Vlasov-Poisson with strong magnetic field: some mathematical results

François Golse Ecole polytechnique Centre de Mathématiques L. Schwartz golse@math.polytechnique.fr

W. Pauli Institute, Vienna, September 18th 2008

Motion of charged particles in a strong magnetic field

•Motion of a charged particle in a constant electromagnetic field (see for instance Lifshitz-Pitayevski *Physical kinetics* §60)

$$\begin{cases} \dot{x} = v \\ \dot{v} = \frac{q}{m} (E + \frac{1}{c}v \wedge B) \end{cases}$$

Notation:

 $\begin{cases} (x,v) \mapsto (x_{||},v_{||}) \text{ projection in the direction of } B\\ (x,v) \mapsto (x_{\perp},v_{\perp}) \text{ projection on the plane orthogonal to } B \end{cases}$ •Parallel projection of the motion equation:

$$\ddot{x}_{||} = \frac{q}{m} E_{||}$$

so that

$$x_{||}(t) = x_{||}(0) + tv_{||}(0) + \frac{q}{m}\frac{t^2}{2}\frac{E \cdot B}{|B|}$$

•Van der Pol transformation for the transverse motion:

 $\dot{w} = \frac{q}{m} \mathcal{R}(\omega t) E_{\perp}$, with $w(t) = \mathcal{R}(\omega t) v_{\perp}(t)$

where $\mathcal{R}(\theta)$ is the rotation of an angle θ around the axis oriented by B

$$\dot{\mathcal{R}}(t) = A\mathcal{R}(t)$$
, with $Av = v \wedge \frac{B}{|B|}$

One finds that

$$x_{\perp}(t) = x_{\perp}(0) + ct \frac{E \wedge B}{|B|^2} + O\left(\frac{mc}{q|B|}\right) + O\left(\frac{c|E|}{|B|}\right)$$

slow secular drift fast Larmor rotation

Transverse motion on a long time scale=slow drift in the direction E_{\perp}

•Hamiltonian perturbation methods for nontrivial field geometries: see for instance Littlejohn (1980s) for given electromagnetic field, more recently

•Pbm: handle a self-consistent electric field in a collisionless plasma

Difficulty: Hamiltonian perturbation methods may require a lot of regularity in the fields, uniformly in the high magnetic field limit

 \Rightarrow use only estimates propagated by the Vlasov equation that are uniform in that limit

Mathematical toolbox

- a) Weak convergence in functional spaces:
- •the strong magnetic field limit involves averaging out fast Larmor rotation
- •weak convergence corresponds roughly with averaging out fast variables locally
- b) Van der Pol transform:
- •<u>Pbm</u>: to understand the asymptotic behavior of $X_{\epsilon}(t)$ for $\epsilon \ll 1$, where

$$\dot{X}_{\epsilon} = B(t, X_{\epsilon}) + \frac{1}{\epsilon}AX_{\epsilon}$$

Difficulty: X_{ϵ} contains high frequencies since $\dot{X}_{\epsilon}(t) = O(1/\epsilon)$

<u>Idea:</u> filter these high frequencies by solving EXPLICITLY the leading order in the equation:

$$Y_{\epsilon} := S\left(-\frac{t}{\epsilon}\right) X_{\epsilon}$$
, where $S(t) = e^{tA}$

(Think of A as a skew-adjoint matrix, so that S(t) is a unitary transform.) Then Y_{ϵ} satisfies

$$\dot{Y}_{\epsilon}(t) = S\left(-\frac{t}{\epsilon}\right) B\left(t, S\left(\frac{t}{\epsilon}\right) Y_{\epsilon}(t)\right) = F\left(t, \frac{t}{\epsilon}, Y_{\epsilon}\right) = O(1)$$

so that Y_{ϵ} does not contain any more high frequencies since $\dot{Y}_{\epsilon} = O(1)$ \Rightarrow one expects that $Y_{\epsilon} \to Y$ as $\epsilon \to 0^+$, where

$$\dot{Y}(t) = \langle F \rangle(t, Y)$$
 where $\langle F \rangle(t, Z) = \lim_{T \to +\infty} \frac{1}{T} \int_0^T F(t, s, Z) ds$

and hence

$$X_{\epsilon}(t) \simeq S\left(\frac{t}{\epsilon}\right) Y(t)$$

Vlasov-Poisson with strong magnetic field

•Pbm 1: to derive the leading order, longitudinal particle motion with selfconsistent electric field and strong, non constant magnetic field

Scaling: set $\epsilon = \omega_p / \omega_c \ll 1$ where

$$\begin{cases} \omega_c = \frac{q|B|}{mc} \text{ cyclotron frequency} \\ \omega_p = \frac{q|E|}{mu} \text{ plasma frequency, where } m|u|^2 = \varepsilon_0 |E|^2 \end{cases}$$

Vlasov-Poisson in 3D periodic box with constant neutralizing background

$$\begin{cases} \partial_t f_{\epsilon} + v \cdot \nabla_x f_{\epsilon} - \nabla_x V_{\epsilon} \cdot \nabla_x f_{\epsilon} + \frac{1}{\epsilon} (v \wedge B) \cdot \nabla_v f_{\epsilon} = 0, \\ -\Delta_x V_{\epsilon} = \int_{\mathbf{R}^3} f_{\epsilon} dv - \iint_{\mathbf{T}^3 \times \mathbf{R}^3} f_{\epsilon} dx dv, \qquad (x, v) \in \mathbf{T}^3 \times \mathbf{R}^3 \end{cases}$$

in the time scale $1/\omega_p$

Weak convergence in L^p

•If a sequence $f_n \equiv f_n(x)$ is bounded in L_x^p — meaning that $\sup_n \left(\int |f_n(x)|^p dx \right)^{1/p} < \infty$

we say that

$$f_n \rightharpoonup f$$
 in L^p_x weak if $1 \le p < \infty$, or L^∞_x weak-*

to mean that

$$\int_A f_n(x) dx \to \int_A f(x) dx$$
 for each cube A

•All frequencies in f_n that go to infinity with n are averaged out by this procedure.

Example: let $f_n \equiv f_n(x)$ be a sequence of periodic functions with period 1 and bounded in L_x^2 ;

 $f_n \rightarrow \hat{f}$ weakly in L^2 iff $\hat{f}_n(k) \rightarrow \hat{f}(k)$ for each k

whereas $f_n \rightarrow f$ (strongly) in L^2 — i.e. in quadratic mean:

$$||f_n - f||_{L^2}^2 = \sum_k |\hat{f}_n(k)|^2 \to 0 \text{ as } n \to \infty$$

FACT 1. Weak convergence and nonlinear operations don't mix well, in general

$$\cos(nx) \rightarrow 0$$
 but $\cos(nx)^2 = \frac{1}{2}((1 + \cos(2nx))) \rightarrow \frac{1}{2}$

FACT 2. ... however, one can pass to the limit in products where all the terms but one converge strongy:

if
$$\begin{cases} f_n \rightarrow f \text{ in } L^2 \text{ weak} \\ g_n \rightarrow g \text{ in } L^2 \text{ strong} \end{cases}$$

then $f_n g_n \rightarrow fg$ in L^1 weak

•However, the fact that the sequence of functions satisfy an elliptic PDE can help in controling (some) high frequencies

Example: the Poisson equation

if $\begin{cases} u_n \equiv u_n(x) \rightharpoonup u \text{ in } L^2 \text{ weak} \\ -\Delta u_n = O(1) \text{ in } L^2 \end{cases}$ then $u_n \rightarrow u \text{ in } L^2 \text{ strong}$

(See this in Fourier space for periodic functions: the Laplacian wipes out all high frequencies in u_n uniformly in n).

•Case where the direction of *B* is constant:

Thm 1: [FG & L. StRaymond, JMPA 1999] Assume $B \equiv b(x_1, x_2)e_3$ with $b \in C(\mathbf{T}^2)$ and $b \neq 0$ on \mathbf{T}^2 , and $f_{\epsilon}\Big|_{t=0} = f^{in} \in L^1 \cap L^{\infty}_{x,v}$. In the limit as $\epsilon \to 0$ and extracting subsequences if needed

$$f_{\epsilon} \rightarrow f \equiv f(t, x, \sqrt{v_1^2 + v_2^2}, v_3)$$
 in L^{∞} weak-*

where

$$\begin{cases} \partial_t f + v_3 \partial_{x_3} f - \partial_{x_3} V \partial_{v_3} f = 0, & t, r > 0, x \in \mathbf{T}^3, v_3 \in \mathbf{R} \\ -\Delta_x V = 2\pi \int_{\mathbf{R}^3} fr dr dv_3 - 2\pi \iint_{\mathbf{T}^3 \times \mathbf{R}^3} fdxr dr dv_3, \\ f(0, x, r, v_3) = \frac{1}{2\pi} \int_{\mathbf{S}^1} f^{in}(x, r\omega, v_3) d\omega \end{cases}$$

•Case where the strength of *B* is constant:

Thm 2: [FG & L. StRaymond, JMPA 1999] Assume that $B \in C^1(\mathbb{T}^3)$ is s.t. |B| = 1 and div B = 0, and $f_{\epsilon}|_{t=0} = f^{in} \in L^1 \cap L^{\infty}_{x,v}$. Let $\mathcal{R}(x,\theta)$ be the rotation of an angle θ around the oriented axis $\mathbb{R}B$, and define

 $g_{\epsilon}(t, x, w) := f_{\epsilon}(t, x, \mathcal{R}(x, -t/\epsilon)w)$

Then, in the limit as $\epsilon \rightarrow 0$ and after extracting subsequences if needed

 $g_{\epsilon} \rightharpoonup g$ in $L^{\infty}_{t,x,w}$ weak-*

and, denoting $D_u B = (u \cdot \nabla) B$ the covariant derivative along u, one has

 $\begin{cases} \partial_t g + (w \cdot B)B \cdot \operatorname{grad}_x g - (D_B V)B \cdot \operatorname{grad}_w g + (w \wedge X) \cdot \operatorname{grad}_w g = 0\\ \text{where } X = \frac{1}{2} \left(B \wedge D_w B + D_{B \wedge w} B - 3(w \cdot B)(B \wedge D_B B) \right)\\ -\Delta_x V = \int_{\mathbf{R}^3} g dv - \iint_{\mathbf{T}^3 \times \mathbf{R}^3} f^{in} dx dv, \quad g\Big|_{t=0} = f^{in} \end{cases}$

<u>Proof of Thm 1:</u> use a priori uniform in ϵ a priori bounds on f_{ϵ}

 $0 \leq f_{\epsilon} \leq \sup_{x,v} f^{in}(x,v) \text{ (maximum principle for Vlasov)}$ $\iint (1+|v|^2) f_{\epsilon}(t,x,v) dx dv$ $+ \int |E_{\epsilon}(t,x)|^2 dx \leq C \text{ (mass+energy conservation)}$

Decomposing the number density into low- and high-speed components, one finds

$$\int \rho_{\epsilon}(t,x)^{5/3} dx \le C$$

so that, using Poisson's equation

$$\int |\nabla_x E_{\epsilon}(t,x)|^{5/3} dx + \int |\partial_t E_{\epsilon}(t,x)|^{5/4} dx \le C$$

so that

$$E_{\epsilon} \rightarrow E$$
 strongly in $L_t^{\infty} L_x^p$ for $1 \leq p < 2$

<u>Proof of Thm 2</u>: observe that g_{ϵ} solves the nonautonomous equation

$$\partial_t g_{\epsilon} + \mathcal{R}(x, -t/\epsilon) w \cdot \nabla_x g_{\epsilon} + \mathcal{R}(x, t/\epsilon) E_{\epsilon} \cdot \nabla_w g_{\epsilon}$$

= $((\mathcal{R}(x, -t/\epsilon) w \cdot \nabla_x) \mathcal{R}(x, t/\epsilon)) \mathcal{R}(x, -t/\epsilon) w \cdot \nabla_w g_{\epsilon}$
 \Rightarrow no high frequencies in t in g_{ϵ}

Therefore, by nonstationary phase, for each C^1 function $\psi \equiv \psi(x, w)$ and each smooth, mean-zero periodic function $a \equiv a(t)$, one has

$$a(t/\epsilon)\psi(x,v)\begin{pmatrix}1\\E_{\epsilon}(t,x)\end{pmatrix}g_{\epsilon}(t,x)\rightarrow 0$$

so that

$$\mathcal{R}(x, -t/\epsilon)w \cdot \nabla_{x}g_{\epsilon} \rightharpoonup (w \cdot B)B \cdot \operatorname{grad}_{x}g$$
$$\mathcal{R}(x, -t/\epsilon)E_{\epsilon} \cdot \nabla_{w}g_{\epsilon} \rightharpoonup (E \cdot B)B \cdot \operatorname{grad}_{w}g$$
$$((\mathcal{R}(x, -t/\epsilon)w \cdot \nabla_{x})\mathcal{R}(x, t/\epsilon))\mathcal{R}(x, -t/\epsilon)w \cdot \nabla_{w}g_{\epsilon} \rightharpoonup (X \wedge w) \cdot \operatorname{grad}_{w}g$$

Guiding center for Vlasov-Poisson with strong magnetic field

•**Pbm 2:** to derive the next to leading order, transverse particle motion with self-consistent electric field and a strong, constant magnetic field

Scaling: set $\epsilon = \omega_p / \omega_c \ll 1$ where ω_p is the plasma frequency and ω_c the cyclotron frequency.

•Guiding center motion = secular dynamics with speed c|E|/|B| on a long time scale T defined by

$$T\omega_p = rac{\omega_c}{\omega_p} = rac{1}{\epsilon} \gg 1$$

•Magnetic field of the form

 $B = |B|e_3, \quad \text{WLOG} |B| = 1$

•Guiding center motion is observed in the plane orthogonal to *B*: for simplicity, restrict the charged particle motion to that plane, with constant neutralizing background.

Scaled Vlasov equation: denoting $v^{\perp} = v \wedge e_3$, one has

$$\begin{cases} \partial_t f_{\epsilon} + \frac{1}{\epsilon} (v \cdot \nabla_x f_{\epsilon} + E_{\epsilon} \cdot \nabla_v f_{\epsilon}) + \frac{1}{\epsilon^2} v^{\perp} \cdot \nabla_v f_{\epsilon} = 0, \quad x \in \mathbf{T}^2, \, v \in \mathbf{R}^2 \\ E_{\epsilon} = -\nabla_x V_{\epsilon}, \qquad -\Delta_x V_{\epsilon} = \int_{\mathbf{R}^2} f_{\epsilon} dv - \iint_{\mathbf{T}^2 \times \mathbf{R}^2} f_{\epsilon} dx dv \\ f_{\epsilon} \Big|_{t=0} = f_{\epsilon}^{in} \end{cases}$$

Thm 3:[FG & LS-R JMPA 1999, LS-R JMPA 2002] Assume that

 $\lim_{\epsilon \to 0^+} \epsilon \|f_{\epsilon}^{in}\|_{L^{\infty}_{x,v}} = 0 \text{ and } \sup_{\epsilon > 0} \left(\|(1+|v|^2)f_{\epsilon}^{in}\|_{L^{1}_{x,v}} + \|E_{\epsilon}^{in}\|_{L^{2}_{x}}^2 \right) < \infty$ (i) Modulo extraction of a subsequence, there exist

 $\begin{cases} \text{ a radial distribution function } F \in L^{\infty}_{t}(\mathcal{M}_{+}(\mathbf{T}^{2} \times \mathbf{R}_{+})) \\ \text{ and a defect measure } \nu \in L^{\infty}_{t}(\mathcal{M}_{+}(\mathbf{T}^{2} \times \mathbf{S}^{1})) \text{ such that} \end{cases}$

 $f_{\epsilon} \rightarrow F(t, x, |v|) \text{ in } L^{\infty}_{t}(\mathcal{M}_{+}(\mathbf{T}^{2} \times \mathbf{R}^{2})) \text{ weak-*, while}$ $\int_{\mathbf{R}^{2}} (f_{\epsilon}(t, x, v) - F(t, x, |v|)) \phi(v/|v|) dv \rightarrow \int_{\mathbf{S}^{1}} \phi d\nu, \quad \phi \in C(\mathbf{S}^{1}).$

(ii) The limiting macroscopic density $\rho(t,x) = \int_{\mathbf{R}^2} F(t,x,|v|) dv$ satisfies

$$\begin{cases} \left. \partial_t \rho + \operatorname{div}_x(\rho E^{\perp}) = 0 \right., \qquad E = \nabla_x \Delta_x^{-1} \left(\rho - \int_{\mathbf{T}^2} \rho dx \right) \\ \left. \rho \right|_{t=0} = \operatorname{weak-} \lim_{\epsilon \to 0} \int_{\mathbf{R}^2} f_{\epsilon}^{in} dx \end{cases}$$

Remarks:

a) analogy with 2D incompressible, inviscid fluid mechanics (2D Euler)

$$\partial_t \omega + \operatorname{div}_x(\omega u) = 0$$
, $\operatorname{div}_x u = 0$, $\begin{pmatrix} 0\\0\\\omega \end{pmatrix} = \operatorname{curl}_x \begin{pmatrix} u_1\\u_2\\0 \end{pmatrix}$

Here

 $\begin{cases} \text{ the velocity field } u \text{ corresponds with } E^{\perp} \\ \text{ the vorticity } \omega \text{ corresponds with } \rho - \int_{\mathbf{T}^2} \rho dx \end{cases}$

b) in the statement of Thm 3, the term $\operatorname{div}_x(\rho E^{\perp})$ is to be understood as $\operatorname{div}_x(\rho E^{\perp}) := \partial_{x_1} \partial_{x_2}(E_2^2 - E_1^2) + (\partial_{x_1}^2 - \partial_{x_2}^2)E_1E_2$ •case of Euler-Poisson with strong magnetic field proved by E. Grenier (\sim 1996)

 \bullet similar result obtained by Y. Brenier (\sim 2000) for well-prepared initial data, by using some modulated energy method

•gyrokinetic limit (with finite Larmor radius effect) done by E. Frenod and E. Sonnendrucker (\sim 2001), completed by D. Han-Kwan (see poster in this workshop)

Thm 4:[LS-R JMPA 2002] Assume that

 $(1+|v|^2)^r f^{in} \in W^{s,\infty}(\mathbf{T}^2 imes \mathbf{R}^2)$ with r > 3, $s \ge 3$

and let g be the solution of

$$\begin{cases} \partial_t g + E^{\perp} \cdot \nabla_x g + \frac{1}{2} (m - \rho v)^{\perp} \cdot \nabla_v g = 0\\ \begin{pmatrix} \rho \\ m \end{pmatrix} = \int_{\mathbf{R}^2} \begin{pmatrix} 1 \\ v \end{pmatrix} g dv, \quad E = \nabla_x \Delta_x^{-1} \left(\rho - \int_{\mathbf{T}^2} \rho dx \right)\\ \rho \Big|_{t=0} = \int_{\mathbf{R}^2} f^{in} dv \end{cases}$$

Then, for each $p \in [1, +\infty)$ one has

 $f_{\epsilon}(t, x, v) - g(t, x, \mathcal{R}(-t/\epsilon^2)v) \to 0 \text{ in } L^{\infty}_{loc}(dt; L^p_{x,v})$ as $\epsilon \to 0^+$. Ideas in the proof of Thm 3:

1) write the evolution of density and current:

$$\partial_t \rho_{\epsilon} + \operatorname{div}_x \frac{1}{\epsilon} \int v f_{\epsilon} dv = 0$$

$$\epsilon \partial_t \int v f_{\epsilon} + \operatorname{div}_x \int v \otimes v f_{\epsilon} dv - \rho_{\epsilon} E_{\epsilon} - \frac{1}{\epsilon} \int v^{\perp} f_{\epsilon} dv = 0$$

eliminating the current leads to

$$\partial_t \rho_{\epsilon} + \operatorname{div}_x(\rho_{\epsilon} E_{\epsilon}^{\perp}) = (\partial_{x_1}^2 - \partial_{x_2}^2) \int v_1 v_2 f_{\epsilon} dv + \partial_{x_1} \partial_{x_2} \int (v_2^2 - v_1^2) f_{\epsilon} dv + \epsilon \partial_t \operatorname{div}_x \int v^{\perp} f_{\epsilon}$$

Last term in r.h.s. $\rightarrow 0$; the other terms satisfy

$$(\partial_{x_1}^2 - \partial_{x_2}^2) \int v_1 v_2 f_{\epsilon} dv + \partial_{x_1} \partial_{x_2} \int (v_2^2 - v_1^2) f_{\epsilon} dv$$

$$\rightarrow (\partial_{x_1}^2 - \partial_{x_2}^2) \langle \nu, \omega_1 \omega_2 \rangle + \partial_{x_1} \partial_{x_2} \langle \nu, v_2^2 - v_1^2 \rangle$$

2) write

$$\operatorname{div}_{x}(\rho_{\epsilon}E_{\epsilon}^{\perp}) = \partial_{x_{1}}\partial_{x_{2}}(E_{\epsilon,1}^{2} - E_{\epsilon,2}^{2}) + (\partial_{x_{2}}^{2} - \partial_{x_{1}}^{2})(E_{\epsilon,1}E_{\epsilon,2})$$

Lemma[J.-M. Delort, 1991] Assume that

$$\sup_{\epsilon} \int |E_{\epsilon}|^2 dx < \infty \text{ and } \operatorname{div}_x E_{\epsilon} = a_{\epsilon} + b_{\epsilon}$$

with

$$a_\epsilon \geq 0\,,\quad \sup_\epsilon \int a_\epsilon dx < \infty ext{ and } \sup_{x,\epsilon} |b_\epsilon(x)| < \infty$$

If $E_{\epsilon} \rightarrow E$ in L_x^2 weak, one has

 $E_{\epsilon,1}^2 - E_{\epsilon,2}^2
ightarrow E_1^2 - E_2^2$ and $E_{\epsilon,1}E_{\epsilon,2}
ightarrow E_1E_2$

(Used in the context of vortex sheets for 2D incompressible Euler.)

3) Observation 1: the defect measure may exist. For instance, assume

$$\iint |v|^2 f_{\epsilon}^{in} dx dv \to 1 \text{ and } 0 \le f_{\epsilon}^{in} \le C \epsilon^3$$

Then $\nu \neq 0$ (for any subsequence extracted from f_{ϵ}^{in} as $\epsilon \to 0$.)

A priori, one has the following limiting equation for the macroscopic density

$$\partial_t \rho + \operatorname{div}_x(\rho E^{\perp}) = (\partial_{x_1}^2 - \partial_{x_2}^2) \langle \nu, \omega_1 \omega_2 \rangle + \partial_{x_1} \partial_{x_2} \langle \nu, v_2^2 - v_1^2 \rangle$$

and it may happen that $\nu \neq 0$. On the other hand, if

$$(\partial_{x_1}^2 - \partial_{x_2}^2)\langle \nu, \omega_1 \omega_2 \rangle + \partial_{x_1} \partial_{x_2} \langle \nu, v_2^2 - v_1^2 \rangle = 0$$

this defect measure will not affect the dynamics of ν .

4) Observation 2: assume that

$$0 \le f^{in} \le C$$
, and $\iint |v|^3 f^{in} dx dv < \infty$

a) If

$$\int_0^T \iint |v|^3 f_{\epsilon} dt dx dv = o\left(\frac{1}{\epsilon}\right)$$

then the defect measure ν is independent of the angle variable ω (rotation invariant), so that in particular

$$\langle \nu, \omega_1 \omega_2 \rangle = \langle \nu, v_2^2 - v_1^2 \rangle = 0$$

b) One always has

$$\int_0^T \iint f_{\epsilon} dt dx dv = O\left(\frac{\sqrt{|\ln \epsilon|}}{\epsilon}\right)$$

 \Rightarrow to get rid of this defect measure in the equation for the charge density amounts to controling particles with speed of $O(1/\epsilon)$

4) Going back to step 1 (the equations for the charge and current densities) and replacing the original particle distribution function f_{ϵ} with its truncation

 $\tilde{f}_{\epsilon}(t,x,v)\chi(\frac{1}{2}\epsilon^{\alpha}|v|^2)$ for $\alpha \in (\frac{3}{2},2)$

and χ a smooth truncation such that

 $0 \le \chi \le 1$, $\chi = 1$ on [0, 1], $\chi = 0$ on $[2, \infty)$, $|\chi'| \le 2$

L. StRaymond was able to show that

 $(\partial_{x_1}^2 - \partial_{x_2}^2)\langle \nu, \omega_1 \omega_2 \rangle + \partial_{x_1} \partial_{x_2} \langle \nu, v_2^2 - v_1^2 \rangle = 0$

Guiding center + quasineutral limit for Vlasov-Poisson

Scaling: assume that

$$\rho_e \sim \lambda_D \ll L$$
 where $\begin{cases}
\rho_e = \text{Larmor radius of electrons} \\
\lambda_D = \text{Debye length} \\
L = \text{observation length scale}
\end{cases}$

What happens to the drift-kinetic regime when gradient lengths are comparable to the Larmor radius?

Scaled Vlasov-Poisson equation:

$$\begin{aligned} \partial_t f_{\epsilon} + v \cdot \nabla_x f_{\epsilon} - \frac{1}{\epsilon} (\nabla_x V_{\epsilon} + v \wedge e_3) \cdot \nabla_v f_{\epsilon} &= 0, \quad x \in \mathbf{T}^3, \, v \in \mathbf{R}^3 \\ \epsilon \Delta_x^{-1} V_{\epsilon} &= 1 - \int_{\mathbf{R}^3} f_{\epsilon} dv \\ f_{\epsilon} \Big|_{t=0} &= f_{\epsilon}^{in} \,, \end{aligned}$$

Assume that

$$\iint_{\mathbf{T}^3 \times \mathbf{R}^3} f_{\epsilon}^{in} dx dv = 1, \quad \iint_{\mathbf{T}^3 \times \mathbf{R}^3} |v|^2 f_{\epsilon}^{in} dx dv + \int_{\mathbf{T}^3} |\nabla_x V_{\epsilon}|^2 dx \le C$$

•The small ϵ limit of the scaled Vlasov-Poisson system above is governed by the 2D-3C incompressible Euler equations

$$\begin{cases} \partial_t J + (J\nabla_x)J + \nabla_x \Pi = 0 \\ \operatorname{div}_x J = 0, \quad \partial_{x_3} J = 0 \\ J \end{vmatrix}_{t=0}^{in} = J^{in}, \end{cases}$$
 i.e. $J(t,x) = \begin{pmatrix} J_1(t,x_1,x_2) \\ J_1(t,x_1,x_2) \\ J_1(t,x_1,x_2) \end{pmatrix}$

Thm 5: [F.G. & L.StRaymond, M3AS 2003] Assume that f_{ϵ}^{in} satisfy

$$\int f_{\epsilon}^{in} dv \to 1 \text{ uniformly in } x \in \mathbf{T}^{3}$$
$$\iint |v - J^{in}|^{2} f_{\epsilon}^{in} dv dx + \int |\nabla V_{\epsilon}^{in} + J^{in} \wedge e_{3}|^{2} dx \to 0$$

for some smooth J^{in} . Then

$$abla_x V_\epsilon o e_3 \wedge J ext{ in } L^2_{loc}(t,x)$$

$$\int (v - J_\epsilon) f_\epsilon dv \to 0 ext{ in } L^1_{loc}(t,x)$$

$$\int f_\epsilon o 1 ext{ in } L^\infty_{loc}(t,\mathcal{M}_x) ext{ weak-*}$$

where J is the solution of the 2D-3C incompressible Euler system with initial data J^{in}

Roughly speaking, the initial distribution function converges to a "monokinetic" profile:

$$f_{\epsilon}^{in} \to \delta_{v=J^{in}}$$

•Method of proof: compute the time derivative of the modulated energy

$$\iint |v - \mathcal{J}|^2 f_{\epsilon} dx dv + \int |\nabla_x V_{\epsilon} - \nabla_x (-\Delta)^{-1/2} \Phi| dx$$

where \mathcal{J} and Φ are given, smooth functions, and apply Gronwall's inequality to show that this quantity vanishes iff

$$\mathcal{J} = J \text{ and } - \nabla_x (-\Delta)^{-1/2} \Phi = J \wedge e_3$$

Remark:

1) more generally, one can handle "non monokinetic" asymptotic initial profile, by replacing the term

$$\iint |v - \mathcal{J}|^2 f_{\epsilon} dx dv$$

in the modulated energy above with some relative entropy adapted to the desired initial profile

2) one can also handle more general initial data \Rightarrow leads to fast oscillating modes that are governed by systems of linear equations driven by the 2D-3C Euler solution J