

Max–Planck–Institut für Plasmaphysik

Co-existence and interference of multiple modes in plasma turbulence: Some recent GENE results

Frank Jenko

IPP Garching, Germany University of Ulm, Germany

Acknowledgements: F. Merz, T. Görler, D. Told, P. Xanthopoulos

> Wolfgang Pauli Institute, Vienna 16 September 2008

Microinstabilities driving plasma turbulence

How do these modes co-exist or interfere with each other?

Overview

- The tool: GENE
- New insights into linear gyrokinetics
- Turbulence in the stellarator W7-X
- Interference in ITG/TEM turbulence
- Nonlinear ITG/TEM-ETG interactions

The tool: GENE

The nonlinear gyrokinetic equations

$$f = f(\mathbf{X}, v_{\parallel}, \mu; t)$$

Advection/Conservation equation

$$\frac{\partial f}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f}{\partial \mathbf{X}} + \dot{v}_{\parallel} \frac{\partial f}{\partial v_{\parallel}} = \mathbf{0}$$

$$\dot{\mathbf{X}} = v_{\parallel} \mathbf{b} + \frac{B}{B_{\parallel}^*} \left(\frac{v_{\parallel}}{B} \bar{\mathbf{B}}_{1\perp} + \mathbf{v}_{\perp} \right)$$

$$\mathbf{v}_{\perp} \equiv \frac{c}{B^2} \bar{\mathbf{E}}_1 \times \mathbf{B} + \frac{\mu}{m\Omega} \mathbf{b} \times \nabla (B + \bar{B}_{1\parallel}) + \frac{v_{\parallel}^2}{\Omega} (\nabla \times \mathbf{b})_{\perp}$$

X = gyrocenter position $\forall_{II} =$ parallel velocity $\mu =$ magnetic moment

Appropriate field equations

$$\frac{n_1}{n_0} = \frac{\bar{n}_1}{n_0} - \left(1 - \|I_0^2\|\right) \frac{e\phi_1}{T} + \|xI_0I_1\| \frac{B_{1\parallel}}{B}$$

$$\nabla_{\perp}^2 A_{1\parallel} = -\frac{4\pi}{c} \sum \overline{\bar{J}_{1\parallel}}$$

$$\dot{v}_{\parallel} = \frac{\dot{\mathbf{X}}}{mv_{\parallel}} \cdot \left(e\bar{\mathbf{E}}_{1} - \mu \nabla (B + \bar{B}_{1\parallel}) \right)$$

$$\frac{B_{1\parallel}}{B} = -\sum \epsilon_{\beta} \left(\frac{\bar{p}_{1\perp}}{n_0 T} + \|xI_1I_0\| \frac{e\phi_1}{T} + \|x^2I_1^2\| \frac{B_{1\parallel}}{B} \right)$$

The GENE code

Treatment of particle dynamics

- Arbitrary number of gyrokinetic particle species, passing and trapped
- Non-Maxwellian (beam-type) equilibrium distributions
- Electromagnetic effects are included

Collisions

- Collisions between any pair of species are kept
- Pitch angle scattering *and* energy scattering are retained
- Momentum and energy conserving terms are implemented

General geometry

- Interface to CHEASE MHD equilibrium code
- Interface to other MHD codes: TRACER

Different modes of operation

• GENE can be used as initial value solver or as eigenvalue solver

The TRACER code

Description

- Numerical generation of a **Clebsch system** via field line tracing
- No assumptions on the existence or properties of flux surfaces
- Flexibility in construction of flux surface label
- Coupling to plasma parameter databases

Hyperscaling of GENE

- GENE runs very efficiently on a large number of parallel platforms
- Example: IBM BlueGene/L @ Watson Research Center

Strong scaling (fixed problem size) – from 1k to 16k cores

New insights into linear gyrokinetics

Exceptional points

Kammerer, Merz, and Jenko, Phys. Plasmas 15, 052102 (2008)

Different microinstabilites (usually considered as separated) can be transformed into each other via continuous parameter changes.

The non-Hermiticity of the linear gyrokinetic operator leads to *Exceptional Points*.

Here, both eigenvalues *and* eigenvectors are identical.

Similar: quantum physics etc.

Exceptional points (cont'd)

Turbulence in the stellarator W7-X

P. Xanthopoulos et al., PRL 99, 035002 (2007)

GENE simulations for W7-X

• Wendelstein 7-X stellarator: optimised with respect to neoclassical transport

- Geometric coefficients are calculated by means of a field line tracing procedure [Xanthopoulos & Jenko, PoP 2006]
- Complicated parallel structure numerically expensive simulations (>100 points in parallel direction)

FIG. 5. k_y spectrum of the linear frequency and growth rate. The dominant microinstabilities are ITG modes (at $k_y \rho_s > 0.15$) and trapped ion modes (at $k_y \rho_s < 0.15$).

FIG. 4. k_y spectrum of the ion heat flux, exhibiting the coexistence of ITG modes (at $k_y \rho_s \sim 0.2$) and trapped ion modes (at $k_y \rho_s \sim 0.1$) in the saturated turbulent state.

Coexistence of multiple linear modes

W7-X, ITG modes with adiabatic electrons

Interference in ITG/TEM turbulence

See also: Poster by Florian Merz

TEM-ITG turbulence transition

- R/L_{Te} is held constant at 4.5
- Increasing R/L_{Ti} finally leads to a deviation from the quasilinear model and a transition to ITG dominated turbulence at R/L_{Ti} ~ 4.5

Zonal flow behavior

- TEM-ITG transition also changes the role of zonal flows
- Relatively sharp transition seen in the value of the ExB shearing rate $\omega_{\!s}$ and in simulations where zonal flows have been suppressed

TEM-ITG turbulence near the transition

- Linear growth rates (k_y=0.25): smooth transition
- Subdominant modes are present (GENE as eigenvalue solver)
- With the additional ITG instability, TEM-induced electron heat and particle fluxes are suppressed instead of increased
- ITG branch: Nonlinear upshift of critical R/L_{Ti}

Destructive interference!

Nonlinear and linear frequency spectra

Figure 6.7.: Left: First moment of the nonlinear frequency distribution (color coded), the $\omega = 0$ contour line (black) may be used to mark the TEM-ITG transition. Right: The areas where the dominant microinstability is TEM/ITG are coloured red/green.

Nonlinear ITG/TEM-ETG interactions

See also: Poster by Tobias Görler

TEM-ETG turbulence (Φ contours)

Here: electrostatic, collisionless, s-α model equilibrium; Cyclone-like parameters, reduced mass ratio (of 400)

Case I: ITG is turned off

~ 100,000 CPUh / run

box size: 64 ion gyroradii

resolution: ~2 electron gyroradii

ETG streamers and TEM streamers coexist

Transport is evenly distributed over a wide k range; ETG transport level is in line with pure ETG simulations

ITG/TEM-ETG turbulence (Φ contours)

small-scale structures are sheared and tilted by largescale vortices

ITG/TEM-ETG turbulence (cont'd)

Frequency spectra

Nonlinear and linear frequencies match over a wide range except for transition regime from dominant ITG to TEM/ETG

Conclusions

Our theoretical understanding of plasma microturbulence is still rather fragmentary, and, in particular, the interactions of various microinstabilities need to be studied further

GENE simulations show:

- Often, multiple linear modes coexist (esp. in stellarators)
- Due to the existence of Exceptional Points, such coexisting linear modes can be strongly coupled
- ITG modes and TIMs/TEMs can coexist also nonlinearly, sometimes inducing destructive interference effects
- Nonlinear coupling between ion and electron scales can violate "superposition principle"

More information and papers: www.ipp.mpg.de/~fsj