Gyro-fluid models: theory and numerics P. Degond

Toulouse Institute of Mathematics (MIP group) CNRS and Université Paul Sabatier,

118 route de Narbonne, 31062 Toulouse cedex, France

degond@mip.ups-tlse.fr (see http://mip.ups-tlse.fr)

Joint work with:

F. Deluzet, A. Sangam, M-H. Vignal

1. Introduction

- 2. Drift-Fluid limit of Euler-Lorentz model
- 3. AP-scheme for the Euler-Lorentz model in the DF limit
- 5. Conclusion

1. Introduction

Multiphysics problems

- \blacksquare Perturbed problem $P^{\varepsilon} \longrightarrow$ limit problem P^{0}
 - \implies Standard scheme $P^{\varepsilon,h}$: stability $h \leq C\varepsilon$

Multiphysics problems

- \blacksquare Perturbed problem $P^{\varepsilon} \longrightarrow$ limit problem P^{0}
 - \implies Standard scheme $P^{\varepsilon,h}$: stability $h \leq C\varepsilon$
- \blacksquare Value of ε is local
 - ${}\twoheadrightarrow$ $\varepsilon \ll 1$ in some areas
 - $ightarrow \varepsilon = O(1)$ in other areas

Multiphysics problems

- \blacksquare Perturbed problem $P^{\varepsilon} \longrightarrow$ limit problem P^{0}
 - \implies Standard scheme $P^{\varepsilon,h}$: stability $h \leq C\varepsilon$
- \blacksquare Value of ε is local
 - ${}\twoheadrightarrow$ $\varepsilon \ll 1$ in some areas
 - $ightarrow \varepsilon = O(1)$ in other areas
- Multiphysics coupling
 - \implies Use P^{ε} where $\varepsilon=O(1)$
 - \implies Use P^0 where $\varepsilon \ll 1$

Problems with multiphysics coupling

- Location of the interface region
 - → Find it (and move it)
 - Adapt (and move) the mesh according to interface

Problems with multiphysics coupling

- Location of the interface region
 - → Find it (and move it)
 - Adapt (and move) the mesh according to interface
- Coupling conditions
 - \implies Find projection $P^{\varepsilon} \rightarrow P^{0}$ & reconstruction $P^{0} \rightarrow P^{\varepsilon}$
 - Choices often arbitrary (layer analysis provides only incomplete information)
 - Replacement of smooth by abrupt transition leads to wrong physics

Problems with multiphysics coupling

- Location of the interface region
 - → Find it (and move it)
 - Adapt (and move) the mesh according to interface
- Coupling conditions
 - \implies Find projection $P^{\varepsilon} \rightarrow P^0$ & reconstruction $P^0 \rightarrow P^{\varepsilon}$
 - Choices often arbitrary (layer analysis provides only incomplete information)
 - Replacement of smooth by abrupt transition leads to wrong physics
- Results depend on these choices

(Summary) Pierre Degond - Gyro-fluid models: theory and numerics - Nice, Sept 2008

(Conclusion)

Asymptotic-Preserving (AP) strategy

- \blacksquare AP scheme $P^{\varepsilon,h}$:
 - \twoheadrightarrow Stability h independent of ε
 - $\blacksquare P^{\varepsilon,h} \longrightarrow P^{0,h}$ consistent with P^0

Asymptotic-Preserving (AP) strategy

- \blacksquare AP scheme $P^{\varepsilon,h}$:
 - \twoheadrightarrow Stability h independent of ε
 - $\blacksquare P^{\varepsilon,h} \longrightarrow P^{0,h}$ consistent with P^0

AP strategy

AP scheme: use the perturbation problem P^{ε} and discretize it with scheme $P^{\varepsilon,h}$ such that

 $h \sim \Delta x, \Delta t$ independent of $\varepsilon \ll 1$

AP strategy

AP scheme: use the perturbation problem P^{ε} and discretize it with scheme $P^{\varepsilon,h}$ such that

 $h\sim \Delta x, \Delta t \quad \text{independent of} \quad \varepsilon \ll 1$

- Allows the simulation of limit regime P^0 with the perturbation problem P^{ε}
 - \implies With arbitrary large time / space steps compared to ε

AP strategy

AP scheme: use the perturbation problem P^{ε} and discretize it with scheme $P^{\varepsilon,h}$ such that

 $h\sim \Delta x, \Delta t \quad \text{independent of} \quad \varepsilon \ll 1$

- \blacksquare Allows the simulation of limit regime P^0 with the perturbation problem P^{ε}
 - \implies With arbitrary large time / space steps compared to ε
- \clubsuit No need to change the model from P^0 to P^{ε}
 - The transition is done by the scheme automatically

Examples

Kinetic-fluid transition: ε = mean free-path [S. Jin]

Examples

- **Kinetic-fluid transition**: ε = mean free-path [S. Jin]
- Non-QuasiNeutral to QN: ε = Debye length
 - Euler-Poisson [Crispel, D. Vignal] & [D., Liu, Vignal]
 - Vlasov-Poisson (PIC) [D. Deluzet, Navoret, Sun, Vignal]
 - Vlasov-Poisson (Eulerian meth.) [Belaouar, Crouseilles, D., Sonnendrücker]
 - ➡ Euler-Maxwell [D. Deluzet, Savelief, Vignal]

Examples

- **Kinetic-fluid transition**: ε = mean free-path [S. Jin]
- ▶ Non-QuasiNeutral to QN: ε = Debye length
 - Euler-Poisson [Crispel, D. Vignal] & [D., Liu, Vignal]
 - Vlasov-Poisson (PIC) [D. Deluzet, Navoret, Sun, Vignal]
 - Vlasov-Poisson (Eulerian meth.) [Belaouar, Crouseilles, D., Sonnendrücker]
 - Euler-Maxwell [D. Deluzet, Savelief, Vignal]
- \blacksquare Drift-fluid limit: $\varepsilon = \text{cyclotron freq. (inverse)}$

 - ➡ This talk ...

AP schemes: general methodology

 $P^{\varepsilon} \text{ singularly perturbed problem}$ $P^{0} = \lim_{\varepsilon \to 0} P^{\varepsilon}$

AP schemes: general methodology

- $P^{\varepsilon} \text{ singularly perturbed problem}$ $P^{0} = \lim_{\varepsilon \to 0} P^{\varepsilon}$
- Step 1: 'Reformulation'
 - \rightarrow Identify P^0
 - → "Lift P^0 into P^{ε} " i.e. find $R^{\varepsilon} \iff P^{\varepsilon}$ s.t. R^{ε} is regular perturbation formulation of P^{ε} as $\varepsilon \to 0$

AP schemes: general methodology

- $P^{\varepsilon} \text{ singularly perturbed problem}$ $P^{0} = \lim_{\varepsilon \to 0} P^{\varepsilon}$
- Step 1: 'Reformulation'
 - \rightarrow Identify P^0
 - → "Lift P^0 into P^{ε} " i.e. find $R^{\varepsilon} \iff P^{\varepsilon}$ s.t. R^{ε} is regular perturbation formulation of P^{ε} as $\varepsilon \to 0$
- Step 1: 'Discretization'
 - \rightarrow Dirscretize P^{ε} into $P^{\varepsilon,h}$ $(h = \min(\Delta t, \Delta x))$ s.t.
 - $\rightarrow P^{0,h} := \lim_{\varepsilon \to 0} P^{\varepsilon,h}$ is a scheme for P^0
 - \rightarrow Find $R^{\varepsilon,h}$ a regular perturbation form. as $\varepsilon \to 0$

AP schemes: remarks

10

AP schemes require that the limit problem is identified and well-posed

AP schemes: remarks

AP schemes require that the limit problem is identified and well-posed

$$\blacktriangleright$$
 $P^{0,h} := \lim_{\varepsilon \to 0} P^{\varepsilon,h}$ is a scheme for P^0 :

- Difficult part: requires impliciteness where the problem is singularly perturbed
- But only there

AP schemes: remarks

AP schemes require that the limit problem is identified and well-posed

$$\blacktriangleright$$
 $P^{0,h} := \lim_{\varepsilon \to 0} P^{\varepsilon,h}$ is a scheme for P^0 :

- Difficult part: requires impliciteness where the problem is singularly perturbed
- But only there
- To preserve properties such as conservation, positivity, ... it is preferable to
 - 'Reformulate the discretization'
 - than to 'Discretize the reformulation'

2. Drift-Fluid limit of Euler-Lorentz model

The Euler-Lorentz model

Isothermal pressure law for clarity

$$\begin{aligned} \partial_t n + \nabla \cdot (n \, u) &= 0, \\ m \left(\partial_t (n \, u) + \nabla (n \, u \otimes u) \right) + T \, \nabla n \\ &= q \, n \, (E + u \times B), \end{aligned}$$

- harpoon n = ion density, u = ion velocity,
 - $m = \text{ion mass}, \qquad T = \text{constant temperature},$
 - $q = \text{ion charge}, \qquad E = \text{electric field},$
 - B = magnetic field.

The drift-fluid regime

Motion of a particle in an electromagnetic field

Regime such that:

- → Lorentz and pressure forces are very large
- •• Consequences:
 - \rightarrow gyro-period $\ll 1$.
 - \rightarrow Dynamics $\parallel B$ much quicker than $\perp B$.

The rescaled Euler-Lorentz model 14

Lorentz and pressure forces very large

Rescaling the problem

$$(EL_{\varepsilon}) \begin{cases} \partial_t n + \nabla \cdot (n \, u) = 0, \\ \varepsilon \left(\partial_t (n \, u) + \nabla (n \, u \otimes u) \right) + T \, \nabla n \\ = n \, (E + u \times B), \end{cases}$$

$$ightarrow arepsilon = rac{
m gyro-period}{
m carac. time} = (
m Mach number)^2 = rac{mu_0^2}{T_0} \ll 1$$

Fluid models

- Reference: [Hazeltine, Meiss]
- [Ottaviani, Manfredi, PoP 1999], [Garbet et al, PoP 2001] [Falchetto, Ottaviani, PRL 2004]
- 🝽 Beer, Dorland, Snyder, ...

Fluid models

- Reference: [Hazeltine, Meiss]
- [Ottaviani, Manfredi, PoP 1999], [Garbet et al, PoP 2001] [Falchetto, Ottaviani, PRL 2004]
- 🝽 Beer, Dorland, Snyder, ...
- Kinetic models (gyrokinetic)
 - 🝽 Reference: [Hazeltine, Meiss] (again !)
 - Math analysis: [Frenod, Sonnendrücker, ...]
 - Many codes: e.g. [Sonnendrücker & coworkers, Garbet, Grandgirard ...]
 - Note, often in combination with δf method (e.g. [Chen & Parker])

Formal drift-fluid limit I

 \bullet $\varepsilon \to 0$ in $(EL_{\varepsilon}) \Rightarrow$ Drift-fluid model

$$(DF) \begin{cases} \partial_t n + \nabla \cdot (n \, u) = 0 \\ T \, \nabla n = n \, (E + u \times B), \end{cases}$$

Splitting the velocity according $b = \frac{B}{\|B\|}$

(Conclusion)

Formal drift-fluid limit II 17

Projection of the "momentum eq."

Perpendicular part

 $b \times (T \nabla n - nE = n \, u \times B) \Rightarrow nu_{\perp} = \frac{b}{\|B\|} \times (T \nabla n - n \, E)$ $\Rightarrow \text{Explicit eq. for } nu_{\perp}$

→ Parallel part $b \cdot (T \nabla n - nE = n \, u \times B) \Rightarrow b \cdot (T \nabla n - nE) = 0$ \Rightarrow Implicit eq. for nu_{\parallel}

 $| u | = Lagrangian multiplier of <math>b \cdot (T \nabla n - nE) = 0$

Explicit eq. for the parallel velocity I 18

For clarity B = constant (not necessary)

$$(DF) \Leftrightarrow \begin{cases} \partial_t n + \nabla \cdot (n \, u) = 0 \quad (1) \\ n u_{\perp} = \frac{b}{\|B\|} \times (T \nabla n - n \, E) \quad (2) \\ b \cdot (T \nabla n - n E) = 0 \quad (3) \end{cases}$$

 $T b \cdot \nabla(1) \Rightarrow T b \cdot \nabla \partial_t n + T b \cdot \nabla(\nabla \cdot (n u)) = 0$

 $\Rightarrow \quad T b \cdot \nabla \partial_t n - \partial_t (n b \cdot E) = 0$

Taking the difference \Rightarrow Explicit elliptic eq. for u_{\parallel}

Explicit eq. for the parallel velocity II 19 Explicit elliptic eq. for u_{\parallel} $-T (b \cdot \nabla) (\nabla \cdot (nu_{\parallel}b)) = T b \cdot \nabla (\nabla \cdot (nu_{\perp})) + \partial_t (n b \cdot E)$

 $\nabla_{\parallel}(\nabla_{\parallel} \cdot (nu)_{\parallel}) \longrightarrow \text{dual operators}$

Reformulated Drift-Fluid model

$$(DF) \Leftrightarrow (RDF) \begin{cases} \partial_t n + \nabla \cdot (n \, u) = 0, \\ n u_\perp = \frac{b}{\|B\|} \times (T \nabla n - n \, E), \\ -T \, \nabla_{\parallel} (\nabla_{\parallel} \cdot (n \, u)_{\parallel}) = RHS. \end{cases}$$

Reformulated Euler-Lorentz system 1 20

In the Euler-Lorentz model

 $(T \ b \cdot \nabla)$ Mass eq. $-(b \cdot \partial_t)$ Momentum eq. \downarrow $\varepsilon \ \partial_{tt}^2(nu_{\parallel}) - T(b \cdot \nabla)(\nabla \cdot (nu_{\parallel} \ b)) = RHS$

Reformulated Euler-Lorentz system II 21

Reformulated Euler-Lorentz model

$$(REL_{\varepsilon}) \begin{cases} \partial_t n + \nabla \cdot (n \, u) = 0, \\ \left(\varepsilon \left(\partial_t (n \, u) + \nabla (n \, u \otimes u) \right) + T \, \nabla n \\ = n \left(E + u \times B \right) \right) \\ \varepsilon \, \partial_{tt}^2 (n u_{\parallel}) - T (b \cdot \nabla) (\nabla \cdot (n u_{\parallel} \, b)) = RHS \end{cases}$$

Equivalent to the Euler-Lorentz system

Reformulated Euler-Lorentz system III 22

Reduces to (RDF) when $\varepsilon = 0 \Rightarrow$ consistency property.

- Wave Eq. on nu_{\parallel}
 - \rightarrow Explicit scheme \Rightarrow conditional stability
 - \rightarrow Implicit scheme \Rightarrow unconditional stability

3. AP-scheme for the Euler-Lorentz model in the DF limit

Classical scheme I

24

 \blacksquare If n^m and u^m known approx. at time t^m

$$\begin{cases} \frac{n^{m+1} - n^m}{\Delta t} + \nabla \cdot (n \, u)^m = 0, \\ \varepsilon \left(\frac{(n \, u)^{m+1} - (n \, u)^m}{\Delta t} + \nabla (n \, u \otimes u)^m \right) + T \, \nabla n^m \\ = n^{m+1} \, (E + u \times B)^{m+1}, \end{cases}$$

Stable and consistant iff $\Delta t = O(\varepsilon)$

$$\varepsilon = 0 \Rightarrow$$
 we lose $u_{\parallel}^{m+1} \Rightarrow$ consistency pb

Discrete reformulation

 $(T \ b \cdot \nabla) \text{ Mass eq.} - (b \cdot \text{discrete } \partial_t) \text{ Momentum eq.}$ $\downarrow \downarrow$ $\varepsilon \frac{(nu_{\parallel})^{m+1} - 2(nu_{\parallel})^m + (nu_{\parallel})^{m-1}}{\Delta t^2}$ $-T(b \cdot \nabla)(\nabla \cdot (nu_{\parallel} \ b)^{m-1}) = RHS$

Explicit scheme \Rightarrow conditional stability

AP scheme I

$$\begin{aligned} & \frac{n^{m+1} - n^m}{\Delta t} + \nabla \cdot (n \, u)^{m+1} = 0, \\ & \varepsilon \left(\frac{(n \, u)^{m+1} - (n \, u)^m}{\Delta t} + \nabla (n \, u \otimes u) \right)^m + T \, (\nabla n)^{m+1/2} \\ & = n^m \, E^{m+1} + (n \, u \times B)^{m+1} \end{aligned}$$

$$(\nabla n)^{m+1/2} = (\nabla n)^{m+1}_{//} + (\nabla n)^{m}_{\perp},$$

Asymptotically stable and consistant $\varepsilon \to 0 \Rightarrow$ Discretization of (RDF) Discrete reformulation

Implicit scheme \Rightarrow unconditional stability

Model and parameters

$$(EL_{\varepsilon}) \begin{cases} \partial_{t}n + \nabla \cdot (n u) = 0, \\ \varepsilon \left(\partial_{t}(n u) + \nabla (n u \otimes u) \right) + T \nabla n \\ = n (E + u \times B), \end{cases}$$

$$T = 1, \qquad E = (0, 0, 1), \qquad B = (0, 1, 0), \\ \varepsilon = 10^{-6} \text{ or } 1, \qquad \Delta x = \Delta y = 1/100. \end{cases}$$
(Summary) Piere Degond - Gyro-fluid models: theory and numerics - Nice, Sept 2008 (Conclusion)

Model and parameters

Initial cond. Solution of the Drift limit model (n, nu) = (1, (0, 0, 0)) (n, nu)(x, t) = (1, (-1, 1, 0))

Boundary conditions

$$\begin{pmatrix} 1 \\ (-1, 1+\varepsilon, \varepsilon) \end{pmatrix} \xrightarrow{1} \begin{pmatrix} 1 \\ (-1, 1+\varepsilon, \varepsilon) \end{pmatrix} \xrightarrow{1} \begin{pmatrix} 1 \\ (-1+\varepsilon, 1+\varepsilon, 0) \end{pmatrix} \xrightarrow{1} \begin{pmatrix} 1 \\ (-1+\varepsilon, 1, \varepsilon) \end{pmatrix} \xrightarrow{X} \begin{pmatrix} 1+\varepsilon \\ (-1, 1, 0) \end{pmatrix}$$

$\varepsilon = 10^{-6},$ Resolved case $\Delta t \leq \varepsilon$

(Summary) Pierre Degond - Gyro-fluid models: theory and numerics - Nice, Sept 2008

(Conclusion)

$\varepsilon = 10^{-6}$, Non resolved case $\Delta t > \varepsilon$ 31

(Summary) Pierre Degond - Gyro-fluid models: theory and numerics - Nice, Sept 2008

(Conclusion)

Time-step comparison

32

E	au	AP	NAP
10^{-5}	-5	-5.09	-2.6
10^{-6}	-6	-5.6	-2.6
1.510^{-8}	-7.83	-6.51	-2.6

Logarithms of the gyro-period τ , maximum of time-steps used in the resolved AP scheme (AP) and non-resolved AP scheme (NAP)

CPU time comparison

ε	t_{fin}	CONV	NAP	CONV/NAP
10^{-5}	1.00	4940.32	13.84	357
10^{-6}	0.1	1584.21	1.39	1140
1.510^{-8}	0.01	1149.54	0.17	6762

CPU time (in s): resolved conventional scheme (CONV) and non-resolved AP scheme (NAP). Final time t_{fin} (in s). Ratio of CPU times.

$\varepsilon = 1$, Resolved case $\Delta t \leq \varepsilon$

(Summary) Pierre Degond - Gyro-fluid models: theory and numerics - Nice, Sept 2008

(Conclusion)

Non well prepared boundary conditions 35

(Summary) Pierre Degond - Gyro-fluid models: theory and numerics - Nice, Sept 2008

(Conclusion)

4. Conclusion

Summary

- An AP scheme for the Euler-Lorentz system in the Drift-Fluid limit has been proposed
 - \rightarrow Drift-fluid u_{\parallel} is computable through an elliptic problem
 - Reformulation of the Euler-Lorentz system into a wave eq. for u_{\parallel}
 - Implicit discretization of this wave eq.

Summary

- An AP scheme for the Euler-Lorentz system in the Drift-Fluid limit has been proposed
 - \rightarrow Drift-fluid u_{\parallel} is computable through an elliptic problem
 - Reformulation of the Euler-Lorentz system into a wave eq. for u_{\parallel}
 - Implicit discretization of this wave eq.
- Numerical results show AP stability
 - Allows computer savings of 3 to 4 orders of magnitude compared with standard scheme

Summary

- An AP scheme for the Euler-Lorentz system in the Drift-Fluid limit has been proposed
 - \rightarrow Drift-fluid u_{\parallel} is computable through an elliptic problem
 - Reformulation of the Euler-Lorentz system into a wave eq. for u_{\parallel}
 - Implicit discretization of this wave eq.
- Numerical results show AP stability
 - Allows computer savings of 3 to 4 orders of magnitude compared with standard scheme
- Requires well-prepared Boundary Conditions
 - Boundary layer correctors for unprepared BC

Work in progress

38

More complex geometry :

 \rightarrow non uniform (and non constant) B

→ Arbitrary mesh wrt *B*-field geometry

Full Euler eqs. (i.e. with energy eq.)

Coupling with electrons via

Quasineutrality

➡ or Poisson eq.

Work in progress (II)

39

Kinetic model (Vlasov eq.)

- → Gyrokinetic model
- 😁 cf. Vienna talk ...