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Overview

• Nonlocality of gyrokinetic equations 

• Fluid vs kinetic description

• Eulerian, Lagrangian, Semi-Lagrangian

• Flux-tube vs global

• Hamiltonian vs dissipative 

• Diffusive vs non-diffusive transport



Nonlocality of gyrokinetics

Rapid gyration around gyro-center is assumed to be 
infinitely fast, so particles drift according to the spatially 
averaged fields.  Fields have structure larger and smaller.

ẑ

ri

ŷ
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Discretization of average in PIC codes
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Accuracy limited at short wavelengths
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But small scales can be unstable!
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• Growth rates shown 
are for a curvature 
driven instability such 
as discussed by 
Hammett this 
morning; details in 
recent papers by 
Ricci, et al., and by 
Simakov and Catto.

• Faster growth rates 
correspond to steeper 
gradients.

• Very typical behavior in tokamaks: short wavelengths are 
unstable, and in some cases, tend to saturate at high levels.



Alternative averaging scheme required
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• Broemstrup’s scheme is similar 
to that used in continuum 
codes.  

• Basic idea: find contributions to 
fields from groups of particles 
with (roughly) the same 
gyroradius one at a time

• Easy to implement if Fourier 
modes are easily obtained 
(such as in flux-tube sims)
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Fluid vs kinetic descriptions

• Fully kinetic: equations for background and 
fluctuations all kinetic.   

• Edge, full-F, and/or global codes.  Sonnendrucker, Leerink, Parker, et al.

• Wasteful (or wrong) for realistic collisionality in Cowley’s ITER ordering, 
but perhaps necessary for edge, where separation of scales is not as 
extreme

• Hierarchical: fluid equations for background and 
kinetic equations for fluctuations

• Focus of Maryland/UCLA/CMPD effort.  See posters by Barnes and Parra 
here; talks by Catto, Cowley. 

• Fully fluid: equations for background and 
fluctuations all fluid

• Gyrofluid closure approach.  T Passot will discuss this afternoon.



• In each case, real-space grid is fixed in time.

• Eulerian: Continuum methods, familiar from CFD

• Lagrangian: PIC methods -- Method of characteristics

• Semi-Lagrangian: Previous talk: aim for best combination 
of above methods.

• Avoid timestep limitations for perpendicular, weakly-sheared flows (drifts).

• Boundary conditions important in each case.

Eulerian, Lagrangian, Semi-Lagrangian

f = f(x,v; t) χ̄ = χ̄(x,v; t)

fi = fi(xi(t),vi(t); t) χ̄i = χ̄i(x,vi(t); t)



Flux-tube vs Global
• Flux-tube

• Scale perpendicular dimensions of simulation domain to the gyroradius and take GK 
expansion parameter equal to zero.  

• No variation of equilibrium temperature, density, scale lengths, etc. across domain.  

• Use periodic boundary conditions for fluctuations.

• Find surface-averaged transport and heating.

• My view: Rely on asymptotics to separate time and space scales, easing numerics.

• Global
• Scale overall domain size to gyroradius; use finite value of GK expansion parameter.

• Equilibrium distribution function varies across domain.  Collisions req’d to get Maxwellian.

• Boundary conditions should reflect separatrix, walls, magnetic axis (although not usually 
done).

• Require sources to prevent profile flattening.

• My view: Numerics must be extraordinary for this approach to be credible at small rho star.



Hamiltonian vs Diffusive

• Hamiltonian
• Take the Vlasov equation as starting point.

• Emphasis on maintaining Hamiltonian character leads to keeping higher 
order terms in dynamical equations.

• Problem: How should physical diffusion appear on dynamical time scales?

• Diffusive
• Take the Fokker-Planck equation as starting point.

• Higher-order terms appear at transport space and time scales (knocked 
down an additional factor of epsilon by averages).

• Opportunity: Use physically motivated models of diffusion on dynamical 
time scales.



Diffusive vs. Non-diffusive

• Diffusive
• Transport is well-described by random walk with normally distributed step 

sizes and Poisson-distributed step times.

• Implies that fluxes are locally determined, e.g., by gradients.

• Expected to characterize core tokamak turbulence.

• Non-diffusive
• Transport levels are heavily influenced by rare or long-distance events.

• May imply, e.g., radial non-locality to transport fluxes.   

• May be particularly important for transport across narrow barriers. 



The end


