Vlasov-Poisson with strong magnetic field: some mathematical results

François Golse
Ecole polytechnique
Centre de Mathématiques L. Schwartz golse@math.polytechnique.fr

W. Pauli Institute, Vienna, September 18th 2008

Motion of charged particles in a strong magnetic field

-Motion of a charged particle in a constant electromagnetic field (see for instance Lifshitz-Pitayevski Physical kinetics §60)

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=\frac{q}{m}\left(E+\frac{1}{c} v \wedge B\right)
\end{array}\right.
$$

Notation:

$$
\left\{\begin{array}{l}
(x, v) \mapsto\left(x_{\|}, v_{\|}\right) \text {projection in the direction of } B \\
(x, v) \mapsto\left(x_{\perp}, v_{\perp}\right) \text { projection on the plane orthogonal to } B
\end{array}\right.
$$

-Parallel projection of the motion equation:

$$
\ddot{x}_{\|}=\frac{q}{m} E_{\|}
$$

so that

$$
x_{\| \mid}(t)=x_{\| \mid}(0)+t v_{\| \mid}(0)+\frac{q}{m} \frac{t^{2}}{2} \frac{E \cdot B}{|B|}
$$

- Van der Pol transformation for the transverse motion:

$$
\dot{w}=\frac{q}{m} \mathcal{R}(\omega t) E_{\perp}, \quad \text { with } w(t)=\mathcal{R}(\omega t) v_{\perp}(t)
$$

where $\mathcal{R}(\theta)$ is the rotation of an angle θ around the axis oriented by B

$$
\dot{\mathcal{R}}(t)=A \mathcal{R}(t), \quad \text { with } A v=v \wedge \frac{B}{|B|}
$$

One finds that

$$
\begin{array}{lc}
x_{\perp}(t)=x_{\perp}(0) & +c t \frac{E \wedge B}{|B|^{2}} \\
\text { slow secular drift } & +O\left(\frac{m c}{q|B|}\right)+O\left(\frac{c|E|}{|B|}\right) \\
& \text { fast Larmor rotation }
\end{array}
$$

Transverse motion on a long time scale=slow drift in the direction E_{\perp}
-Hamiltonian perturbation methods for nontrivial field geometries: see for instance Littlejohn (1980s) for given electromagnetic field, more recently
-Pbm: handle a self-consistent electric field in a collisionless plasma
Difficulty: Hamiltonian perturbation methods may require a lot of regularity in the fields, uniformly in the high magnetic field limit
\Rightarrow use only estimates propagated by the Vlasov equation that are uniform in that limit

Mathematical toolbox

a) Weak convergence in functional spaces:
-the strong magnetic field limit involves averaging out fast Larmor rotation
-weak convergence corresponds roughly with averaging out fast variables locally
b) Van der Pol transform:

- Pbm: to understand the asymptotic behavior of $X_{\epsilon}(t)$ for $\epsilon \ll 1$, where

$$
\dot{X}_{\epsilon}=B\left(t, X_{\epsilon}\right)+\frac{1}{\epsilon} A X_{\epsilon}
$$

Difficulty: X_{ϵ} contains high frequencies since $\dot{X}_{\epsilon}(t)=O(1 / \epsilon)$

Idea: filter these high frequencies by solving EXPLICITLY the leading order in the equation:

$$
Y_{\epsilon}:=S\left(-\frac{t}{\epsilon}\right) X_{\epsilon}, \text { where } S(t)=e^{t A}
$$

(Think of A as a skew-adjoint matrix, so that $S(t)$ is a unitary transform.) Then Y_{ϵ} satisfies

$$
\dot{Y}_{\epsilon}(t)=S\left(-\frac{t}{\epsilon}\right) B\left(t, S\left(\frac{t}{\epsilon}\right) Y_{\epsilon}(t)\right)=F\left(t, \frac{t}{\epsilon}, Y_{\epsilon}\right)=O(1)
$$

so that Y_{ϵ} does not contain any more high frequencies since $\dot{Y}_{\epsilon}=O(1)$ \Rightarrow one expects that $Y_{\epsilon} \rightarrow Y$ as $\epsilon \rightarrow 0^{+}$, where

$$
\dot{Y}(t)=\langle F\rangle(t, Y) \text { where }\langle F\rangle(t, Z)=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} F(t, s, Z) d s
$$

and hence

$$
X_{\epsilon}(t) \simeq S\binom{t}{\epsilon} Y(t)
$$

Vlasov-Poisson with strong magnetic field

-Pbm 1: to derive the leading order, longitudinal particle motion with selfconsistent electric field and strong, non constant magnetic field

Scaling: set $\epsilon=\omega_{p} / \omega_{c} \ll 1$ where

$$
\left\{\begin{array}{l}
\omega_{c}=\frac{q|B|}{m c} \text { cyclotron frequency } \\
\omega_{p}=\frac{q|E|}{m u} \text { plasma frequency, where } m|u|^{2}=\varepsilon_{0}|E|^{2}
\end{array}\right.
$$

Vlasov-Poisson in $3 D$ periodic box with constant neutralizing background

$$
\left\{\begin{array}{l}
\partial_{t} f_{\epsilon}+v \cdot \nabla_{x} f_{\epsilon}-\nabla_{x} V_{\epsilon} \cdot \nabla_{x} f_{\epsilon}+\frac{1}{\epsilon}(v \wedge B) \cdot \nabla_{v} f_{\epsilon}=0, \\
-\Delta_{x} V_{\epsilon}=\int_{\mathbf{R}^{3}} f_{\epsilon} d v-\iint_{\mathbf{T}^{3} \times \mathbf{R}^{3}} f_{\epsilon} d x d v, \quad(x, v) \in \mathbf{T}^{3} \times \mathbf{R}^{3}
\end{array}\right.
$$

in the time scale $1 / \omega_{p}$

Weak convergence in L^{p}

-If a sequence $f_{n} \equiv f_{n}(x)$ is bounded in L_{x}^{p} - meaning that

$$
\sup _{n}\left(\int\left|f_{n}(x)\right|^{p} d x\right)^{1 / p}<\infty
$$

we say that

$$
f_{n} \rightharpoonup f \text { in } L_{x}^{p} \text { weak if } 1 \leq p<\infty \text {, or } L_{x}^{\infty} \text { weak-* }
$$

to mean that

$$
\int_{A} f_{n}(x) d x \rightarrow \int_{A} f(x) d x \text { for each cube } A
$$

-All frequencies in f_{n} that go to infinity with n are averaged out by this procedure.

Example: let $f_{n} \equiv f_{n}(x)$ be a sequence of periodic functions with period 1 and bounded in L_{x}^{2};

$$
f_{n} \rightharpoonup \widehat{f} \text { weakly in } L^{2} \text { iff } \widehat{f}_{n}(k) \rightarrow \widehat{f}(k) \text { for each } k
$$

whereas $f_{n} \rightarrow f$ (strongly) in L^{2} - i.e. in quadratic mean:

$$
\left\|f_{n}-f\right\|_{L^{2}}^{2}=\sum_{k}\left|\widehat{f}_{n}(k)\right|^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

FACT 1. Weak convergence and nonlinear operations don't mix well, in general

$$
\cos (n x) \rightharpoonup 0 \text { but } \cos (n x)^{2}=\frac{1}{2}\left((1+\cos (2 n x)) \rightharpoonup \frac{1}{2}\right.
$$

FACT 2. ... however, one can pass to the limit in products where all the terms but one converge strongy:

$$
\text { if }\left\{\begin{array}{l}
f_{n} \rightharpoonup f \text { in } L^{2} \text { weak } \\
g_{n} \rightarrow g \text { in } L^{2} \text { strong }
\end{array} \quad \text { then } f_{n} g_{n} \rightharpoonup f g \text { in } L^{1}\right. \text { weak }
$$

-However, the fact that the sequence of functions satisfy an elliptic PDE can help in controling (some) high frequencies

Example: the Poisson equation

$$
\text { if }\left\{\begin{array}{l}
u_{n} \equiv u_{n}(x) \rightarrow u \text { in } L^{2} \text { weak } \\
-\Delta u_{n}=O(1) \text { in } L^{2}
\end{array} \quad \text { then } u_{n} \rightarrow u \text { in } L^{2}\right. \text { strong }
$$

(See this in Fourier space for periodic functions: the Laplacian wipes out all high frequencies in u_{n} uniformly in n).

- Case where the direction of B is constant:

Thm 1: [FG \& L. StRaymond, JMPA 1999] Assume $B \equiv b\left(x_{1}, x_{2}\right) e_{3}$ with $b \in C\left(\mathbf{T}^{2}\right)$ and $b \neq 0$ on \mathbf{T}^{2}, and $\left.f_{\epsilon}\right|_{t=0}=f^{i n} \in L^{1} \cap L_{x, v}^{\infty}$. In the limit as $\epsilon \rightarrow 0$ and extracting subsequences if needed

$$
f_{\epsilon} \rightarrow f \equiv f\left(t, x, \sqrt{v_{1}^{2}+v_{2}^{2}}, v_{3}\right) \text { in } L^{\infty} \text { weak-* }^{*}
$$

where

$$
\left\{\begin{array}{l}
\partial_{t} f+v_{3} \partial_{x_{3}} f-\partial_{x_{3}} V \partial_{v_{3}} f=0, \quad t, r>0, x \in \mathbf{T}^{3}, v_{3} \in \mathbf{R} \\
-\Delta_{x} V=2 \pi \int_{\mathbf{R}^{3}} f r d r d v_{3}-2 \pi \iint_{\mathbf{T}^{3} \times \mathbf{R}^{3}} f d x r d r d v_{3} \\
f\left(0, x, r, v_{3}\right)=\frac{1}{2 \pi} \int_{\mathbf{S}^{1}} f^{i n}\left(x, r \omega, v_{3}\right) d \omega
\end{array}\right.
$$

- Case where the strength of B is constant:

Thm 2: [FG \& L. StRaymond, JMPA 1999] Assume that $B \in C^{1}\left(\mathrm{~T}^{3}\right)$ is s.t. $|B|=1$ and $\operatorname{div} B=0$, and $\left.f_{\epsilon}\right|_{t=0}=f^{i n} \in L^{1} \cap L_{x, v}^{\infty}$. Let $\mathcal{R}(x, \theta)$ be the rotation of an angle θ around the oriented axis $\mathbf{R} B$, and define

$$
g_{\epsilon}(t, x, w):=f_{\epsilon}(t, x, \mathcal{R}(x,-t / \epsilon) w)
$$

Then, in the limit as $\epsilon \rightarrow 0$ and after extracting subsequences if needed

$$
g_{\epsilon} \rightharpoonup g \quad \text { in } L_{t, x, w}^{\infty} \text { weak-* }
$$

and, denoting $D_{u} B=(u \cdot \nabla) B$ the covariant derivative along u, one has

$$
\left\{\begin{array}{l}
\partial_{t} g+(w \cdot B) B \cdot \operatorname{grad}_{x} g-\left(D_{B} V\right) B \cdot \operatorname{grad}_{w} g+(w \wedge X) \cdot \operatorname{grad}_{w} g=0 \\
\quad \text { where } X=\frac{1}{2}\left(B \wedge D_{w} B+D_{B \wedge w} B-3(w \cdot B)\left(B \wedge D_{B} B\right)\right) \\
-\Delta_{x} V=\int_{\mathbf{R}^{3}} g d v-\iint_{\mathbf{T}^{3} \times \mathbf{R}^{3}} f^{i n} d x d v,\left.\quad g\right|_{t=0}=f^{i n}
\end{array}\right.
$$

Proof of Thm 1: use a priori uniform in ϵ a priori bounds on f_{ϵ}

$$
\begin{aligned}
& 0 \leq f_{\epsilon} \leq \sup _{x, v} f^{i n}(x, v) \text { (maximum principle for Vlasov) } \\
& \iint\left(1+|v|^{2}\right) f_{\epsilon}(t, x, v) d x d v \\
& \quad+\int\left|E_{\epsilon}(t, x)\right|^{2} d x \leq C \text { (mass+energy conservation) }
\end{aligned}
$$

Decomposing the number density into low- and high-speed components, one finds

$$
\int \rho_{\epsilon}(t, x)^{5 / 3} d x \leq C
$$

so that, using Poisson's equation

$$
\int\left|\nabla_{x} E_{\epsilon}(t, x)\right|^{5 / 3} d x+\int\left|\partial_{t} E_{\epsilon}(t, x)\right|^{5 / 4} d x \leq C
$$

so that

$$
E_{\epsilon} \rightarrow E \text { strongly in } L_{t}^{\infty} L_{x}^{p} \text { for } 1 \leq p<2
$$

Proof of Thm 2: observe that g_{ϵ} solves the nonautonomous equation

$$
\begin{aligned}
\partial_{t} g_{\epsilon} & +\mathcal{R}(x,-t / \epsilon) w \cdot \nabla_{x} g_{\epsilon}+\mathcal{R}(x, t / \epsilon) E_{\epsilon} \cdot \nabla_{w} g_{\epsilon} \\
& =\left(\left(\mathcal{R}(x,-t / \epsilon) w \cdot \nabla_{x}\right) \mathcal{R}(x, t / \epsilon)\right) \mathcal{R}(x,-t / \epsilon) w \cdot \nabla_{w} g_{\epsilon} \\
& \Rightarrow \text { no high frequencies in } t \text { in } g_{\epsilon}
\end{aligned}
$$

Therefore, by nonstationary phase, for each C^{1} function $\psi \equiv \psi(x, w)$ and each smooth, mean-zero periodic function $a \equiv a(t)$, one has

$$
a(t / \epsilon) \psi(x, v)\binom{1}{E_{\epsilon}(t, x)} g_{\epsilon}(t, x) \rightarrow 0
$$

so that

$$
\begin{gathered}
\mathcal{R}(x,-t / \epsilon) w \cdot \nabla_{x} g_{\epsilon} \rightharpoonup(w \cdot B) B \cdot \operatorname{grad}_{x} g \\
\mathcal{R}(x,-t / \epsilon) E_{\epsilon} \cdot \nabla_{w} g_{\epsilon} \rightharpoonup(E \cdot B) B \cdot \operatorname{grad}_{w} g
\end{gathered}
$$

$$
\left(\left(\mathcal{R}(x,-t / \epsilon) w \cdot \nabla_{x}\right) \mathcal{R}(x, t / \epsilon)\right) \mathcal{R}(x,-t / \epsilon) w \cdot \nabla_{w} g_{\epsilon} \rightarrow(X \wedge w) \cdot \operatorname{grad}_{w} g
$$

Guiding center for Vlasov-Poisson with strong magnetic field

-Pbm 2: to derive the next to leading order, transverse particle motion with self-consistent electric field and a strong, constant magnetic field

Scaling: set $\epsilon=\omega_{p} / \omega_{c} \ll 1$ where ω_{p} is the plasma frequency and ω_{c} the cyclotron frequency.
\bullet Guiding center motion $=$ secular dynamics with speed $c|E| /|B|$ on a long time scale T defined by

$$
T \omega_{p}=\frac{\omega_{c}}{\omega_{p}}=\frac{1}{\epsilon} \gg 1
$$

- Magnetic field of the form

$$
B=|B| e_{3}, \quad \text { WLOG }|B|=1
$$

- Guiding center motion is observed in the plane orthogonal to B : for simplicity, restrict the charged particle motion to that plane, with constant neutralizing background.

Scaled Vlasov equation: denoting $v^{\perp}=v \wedge e_{3}$, one has

$$
\left\{\begin{array}{l}
\partial_{t} f_{\epsilon}+\frac{1}{\epsilon}\left(v \cdot \nabla_{x} f_{\epsilon}+E_{\epsilon} \cdot \nabla_{v} f_{\epsilon}\right)+\frac{1}{\epsilon^{2}} v^{\perp} \cdot \nabla_{v} f_{\epsilon}=0, \quad x \in \mathbf{T}^{2}, v \in \mathbf{R}^{2} \\
E_{\epsilon}=-\nabla_{x} V_{\epsilon}, \quad-\Delta_{x} V_{\epsilon}=\int_{\mathbf{R}^{2}} f_{\epsilon} d v-\iint_{\mathbf{T}^{2} \times \mathbf{R}^{2}} f_{\epsilon} d x d v \\
\left.f_{\epsilon}\right|_{t=0}=f_{\epsilon}^{i n}
\end{array}\right.
$$

Thm 3:[FG \& LS-R JMPA 1999, LS-R JMPA 2002] Assume that

$$
\lim _{\epsilon \rightarrow 0^{+}} \epsilon\left\|f_{\epsilon}^{i n}\right\|_{L_{x, v}^{\infty}}=0 \text { and } \sup _{\epsilon>0}\left(\left\|\left(1+|v|^{2}\right) f_{\epsilon}^{i n}\right\|_{L_{x, v}^{1}}+\left\|E_{\epsilon}^{i n}\right\|_{L_{x}^{2}}^{2}\right)<\infty
$$

(i) Modulo extraction of a subsequence, there exist $\left\{\begin{array}{l}\text { a radial distribution function } F \in L_{t}^{\infty}\left(\mathcal{M}_{+}\left(\mathbf{T}^{2} \times \mathbf{R}_{+}\right)\right) \\ \text {and a defect measure } \nu \in L_{t}^{\infty}\left(\mathcal{M}_{+}\left(\mathbf{T}^{2} \times \mathbf{S}^{1}\right)\right) \text { such that }\end{array}\right.$

$$
\begin{array}{r}
f_{\epsilon} \rightharpoonup F(t, x,|v|) \text { in } L_{t}^{\infty}\left(\mathcal{M}_{+}\left(\mathbf{T}^{2} \times \mathbf{R}^{2}\right)\right) \text { weak- }^{*} \text {, while } \\
\int_{\mathbf{R}^{2}}\left(f_{\epsilon}(t, x, v)-F(t, x,|v|)\right) \phi(v /|v|) d v \rightarrow \int_{\mathbf{S}^{1}} \phi d \nu, \quad \phi \in C\left(\mathbf{S}^{1}\right) .
\end{array}
$$

(ii) The limiting macroscopic density $\rho(t, x)=\int_{\mathbf{R}^{2}} F(t, x,|v|) d v$ satisfies

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{x}\left(\rho E^{\perp}\right)=0, \quad E=\nabla_{x} \Delta_{x}^{-1}\left(\rho-\int_{\mathbf{T}^{2}} \rho d x\right) \\
\left.\rho\right|_{t=0}=\text { weak }-\lim _{\epsilon \rightarrow 0} \int_{\mathbf{R}^{2}} f_{\epsilon}^{i n} d x
\end{array}\right.
$$

Remarks:

a) analogy with 2D incompressible, inviscid fluid mechanics (2D Euler)

$$
\partial_{t} \omega+\operatorname{div}_{x}(\omega u)=0, \quad \operatorname{div}_{x} u=0, \quad\left(\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right)=\operatorname{curl}_{x}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
0
\end{array}\right)
$$

Here

$$
\left\{\begin{array}{l}
\text { the velocity field } u \text { corresponds with } E^{\perp} \\
\text { the vorticity } \omega \text { corresponds with } \rho-\int_{\mathbf{T}^{2}} \rho d x
\end{array}\right.
$$

b) in the statement of $\operatorname{Thm} 3$, the term $\operatorname{div}_{x}\left(\rho E^{\perp}\right)$ is to be understood as

$$
\operatorname{div}_{x}\left(\rho E^{\perp}\right):=\partial_{x_{1}} \partial_{x_{2}}\left(E_{2}^{2}-E_{1}^{2}\right)+\left(\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}\right) E_{1} E_{2}
$$

-case of Euler-Poisson with strong magnetic field proved by E. Grenier (~ 1996)
-similar result obtained by Y. Brenier (~ 2000) for well-prepared initial data, by using some modulated energy method
-gyrokinetic limit (with finite Larmor radius effect) done by E. Frenod and E. Sonnendrucker (~ 2001), completed by D. Han-Kwan (see poster in this workshop)

Thm 4:[LS-R JMPA 2002] Assume that

$$
\left(1+|v|^{2}\right)^{r} f^{i n} \in W^{s, \infty}\left(\mathbf{T}^{2} \times \mathbf{R}^{2}\right) \text { with } r>3, s \geq 3
$$

and let g be the solution of

$$
\left\{\begin{array}{l}
\partial_{t} g+E^{\perp} \cdot \nabla_{x} g+\frac{1}{2}(m-\rho v)^{\perp} \cdot \nabla_{v} g=0 \\
\binom{\rho}{m}=\int_{\mathbf{R}^{2}}\binom{1}{v} g d v, \quad E=\nabla_{x} \Delta_{x}^{-1}\left(\rho-\int_{\mathbf{T}^{2}} \rho d x\right) \\
\left.\rho\right|_{t=0}=\int_{\mathbf{R}^{2}} f^{i n} d v
\end{array}\right.
$$

Then, for each $p \in[1,+\infty)$ one has

$$
f_{\epsilon}(t, x, v)-g\left(t, x, \mathcal{R}\left(-t / \epsilon^{2}\right) v\right) \rightarrow 0 \text { in } L_{l o c}^{\infty}\left(d t ; L_{x, v}^{p}\right)
$$

as $\epsilon \rightarrow 0^{+}$.

Ideas in the proof of Thm 3:

1) write the evolution of density and current:

$$
\begin{aligned}
\partial_{t} \rho_{\epsilon}+\operatorname{div}_{x} \frac{1}{\epsilon} \int v f_{\epsilon} d v & =0 \\
\epsilon \partial_{t} \int v f_{\epsilon}+\operatorname{div}_{x} \int v \otimes v f_{\epsilon} d v-\rho_{\epsilon} E_{\epsilon}-\frac{1}{\epsilon} \int v^{\perp} f_{\epsilon} d v & =0
\end{aligned}
$$

eliminating the current leads to

$$
\begin{aligned}
\partial_{t} \rho_{\epsilon}+\operatorname{div}_{x}\left(\rho_{\epsilon} E_{\epsilon}^{\perp}\right) & =\left(\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}\right) \int v_{1} v_{2} f_{\epsilon} d v \\
& +\partial_{x_{1}} \partial_{x_{2}} \int\left(v_{2}^{2}-v_{1}^{2}\right) f_{\epsilon} d v+\epsilon \partial_{t} \operatorname{div}_{x} \int v^{\perp} f_{\epsilon}
\end{aligned}
$$

Last term in r.h.s. $\rightarrow 0$; the other terms satisfy

$$
\begin{array}{r}
\left(\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}\right) \int v_{1} v_{2} f_{\epsilon} d v+\partial_{x_{1}} \partial_{x_{2}} \int\left(v_{2}^{2}-v_{1}^{2}\right) f_{\epsilon} d v \\
\quad \rightarrow\left(\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}\right)\left\langle\nu, \omega_{1} \omega_{2}\right\rangle+\partial_{x_{1}} \partial_{x_{2}}\left\langle\nu, v_{2}^{2}-v_{1}^{2}\right\rangle
\end{array}
$$

2) write

$$
\operatorname{div}_{x}\left(\rho_{\epsilon} E_{\epsilon}^{\perp}\right)=\partial_{x_{1}} \partial_{x_{2}}\left(E_{\epsilon, 1}^{2}-E_{\epsilon, 2}^{2}\right)+\left(\partial_{x_{2}}^{2}-\partial_{x_{1}}^{2}\right)\left(E_{\epsilon, 1} E_{\epsilon, 2}\right)
$$

Lemma[J.-M. Delort, 1991] Assume that

$$
\sup _{\epsilon} \int\left|E_{\epsilon}\right|^{2} d x<\infty \text { and } \operatorname{div}_{x} E_{\epsilon}=a_{\epsilon}+b_{\epsilon}
$$

with

$$
a_{\epsilon} \geq 0, \quad \sup _{\epsilon} \int a_{\epsilon} d x<\infty \text { and } \sup _{x, \epsilon}\left|b_{\epsilon}(x)\right|<\infty
$$

If $E_{\epsilon} \rightharpoonup E$ in L_{x}^{2} weak, one has

$$
E_{\epsilon, 1}^{2}-E_{\epsilon, 2}^{2} \rightharpoonup E_{1}^{2}-E_{2}^{2} \quad \text { and } \quad E_{\epsilon, 1} E_{\epsilon, 2} \rightharpoonup E_{1} E_{2}
$$

(Used in the context of vortex sheets for $2 D$ incompressible Euler.)
3) Observation 1: the defect measure may exist. For instance, assume

$$
\iint|v|^{2} f_{\epsilon}^{i n} d x d v \rightarrow 1 \text { and } 0 \leq f_{\epsilon}^{i n} \leq C \epsilon^{3}
$$

Then $\nu \neq 0$ (for any subsequence extracted from $f_{\epsilon}^{i n}$ as $\epsilon \rightarrow 0$.)

A priori, one has the following limiting equation for the macroscopic density

$$
\partial_{t} \rho+\operatorname{div}_{x}\left(\rho E^{\perp}\right)=\left(\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}\right)\left\langle\nu, \omega_{1} \omega_{2}\right\rangle+\partial_{x_{1}} \partial_{x_{2}}\left\langle\nu, v_{2}^{2}-v_{1}^{2}\right\rangle
$$

and it may happen that $\nu \neq 0$. On the other hand, if

$$
\left(\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}\right)\left\langle\nu, \omega_{1} \omega_{2}\right\rangle+\partial_{x_{1}} \partial_{x_{2}}\left\langle\nu, v_{2}^{2}-v_{1}^{2}\right\rangle=0
$$

this defect measure will not affect the dynamics of ν.
4) Observation 2: assume that

$$
0 \leq f^{i n} \leq C, \quad \text { and } \iint|v|^{3} f^{i n} d x d v<\infty
$$

a) If

$$
\int_{0}^{T} \iint|v|^{3} f_{\epsilon} d t d x d v=o\left(\frac{1}{\epsilon}\right)
$$

then the defect measure ν is independent of the angle variable ω (rotation invariant), so that in particular

$$
\left\langle\nu, \omega_{1} \omega_{2}\right\rangle=\left\langle\nu, v_{2}^{2}-v_{1}^{2}\right\rangle=0
$$

b) One always has

$$
\int_{0}^{T} \iint f_{\epsilon} d t d x d v=O\left(\frac{\sqrt{|\ln \epsilon|}}{\epsilon}\right)
$$

\Rightarrow to get rid of this defect measure in the equation for the charge density amounts to controling particles with speed of $O(1 / \epsilon)$
4) Going back to step 1 (the equations for the charge and current densities) and replacing the original particle distribution function f_{ϵ} with its truncation

$$
\tilde{f}_{\epsilon}(t, x, v) \chi\left(\frac{1}{2} \epsilon^{\alpha}|v|^{2}\right) \text { for } \alpha \in\left(\frac{3}{2}, 2\right)
$$

and χ a smooth truncation such that

$$
0 \leq \chi \leq 1, \quad \chi=1 \text { on }[0,1], \quad \chi=0 \text { on }[2, \infty), \quad\left|\chi^{\prime}\right| \leq 2
$$

L. StRaymond was able to show that

$$
\left(\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}\right)\left\langle\nu, \omega_{1} \omega_{2}\right\rangle+\partial_{x_{1}} \partial_{x_{2}}\left\langle\nu, v_{2}^{2}-v_{1}^{2}\right\rangle=0
$$

Guiding center + quasineutral limit for Vlasov-Poisson

Scaling: assume that

$$
\rho_{e} \sim \lambda_{D} \ll L \text { where }\left\{\begin{array}{l}
\rho_{e}=\text { Larmor radius of electrons } \\
\lambda_{D}=\text { Debye length } \\
L=\text { observation length scale }
\end{array}\right.
$$

What happens to the drift-kinetic regime when gradient lengths are comparable to the Larmor radius?

Scaled Vlasov-Poisson equation:

$$
\left\{\begin{array}{l}
\partial_{t} f_{\epsilon}+v \cdot \nabla_{x} f_{\epsilon}-\frac{1}{\epsilon}\left(\nabla_{x} V_{\epsilon}+v \wedge e_{3}\right) \cdot \nabla_{v} f_{\epsilon}=0, \quad x \in \mathbf{T}^{3}, v \in \mathbf{R}^{3} \\
\epsilon \Delta_{x}^{-1} V_{\epsilon}=1-\int_{\mathbf{R}^{3}} f_{\epsilon} d v \\
\left.f_{\epsilon}\right|_{t=0}=f_{\epsilon}^{i n},
\end{array}\right.
$$

Assume that

$$
\iint_{\mathbf{T}^{3} \times \mathbf{R}^{3}} f_{\epsilon}^{i n} d x d v=1, \quad \iint_{\mathbf{T}^{3} \times \mathbf{R}^{3}}|v|^{2} f_{\epsilon}^{i n} d x d v+\int_{\mathbf{T}^{3}}\left|\nabla_{x} V_{\epsilon}\right|^{2} d x \leq C
$$

-The small ϵ limit of the scaled Vlasov-Poisson system above is governed by the 2D-3C incompressible Euler equations

$$
\left\{\begin{array}{l}
\partial_{t} J+\left(J \nabla_{x}\right) J+\nabla_{x} \Pi=0 \\
\operatorname{div}_{x} J=0, \quad \partial_{x_{3}} J=0 \\
\left.J\right|_{t=0}=J^{i n},
\end{array} \quad \text { i.e. } J(t, x)=\left(\begin{array}{l}
J_{1}\left(t, x_{1}, x_{2}\right) \\
J_{1}\left(t, x_{1}, x_{2}\right) \\
J_{1}\left(t, x_{1}, x_{2}\right)
\end{array}\right)\right.
$$

Thm 5: [F.G. \& L.StRaymond, M3AS 2003] Assume that $f_{\epsilon}^{\text {in }}$ satisfy

$$
\begin{array}{r}
\int f_{\epsilon}^{i n} d v \rightarrow 1 \text { uniformly in } x \in \mathrm{~T}^{3} \\
\iint\left|v-J^{i n}\right|^{2} f_{\epsilon}^{i n} d v d x+\int\left|\nabla V_{\epsilon}^{i n}+J^{i n} \wedge e_{3}\right|^{2} d x \rightarrow 0
\end{array}
$$

for some smooth $J^{i n}$. Then

$$
\begin{aligned}
& \nabla_{x} V_{\epsilon} \rightarrow e_{3} \wedge J \text { in } L_{l o c}^{2}(t, x) \\
& \int\left(v-J_{\epsilon}\right) f_{\epsilon} d v \rightarrow 0 \text { in } L_{l o c}^{1}(t, x) \\
& \int f_{\epsilon} \rightarrow 1 \text { in } L_{l o c}^{\infty}\left(t, \mathcal{M}_{x}\right) \text { weak-* }
\end{aligned}
$$

where J is the solution of the 2D-3C incompressible Euler system with initial data $J^{\text {in }}$

Roughly speaking, the initial distribution function converges to a "monokinetic" profile:

$$
f_{\epsilon}^{i n} \rightarrow \delta_{v=J^{i n}}
$$

- Method of proof: compute the time derivative of the modulated energy

$$
\iint|v-\mathcal{J}|^{2} f_{\epsilon} d x d v+\int\left|\nabla_{x} V_{\epsilon}-\nabla_{x}(-\Delta)^{-1 / 2} \Phi\right| d x
$$

where \mathcal{J} and Φ are given, smooth functions, and apply Gronwall's inequality to show that this quantity vanishes iff

$$
\mathcal{J}=J \text { and }-\nabla_{x}(-\Delta)^{-1 / 2} \Phi=J \wedge e_{3}
$$

Remark:

1) more generally, one can handle "non monokinetic" asymptotic initial profile, by replacing the term

$$
\iint|v-\mathcal{J}|^{2} f_{\epsilon} d x d v
$$

in the modulated energy above with some relative entropy adapted to the desired initial profile
2) one can also handle more general initial data \Rightarrow leads to fast oscillating modes that are governed by systems of linear equations driven by the 2D3C Euler solution J

