

Coexistence and transitions in TEM/ITG turbulence

Florian Merz, Frank Jenko

Workshop and Minicourse "Kinetic Equations, Numerical Approaches and Fluid Models for Plasma Turbulence" 15-19 September 2008, Vienna

GENE: Initial value + eigenvalue solver

- The plasma turbulence code GENE uses an eigenvalue solver
 - To compute the linear time step limit for explicit time stepping schemes
 - To investigate the nature of subdominant modes and mode transitions

 The eigenvalue solver doesn't have the problems of the initial value solver at mode transitions

Linear mode transitions

• Observation: The qualitative parameter dependence of the eigenmodes on one parameter can depend sensitively on the value of a second parameter.

Linear mode transitions II

Non-Hermitian degeneracies

• A full 2D scan reveals the nontrivial topology of the eigenvalue surface in the (R/L_{Te},R/L_n) plane:

Reason: a non-Hermitian degeneracy / Exceptional Point in the center

Non-Hermitian degeneracies II

- The non-Hermiticity of the linear operator creates the instabilities also and also leads to the degeneracies
- Non-Hermitian degeneracies have codimension 2 in the gyrokinetic parameter space and are therefore encountered frequently
- Further scans revealed pairwise connections between ITG, ETG, KBM, temperature/density gradient driven TEMs, so that all relevant microinstabilities can be transformed into each other by continuous parameter variations (see M. Kammerer, F. Merz, and F. Jenko, PoP 15, 2008)
- A strict distinction of microinstabilities is impossible, traditional naming should be avoided close to exceptional points

Nonlinear TEM-ITG transition

0.6

0.2

0.0

0

2

4

 R/L_{π}

0.4 ح

- Parameter scan far from non-• Hermitian degeneracies
- With the additional instability, ulletheat and particle fluxes are suppressed instead of increased
- ITG branch: Nonlinear upshift of ulletcritical R/L_{Ti}

5

6

2.5

2.0

1.5

1.0

0.5

0.0

З

4

 $\rm Q_i/Q_e$

-0.8

0

2

4

 R/L_n

6

8

8

6

Nonlinear TEM-ITG transition: zonal flows

- Shearing rate shows a jump at the transition
- Zonal flow suppression shows almost no effect in TEM regime but large increase of transport for ITG regime
- Nonlinear upshift of critical R/L_{Ti} also observable for ITG saturation mechanism (linearly R/L_{Ti}=3.3 to R/L_{Ti}=4.5 nonlinearly)

Spectral decomposition at the transition

• Dominant mode is determined by linear growth rate

 Spectral dependence is confirmed by other TEM/ITG specific properties like the flux ratios

Nonlinear frequency distribution shows coexistence of TEM and ITG at different wave numbers and even at the same wave number

Spectral dependence of the regimes

- Dominant microinstability depends nontrivially on gradient and wave number
- Nonlinearly, the normalized sum of amplitudes of positive/negative frequencies (ITG/TEM contributions) shows a steep transition
- The average of the nonlinear frequency distribution can be used to determine the nature of the turbulence

Particle transport at the TEM-ITG transition

• Zero crossings of the particle transport important for quasistationary state in actual experiments

• Mechanisms: spectral balance of an ITG pinch with either TEMor ITG induced outward transport at a different scale

Simple quasilinear model for the flux ratios

- Flux ratios can be determined from linear computations and are enough to determine Γ =0
- Only one 'central' $k_v = 0.25$ to describe the whole spectrum
- Average of the two microinstabilities via $R_m = \frac{\gamma_{\text{TEM}}^p R_{\text{TEM}} + \gamma_{\text{ITG}}^p R_{\text{ITG}}}{\gamma_{\text{TEM}}^p + \gamma_{\text{ITG}}^p}$ with $R = (Q_i/Q_e, \Gamma/Q_e, \Gamma/Q_i)$, p=10

Application of the quasilinear model

• Example: dependence of the Γ =0 surface in gradient space on the collisionality

Conclusions

- Linear gyrokinetics: non-Hermitian degeneracies connect different microinstabilities, close to the degeneracies, the traditional naming is misleading
- **TEM/ITG turbulence**: in the transition region, one finds
 - Spectral coexistence of TEM- and ITG-like turbulence and even remnants of both modes at the same wavenumber
 - A significant upshift of critical R/L_{Ti} of ITG turbulence due to nonlinear TEM-ITG interaction
 - A determining role of the linear physics for the nonlinear behaviour
 - Zero particle flux by spectral balance of ITG pinch and outward transport by either TEM or ITG, which can be approximated by a simple quasilinear model to study higher dimensional parameter dependencies