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Numerical methods for gyrokinetic model

Most codes still based on Particle-In-Cell method and its variants.

More codes now use phase-space grid. Such codes exist in Japan,
USA and Europe.

Most use eulerian methods from fluid dynamics.

We have contributed to GYSELA code developed by V. Grandgirard
which is based on semi-Lagrangian method.
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Outline

1 Classical semi-Lagrangian method

2 Conservative semi-Lagrangian method

3 Forward semi-Lagrangian method
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The backward semi-Lagrangian Method

f conserved along characteristics

Find the origin of the characteristics ending at
the grid points

Interpolate old value at origin of characteristics
from known grid values → High order
interpolation needed

Typical interpolation schemes.

Cubic spline (Cheng-Knorr)
Cubic Hermite with derivative transport (Nakamura-Yabe)
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History of semi-Lagrangian schemes for Vlasov

Cheng-Knorr (JCP 1976): splitting method for 1D Vlasov-Poisson.
Cubic spline interpolation.

ES-Roche-Bertrand-Ghizzo (JCP 1998): general semi-Lagrangian
framework for Vlasov-type equations.

Nakamura-Yabe (CPC 1999): semi-Lagrangian CIP method with
Hermite interpolation

Filbet-ES-Bertrand (JCP 2001) : semi-Lagrangian PFC method:
positive and conservative

N. Besse - ES (JCP 2003) : semi-Lagrangian solver on unstructured
grids.

Crouseilles-Mehrenberger-ES (2008): Equivalence of point based and
conservative methods for Vlasov-Poisson + new class of positive
filters.

Crouseilles-Respaud-ES (2008): Forward semi-Lagrangian method.
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Convergence of semi-Lagrangian schemes

Filbet (SINUM 2001): PFC for Vlasov-Poisson

N. Besse (SINUM 2003): semi-Lagrangian method with linear for
Vlasov-Poisson.

Campos Pinto - Mehrenberger (Numer. Math. 2008): adaptive SL
method for Vlasov-Poisson

N. Besse (SINUM 2008): Convergence of semi-Lagrangian method
with cubic Hermite interpolation.

N. Besse - Mehrenberger (Math of Comp 2008): SL method for
different classes of high-order interpolators.
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Computation of the origin of the characteristics

Transport equation
∂f

∂t
+ a · ∇f = 0,

Characteristics
dX

dt
= a

Computation of the origin of the characteristics :

Explicit solution if a does not depend on x
Else, numerical algorithm needed.
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Splitting for exact computation of characteristics

In many cases splitting can enable to solve a constant coefficient
advection at each split step.

E.g. separable Hamiltonian H(q,p) = U(q) + V (p).

Vlasov equation in canonical coordinates reads

∂f

∂t
+∇pH · ∇qf −∇qH · ∇pf = 0.

Split equations then become

∂f

∂t
+∇pV · ∇qf = 0,

∂f

∂t
−∇qU · ∇pf = 0,

where U does not depend on p and V does not depend on q →
characteristics can be solved explicitly.
Vlasov-Poisson falls into this category with q = x, p = v,
H(x, v) = 1

2mv2 + qφ(x, t).
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First order computation of characteristics

Consider general case. Characteristics defined by

dX

dt
= a(X, t).

Backward solution: Xn is known and an known on the grid.

Standard procedure to derive first order numerical method for EDO.
Integrate on one time step and use quadrature formula for integral
(left or right rectangle).

Xn+1 − Xn = ∆t an(Xn) or Xn+1 − Xn = ∆t an+1(Xn+1).

No explicit solution:

Fixed point procedure needed in first case (e.g. Newton).
Predictor-corrector method on a needed in second case.
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Second order method for Vlasov-Poisson (1/2)

Technique can be used for solving separable Hamiltonian Vlasov equations
without splitting. We shall consider Vlasov-Poisson to illustrate this case.

At time tn: f n and En are known at grid points. f n+1 and En+1 need
to be computed.

Need to solve characteristics backward in time from tn+1 to tn

dV

dt
= E (X (t), t),

dX

dt
= V .

Main problem En+1 needed and not known.
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Second order method for Vlasov-Poisson (2/2)

A second order in time algorithm predictor-corrector algorithm is defined
as follows:

1 Predict Ēn+1 using continuity equation.
2 For all grid points xi = X n+1, vj = V n+1 compute

V n+1/2 = V n+1 − ∆t
2 Ē n+1(X n+1),

X n = X n+1 −∆tV n+1/2,
V n = V n+1/2 − ∆t

2 E n(X n).
Interpolate f n at point (X n,V n).

3 Yields first approximation of f n+1(xi , vj) = f n(X n,V n) that can be
used to correct Ēn+1.

Iterate until Ēn+1 does not vary anymore.
At most a couple iterations required.
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A two step second order method

Solve characteristics defined by dX
dt = a(X, t).

Centered quadrature on two time steps:

Xn+1 − Xn−1 = 2∆t an(Xn), Xn+1 + Xn−1 = 2Xn + O(∆t2).

Use fixed point procedure to compute Xn−1 such that

Xn+1 − Xn−1 = ∆t an(
Xn+1 + Xn−1

2
).

Problem: compute f n+1 from f n−1. Even and odd order time
approximations become decoupled after some time. Artificial coupling
needs to be introduced.
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A one step predictor-corrector second order method

Solve characteristics defined by dX
dt = a(X, t).

Centered quadrature on one time step:

Xn+1 − Xn = ∆t an+ 1
2 (Xn+ 1

2 ), Xn+1 + Xn = 2Xn+ 1
2 + O(∆t2).

Now an+ 1
2 is unknown. Predictor-corrector procedure needed.

Use fixed point procedure to compute Xn such that

Xn+1 − Xn = ∆t ān+ 1
2 (

Xn+1 + Xn

2
).

Both predictor-corrector and fixed point iterations needed.
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Outline

1 Classical semi-Lagrangian method

2 Conservative semi-Lagrangian method

3 Forward semi-Lagrangian method
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Problem with non conservative Vlasov solver

When non conservative splitting is used for the numerical solver, the
solver is not exactly conservative.

Does generally not matter when solution is smooth and well resolved
by the grid. The solver is still second order and yields good results.

However: Fine structures develop in non linear simulations and are at
some point locally not well resolved by the phase space grid.

In this case a non conservative solvers can exhibit a large numerical
gain or loss of particles which is totally unphysical.

Lack of robustness.
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Vortex in Kelvin-Helmholtz instability
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Conservative semi-Lagrangian method

Start from conservative form of Vlasov equation

∂f

∂t
+∇ · (f a) = 0.

∫
V f dx dv conserved along characteristics

Three steps:

High order polynomial reconstruction.
Compute origin of cells
Project (integrate) on transported cell.

Efficient with splitting in 1D conservative equations as cells are then
defined by their 2 endpoints. A lot more complex for 2D (or more)
transport.

Splitting on conservative form: always conservative.
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High order polynomial reconstruction

We only use the method with 1D splitting with equations in
conservative form.

Unknowns are cell averages: fj = 1
∆x f (x) dx .

At time step tn let f n
j known average value of f n on cell [xj− 1

2
, xj+ 1

2
]

of length hj = xj+ 1
2
− xj− 1

2
.

Construct polynomial pm(x) of degree m such that

1

hj

∫ x
j+ 1

2

x
j− 1

2

pm(x) dx = f n
j .

Reconstruction by primitive.
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Choice of interpolation

What interpolation should be chosen for primitive?

Lagrange interpolation with centered stencil (used in PFC Filbet, ES,
Bertrand JCP 2001).

ENO type interpolation. Lagrange with varying stencil. Not efficient
for Vlasov.

Cubic spline interpolation: cubic polynomial on each cell, globally C 2

→ reconstructed function is then locally a quadratic polynomial and
globally C 1. Linked to cubic spline interpolation for classical
semi-Lagrangian method.
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Origin of cells and projection

Compute cell origins:

In 1D cell and its origin determined by end points. Compute origin of
end points like in classical semi-Lagrangian method.
Need to make sure end points do not cross → restriction on time step.

Compute average value of f n+1 on cells using∫ x
i+ 1

2

x
i− 1

2

f n+1(x) dx =

∫ X (tn;xi+ 1
2
,tn+1)

X (tn;xi− 1
2
,tn+1)

f n(x) dx ,

where f n(x) is the high order reconstruction.
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Link between classical and conservative semi-Lagrangian
methods

For constant coefficient advections it can be shown that

C-Lag(2d) ⇐⇒ SL-Lag(2d+1)
PSM ⇐⇒ SPL

Consequences :
1 Classical and conservative semi-Lagrangian methods equivalent for

constant coefficients split equations.
2 The PFC method (Filbet-ES-Bertrand, JCP 2001) corresponds for the

Vlasov-Poisson (or Vlasov-Maxwell) systems to a classical
semi-Lagrangian method with cubic Lagrange interpolation.
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Positive reconstruction

Physical distribution function is always positive.

High-order interpolation can lead to negative values in some zones.

Reconstructed polynomial can be locally modified to remain positive.

Performed for Lagrange reconstruction in PFC method.

Introduces a little more dissipativity, but far less as monotonic
reconstructions performed in fluid dynamics.
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Simulations

Evolution of L2 norm for N = 128 for SLD
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Simulations

Evolution of L1 norm for N = 128 for SLD
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Simulations

Evolution of total energy for N = 128 for SLD
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Simulations

Evolution of total energy for N = 512 for SLD

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0  10  20  30  40  50  60  70  80  90  100

PSM2
SPL
PSM

PFC2
Lag3
PFC
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Outline

1 Classical semi-Lagrangian method

2 Conservative semi-Lagrangian method

3 Forward semi-Lagrangian method
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The forward semi-Lagrangian method

f conserved along characteristics

Characteristics advanced with same time
schemes as in PIC method.

Leap-Frog Vlasov-Poisson

Runge-Kutta for guiding-center or gyrokinetic

Values of f deposited on grid of phase space using convolution kernel.

Identical to PIC deposition scheme but in whole phase space instead
of configuration space only.

Similar to PIC method with reconstruction introduced by Denavit
(JCP 1972).
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Discrete distribution function

Function projected on partition of unity basis for conservativity.
Linear B-splines very diffusive. Not useful in practice.
Good choice is cubic B-splines.
f is reprojected on mesh at each time step.
Between tn and tn+1

fh(x , v , t) =
∑
i ,j

wi ,jB(x − X (t; xi , vj , tn))B(v − X (t; xi , vj , tn)).

Weight wi ,j associated to the particle starting from grid point (xi , vj)
at tn is coefficient of spline satisfying interpolation conditions

fh(xk , vl , tn) =
∑
i ,j

wi ,jB(xk − xi )B(vl − vj).

Projection on phase space mesh is obtained with formula

f n+1(xk , vl) =
∑
i ,j

wi ,jB(xk−X (tn+1, xi , vj , tn))B(vl−V (tn+1, xi , vj , tn)).
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Time advance for Vlasov-Poisson

As opposite to BSL, trajectories are advanced forward in time.

Advection field is known at initial time. Standard ODE algorithms
can be applied.

For Vlasov-Poisson, we have z(tn) = (xn, vn), and
E (tn, zn) = E (tn, xn). Separable Hamiltonian.

Natural scheme is Verlet algorithm, which is second order accurate in
time

Step1 : vn+ 1
2 − vn =

∆t

2
E (tn, xn),

Step2 : xn+1 − xn = ∆t vn+1/2,

Step3 : vn+1 − vn+ 1
2 =

∆t

2
E (tn+1, xn+1).
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Time advance for guiding-center

Explicit Euler and Runge Kutta have been implemented.
Second-order Runge Kutta method

Step1 : X n+1 − X n = ∆tE⊥(tn,X n)

Step2 : Compute E⊥(tn+1,X n+1)

Step3 : X n+1 − X n =
∆t

2

[
E⊥(tn,X n) + E⊥(tn+1,X n+1)

]
Fourth order Runge-Kutta

Step1 : k1 = E⊥(tn,X n)

Step2 : Compute k2 = E⊥(tn+ 1
2 ,X n +

∆t

2
k1)

Step3 : Compute k3 = E⊥(tn+ 1
2 ,X n +

∆t

2
k2)

Step4 : Compute k4 = E⊥(tn+1,X n + ∆tk3)

Step5 : X n+1 − X n =
∆t

6
[k1 + 2k2 + 2k3 + k4]
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Landau damping

f0(x , v) = (1 + 0.001 cos(kx))
1√
2π

e−
v2

2 , L = 4π.
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Bump on tail (BSL (top) vs. FSL (bottom))
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Bump on tail: potential energy (BSL (left) vs. FSL (right))
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Energy conservation for Kelvin-Helmoltz instability
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FSL vs. BSL

Forward semi-Lagrangian method very promising.

Accurate description of whole phase-space in particular tail of
distribution function and small perturbations.

A little more diffusive than BSL. Better with smaller time steps.

Some advantages: classical explicit EDO solver can be used, in
particular high order if needed. No need for predictor-corrector or
fixed point algorithm.

Can benefit from charge conserving PIC algorithms
(Villasenor-Buneman).
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