
September, 2008 Vienna

A Framework for First-Principles
Simulations of Coupled
Turbulent Transport

Michael Barnes
University of Maryland

Center for Multiscale Plasma Dynamics

In collaboration with:
I. G. Abel, S. C. Cowley, W. Dorland, G. W. Hammett, A. A. Schekochihin

D. Ernst, G. Plunk, P. Ricci, B. Rogers, T. Tatsuno, E. Wang



September, 2008 Vienna

Challenges

• Turbulent transport in ITER and other fusion
plasmas involves interaction of phenomena
spanning a wide range of time and space scales:

Energy confinement time
~ 2 - 4 sProfile scales ~ 100 cmDischarge evolution

100 s or more in core?Measurements suggest
width ~ 1 - 10 cmTransport barriers

      ~ 10 - 100 kHz       ~ 0.1 - 8.0 cmIon energy transport from
ITG modes

      ~ 0.5 - 5.0 MHz        ~ 0.001 - 0.1 cmElectron energy transport
from ETG modes

Temporal scalePerpendicular
spatial scalePhysics
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• Turbulence driving transport is kinetic (requires
5D description):

Electrostatic potential from GS2
spherical tokamak simulation

(courtesy W. Dorland)

Velocity space structure in
gyroaveraged distribution function

(courtesy T. Tatsuno)
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Resolving kinetic turbulence

For ITER:

• Fine scales possible in velocity space:
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• Can monitor v-space resolution by estimating error in
numerical evaluation of field integrals:
– Only nontrivial v-space operation in collisionless GK eqn.

is integration to get fields
– Estimate error in field integrals by comparing with

integrals performed after dropping grid points in v-space

• Drop all points with
same pitch-angle (red
points on right) to get
error estimate for
pitch-angle integration
and repeat for each
pitch-angle

• Same process for
energy (blue points on
right)
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• Can also monitor v-space resolution by calculating relative
amplitude of coefficients in distribution function expansion:

• Error estimate for each scheme is conservative
– for integral scheme, this is due to use of Gaussian

quadrature rules (dropping grid point changes order of
accuracy from 2N-1 to N-2)

– for spectral scheme, this is due to fact that we can only
accurately calculate      for             (because it’s a
numerical integral over the product of two polynomials)
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Error estimates conservative,
require empirical scaling

Linear, toroidal ITG
mode
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Collisionless damping of kinetic
Alfven wave

• Unable to resolve damping indefinitely with finite grid
spacing in absence of dissipation
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Model collision operator for gyrokinetics
• Implemented new collision operator in GS2
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Numerical properties

• Fully implicit
– Pitch-angle scattering and energy diffusion treated

separately through Godunov splitting
– Finite difference scheme first order accurate and

satisfies discrete versions of Fundamental Theorem of
Calculus and integration by parts (upon double
application).  Leads to tridiagonal matrices

– Conserving terms incorporated at little additional cost
using repeated application of Sherman-Morrison
formula:

If                  and                              ,  then                                   ,

where:                        and
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Solid lines: conservative discretization used in GS2
Short dashed lines: non-conservative discretization
Long dashed lines: model operator without conserving terms.

Exact local conservation of particle
number, momentum, and energy
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Satisfies H-Theorem Correct viscous,
collisional, and

collisionless damping
 (          )

high-    slow  mode
homogeneous slab initialized

with noise in v-space
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Correctly captures resistivity
For electrons:
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Efficient small-scale cutoff in phase space

• Weakly collisional, electrostatic turbulence in Z-pinch.  No
artificial dissipation necessary to obtain steady-state fluxes
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Weakly collisional damping of kinetic
Alfven wave

• Small collisionality leads to well-resolved long-time
simulation and recovery of collisionless damping rate
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Adaptive collisionality
• Specify v-space error tolerance and calculate v-space error estimate
• Adaptively change collisionality to ensure error not too large
• Provides approximate minimal collisionality necessary for resolution

slab ETG
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Coupling turbulence and transport

Initial
profiles

Steady-state
turbulent fluxes

Updated
profiles

GS2

Flux tube 1

Flux tube 2

Flux tube N

Flux tube 3
Transport

solver
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Minimizes simulation volume

• Flux tube simulations take advantage of statistical
periodicity along field lines, giving factor of
savings in volume compared to global simulations
(          toroidal mode #)

Tokamak simulation from GS2
(D. Applegate)
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Optimizes grid resolution

• Standard global simulations use fixed      range
across minor radius

• Each flux tube calculation is independent,
allowing for different      ranges at each radial
position

• Results in factor of                savings in required
fille range (          core temp,            edge temp)

vs.i.e.



September, 2008 Vienna

Minimizes number of time steps

• Transport and turbulence time scales separated in
gyrokinetic ordering:

• Multiscale scheme exploits intrinsic scale
separation by:
– taking small turbulence time steps to get steady-state

fluxes (with stationary background profiles)
– taking large transport time steps to evolve background

profiles (factor of         bigger than turbulent time steps)

transport time scale

turbulence time scale
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Example: ITER simulation savings

• Relevant       ~ 100 --> factor of ~100 savings in
simulation volume

•             ~ 7 --> factor of ~3 savings in       resolution
•       ~ 10-5 --> factor of ~106 savings in number of

time steps
• Overall factor of ~108 savings over standard global

simulation!
• Translates to hours of gigaflop computations

instead of weeks of petaflop computations
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Transport model

particle transport

energy transport

energy injected
into turbulence
by background
inhomogeneity

collisional
temperature
equilibration

turbulent
collisional
heating
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Comments on multiscale scheme

• Turbulent flux calculations are orders of
magnitude more expensive than advancing
transport equations

• Calculation of turbulent fluxes in each flux tube is
completely independent of other flux tubes

• Consequently, coupling of multiple flux tubes is
almost perfectly parallelizable

• Critical for computational feasibility:
– optimized nonlinear flux calculations in GS2
– minimized number of sets of nonlinear flux calculations

required for background profiles to reach steady-state
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Transport solver algorithm

• Currently using 4th-order compact differencing in
space with optional artificial dissipation for
smoothing

• Time advanced at present with explicit predictor-
corrector for fluxes and implicit Crank-Nicholson for
all other terms

• Full nonlinearly implicit scheme (Newton solver)
being implemented
– based on algorithm developed by Jardin et. al*
– algorithm implemented in existing production

tokamak transport codes and shown to improve
stability of standard Crank-Nicholson scheme

*S.C. Jardin, G. Bateman, G.W. Hammett, and L.P. Ku, On 1D diffusion
problems with a gradient-dependent diffusion coefficient, J. Comp. Phys.
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Preliminary results

Top figure: J. Candy, R.E. Waltz and W. Dorland, The local limit of global gyrokinetic
simulations, Phys. Plasmas 11 (2004) L25.

• Collisionless, adiabatic electrons,
single transport channel, quasilinear
estimate for heat flux, Cyclone
geometry

• Qualitatively correct behavior for
and fluxes and profiles:
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Future work

• Finish implementation of Newton solver
• Implement more sophisticated quasilinear model as pre-

conditioner for nonlinear simulations
• Include neoclassical transport and evolving background

magnetic field (via Grad-Shafronov)
• Include sheared radial electric field profile
• Include equations for parallel and toroidal angular

momentum transport
• Apply algorithm to nonlinear simulations of multiple

species, electromagnetic turbulent transport
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Validity of local approximation*

• lines represent
global
simulations
from GYRO

• dots represent
local
simulations
from GS2

• good
agreement for

*J. Candy, R.E. Waltz and W. Dorland, The local limit of global gyrokinetic
simulations, Phys. Plasmas 11 (2004) L25.
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Transport model (2)

• Definitions:

• Derivation of equations describing momentum
transport is work in progress

• However, recent studies suggest that inclusion of
momentum transport is negligible effect
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Efficiency of GS2 flux calculations
• Simulation length at new transport time step

decreased by initializing with parameters from end of
previous transport time step (bypasses linear phase
of flux evolution)

Change in

Time averaged flux


