bardos, Benachour (1976-1979) : les singularités réelles sont précédées de singularités complexes

Peut-on identifier des singularités (réelles ou complexes) à partir de données de simulations?

Extrapolation asymptotique

- Soit une fonction $G(k)$ au comportement asymptotique $(k \rightarrow \infty)$

$$
G(k) \simeq C k^{-\alpha} e^{-\delta k}
$$

sur une grille régulière $1 \mathrm{D} k_{0}, 2 k_{0}, \ldots, N k_{0}$

$$
G_{n}=G\left(n k_{0}\right), \quad n=1,2, \ldots, N
$$

pouvons nous déterminer C, α et δ numériquement avec une haute précision? Quid des termes sous-dominant?

- Méthode naïve : ajustement des moindres carrés
- Amélioration : rapports seconds (Shelley, Caflisch, Pauls-Matsumoto-Frisch-Bec)

$$
R_{n} \simeq \frac{G_{n} G_{n-2}}{G_{n-1}^{2}}=\left(1-\frac{1}{(n-1)^{2}}\right)^{-\alpha}
$$

En ignorant les corrections sous-dominantes

$$
\alpha=-\frac{\ln R_{n}}{\ln \left(1-1 /(n-1)^{2}\right)}
$$

- Y a-t-il une approche plus systématique ?

Extrapolation asymptotique de Joris van der Hoeven

J. van der Hoeven, Algorithms for asymptotic extrapolation, J. Symbolic Computation, sous presse

- Extrapoler la suite G_{n} dans la région "la plus asymptotique" $n=L, \ldots, N$
- Transformations :

I Inverse: $G_{n} \longrightarrow \frac{1}{G_{n}}$
R Rapport: $G_{n} \longrightarrow \frac{G_{n}}{G_{n-1}}$
SR Rapport second: $G_{n} \longrightarrow \frac{G_{n} G_{n-2}}{G_{n-1}^{2}}$
D Différence: $G_{n} \longrightarrow G_{n}-G_{n-1}$

- Descente (en supposant $G_{n}>0$):
- Test 1: si $G_{n}<1$ appliquer I
- Test 2: G_{n} croît-il plus vite que $n^{7 / 2}$?
* Oui: si croissance exponentielle appliquer $\mathbf{S R}$, sinon \mathbf{R}
* Non: appliquer D
- Continuer jusqu'à obtention de données faciles à extrapoler et propres
- Remonter en inversant les transformations I, R, SR et D

Mise oeuvre/test pour l'équation de Burgers

- Équation de Burgers inviscide

$$
\partial_{t} u+u\left(\partial_{x} u\right)=0, \quad u(0, x)=u_{0}(x)=-\frac{1}{2} \sin x
$$

- Représentation Fourier-Lagrangienne (Platzman, Fournier-Frisch)

$$
u(t, x)=\sum_{k= \pm 1, \pm 2, \ldots} e^{i k x} \hat{u}_{k}(t), \quad \hat{u}_{k}(t)=-\frac{1}{2 i \pi k t} \int_{0}^{2 \pi} e^{-i k\left(a+t u_{0}(a)\right)} d a
$$

- Solution explicite $\hat{u}_{k}(t)=\frac{1}{i k t} J_{k}(k t / 2)$ avec la fonction de Bessel J_{k} d'ordre k ce qui donne asymptotiquement (Debye)
$\hat{u}_{k}(t) \sim \frac{1}{i t} \frac{1}{\sqrt{2 \pi \sqrt{1-(t / 2)^{2}}}} k^{-\frac{3}{2}} e^{-k\left(\operatorname{arccosh} \frac{2}{t}-\sqrt{\left.1-(t / 2)^{2}\right)}\right.}\left(1+\sum_{n=1}^{\infty} \frac{\gamma_{n}\left(\frac{1}{\sqrt{1-(t /)^{2}}}\right)}{k^{n}}\right)$
les γ_{n} sont des polynômes connus (cf. Abramowitz-Stegun).
Un bon candidat pour tester l'extrapolation asymptotique: coefficients de Fourier calculés à haute précision (80 chiffres) à $t=1$ et $|k| \leq 1000$.

Six stades d'extrapolation

$$
C k^{-\alpha} e^{-\delta k} \xrightarrow{\mathbf{S R}} 1+\frac{\alpha}{k^{2}} \xrightarrow{-\mathbf{D}} \frac{2 \alpha}{k^{3}} \xrightarrow{\mathbf{I}} \frac{k^{3}}{2 \alpha} \xrightarrow{\mathbf{D}} \frac{3 k^{2}}{2 \alpha} \xrightarrow{\mathbf{D}} \frac{3 k}{\alpha} \xrightarrow{\mathbf{D}} \frac{3}{\alpha}
$$

Termes sous-dominants

- La procédure d'extrapolation peut être continuée pour améliorer la précision sur α, δ et pour déterminer les termes sous-dominants
- Transformations appliquées

SR, -D, I, D, D, D, D, I, D, D, D, D, D

- Comparaison résultats théoriques et numériques

	α	δ	C
6 stades	1.49999999993	0.4509324931404	0.4286913791
13 stades	1.49999999999999995	0.450932493140378061868	0.4286913790524959
Val. théor.	$3 / 2$	0.450932493140378061861	0.42869137905249585643
	γ_{1}	γ_{2}	γ_{3}
6 stades	-0.17641252	0.17295	-0.401
13 stades	-0.17641258225238	0.172968106990	-0.406446182
Val. théor.	-0.176412582252385	0.1729681069958	-0.4064461802
	γ_{4}	γ_{5}	γ_{6}
13 stades	1.384160933	-6.192505762	34.5269751
Val. théor.	1.3841609326	-6.1925057618568063655	34.526975286449930956

Carte des singularités complexes (non universelles)

condition initiale

$$
\Psi_{0}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(e^{-i x_{1}}+e^{-2 i x_{2}}\right)
$$

variété singulière
$1 / 2<\beta<1$ dépend des conditions initiales
Pauls-Matsumoto-F'risch-Bec Physica D, 219 (2006) 40-59

