
Gyro-Kinetics Lectures. From ITER Time-scales to Gyro-Kinetics.

Steve Cowley ...... Culham.

My lectures are intended to introduce gyro-kinetics to a student who has some plasma physics knowledge
and some mathematical ability. It would take at least 5 lectures to develop the theory in all its detail,
but hopefully the key ideas can be communicated in 1 hour. I hope my choice of subject matter provides
a basis for the student to understand the more advanced lectures by my colleagues.

Fusion plasmas are invariably turbulent. Since it is the turbulence which sets the confinement time (the
time for heat to escape the confining magnetic field) understanding its dynamics is esential. A simple
(naive) random walk estimate of the confinement time, τE , is:

τE ∼ τcL
2

∆2

where ∆ is the typical turbulent cross field eddy size (the step length), τc is a typical turbulent correlation
time and L is the size (radius) of the plasma. The key to confining a fusion plasma with a magnetic
field is to reduce the cross field size of the turbulent eddies (∆) to micro-scopic sizes. Then the turbulent
random walk of heat and particles across the confining field is slowed to acceptable levels. The goal of
gyro-kinetics is to calculate the turbulence and transport accurately and reliably. It may also enable us to
find ways to reduce the transport. Further improvement in the performance of fusion devices is certainly
desirable.

Calculating the turbulence in tokamaks directly from Newton’s laws, for the particles, and Maxwell’s
equations, for the fields, would be impossible even on todays computers. Fortunately one can separate the
length and time scales involved to reduce the problem to a computable system – we call this gyro-kinetics.
In this lecture I will lay out the separation of scales that is most appropriate for ITER. This involves
making some assumptions about the turbulence scales and amplitude. These assumptions are based on
experimental measurements of the turbulence (not on ITER of course) and theoretical calculations of
the expected instabilities. For simplicity we will not consider the edge of the plasma – specifically the
pedestal where the temperature and density gradients are very steep. We will also focus on ”Ion Scales”
since these dominate the transport – you will hear about electron scale turbulence (ETG usually) this is
only important when the ion scale turbulence is suppressed. It is possible (perhaps unlikely) that there
are hidden components to the turbulence at scales we do not consider.

To set the numbers in context we use core ITER parameters ranging from the top of the pedestal to the
middle of the plasma. These are presented in Table. 1 below. The major radius is taken as R = 6.2m
and the minor radius a = 2m. ITER is expected to achieve a confinement time of τE ∼ 4s.

Table 1: Parmeter Values for Typical ITER Scenario.

Top of Pedestal Center of Plasma
Ion Temperature 4 keV 18 keV
Magnetic Field 5.3 T 5.3 T
Particle Density 1020m−3 1.2× 1020m−3

Safety Factor 4 1.5
Deuterium Larmor Radius ρi 1.6×10−3m 3.5×10−3m
Deuterium Collision Rate νi 200s−1 25s−1

Deuterium Transit Rate vthi/(qR) 1.8× 104s−1 105s−1
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1 Gyro-kinetic and the ITER Ordering

Length Scales. There are two basic length scales:

• Macroscopic length L – might be size of plasma, or the density gradient length (n/|∇n|) etc.. We
will not distinguish between a and R in our ordering discussions.

• Microscopic length, the ion larmor radius ρi – we assume that the turbulent correlation length
across the field, ∆, has this scale.

For example in ITER these lengths are approximately: L ∼ a ∼ n/|∇n| ∼ 2m and ρi ∼ 2× 10−3m. We
use these length scales to define the fundamental small parameter of the theory:

ε =
ρ

L
� 1 (1)

In ITER ε ∼ 10−3 – a good expansion parameter.

Ion Time Scales. There are four important ion frequency scales:

• The fast cyclotron frequency – Ωci. On ITER Ωci ∼ 2.5× 108rad/s.

• The medium frequency – ω = vthi/L ∼ εΩci. This is roughly the frequency of the turbulent
fluctuations and the rate at which particles sense the inhomogeneity – thus τc ∼ 1/ω. On ITER
ω ∼ 104 − 105rad/s

• The slow collision rate – νi ∼ 25 − 200s−1. This is rate at which the local ion Maxwellian is
established. It is convenient to order the collision rate in ε as νi ∼ O(ε1/2)ω ∼ O(ε3/2)Ωci. In the
very collisionless center it might be more appropriate to use νi ∼ O(ε)ω but we will ignore this
here.

• The very slow transport rate. Using the random walk estimate we obtain 1/τE ∼ (1/τc)(∆/L)2 ∼
(vthi/L)ε2 ∼ ε3Ω ∼ 0.25s−1. This is the evolution time for the equilibrium density and temperature.

It is convenient to order the mass ratio me/mi ∼ O(ε) so that the electron time-scales can be treated
within the ε expansion.

Electron Time Scales. There are four important electron frequency scales:

• The very fast cyclotron frequency – Ωce ∼ ε−1Ωci.

• The medium fast transit frequency – vthe/L ∼ ε1/2Ωci.

• The medium collision rate – νe ∼ νiε
−1/2 ∼ ω ∼ εΩci. This is rate at which the local electron

Maxwellian is established.

• The very slow transport rate. Using the random walk estimate we obtain 1/τE ∼ (1/τc)(∆/L)2 ∼
(vthi/L)ε2 ∼ ε3Ωci ∼ 0.25s−1.

• The ulta slow resistive diffusion rate. Using the neoclassical resistivity (η) we get 1/τη ∼ (η/(4π))(c/L)2 ∼
ε4Ωci ∼ 0.25× 10−3s−1.
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Figure 1: Gyro-kinetic fluctuations, space-scales. Typical fluctuation makes cigar shaped potential surface
with L � λ⊥ ∼ ρi. Particle drift off field line gives a step of order the larmor radius, ξp ∼ ρ. Field
displacement is also of order the larmor radius, ξB ∼ ρ.

The fluctuating density and electric field in current fusion devices is small – δn/n0 < 0.01. Therefore we
split the distribution functions and fields into slowly varying (in time and space) equilibrium parts and
medium time-scale fluctuating parts that vary fast in space. I will suppress any species label and deal for
simplicity until we need to discuss electrons and ions separately. We define for the distribution functions:

f(r,v, t) = F0(r,v, t) + δf1(r,v, t) + δf3/2(r,v, t) + δf2(r,v, t) ............ (2)

and for the fields
B(r, t) = B0(r, t) + δB(r, t), E(r, t) = δE(r, t) (3)

Now we outline the ordering of all the quantities and their variations in time and space.

Small Fluctuations The fluctuations are order ε in the gyro-kinetic expansion i.e.

δf1

F0
∼ O(ε),

δf3/2

F0
∼ O(ε3/2),

δf2

F0
∼ O(ε2) ..... etc. (4)

|δB|
|B0|

∼ O(ε),
|δE|

|vthB0|
∼ O(ε). (5)

Slowly varying Equlilibrium The equilibrium varies in space on the macroscopic length scale and in
time on the transport time τ , i.e.
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∇F0 ∼ O(
F0

L
), ∇B0 ∼ O(

B0

L
), (6)

∂F0

∂t
∼ O(

F0

τ
) ∼ O(

vth

L
ε2F0),

∂B0

∂t
∼ O(

B0

τ
) ∼ O(

vth

L
ε2B0), (7)

Fast Spatial Variation of Fluctuations across B0. The variation of the fluctuating quantities across
the magnetic field is on the microscopic length scale, i.e.

|b0 ×∇δf | ∼ O(
δf

ρ
), |b0 ×∇|δB ∼ O(

δB
ρ

), |b0 ×∇|δE ∼ O(
δE
ρ

), (8)

where b0 ∼ B0

B0
is the unit vector along B0. We will often loosely write k⊥ to mean the approximate

inverse perpendicular scale, thus k⊥ρ ∼ 1.

Slow Spatial Variation Along B0 The variation of the fluctuating quantities along the magnetic field
is on the macroscopic length scale, i.e.

b0 · ∇δf ∼ O(
δf

L
), b0 · ∇δB ∼ O(

δB
L

), b0 · ∇δE ∼ O(
δE
ρ

), (9)

Medium Time Scale Variation of Fluctuations. The fluctuating quantities vary on the mediium
time scale, i.e.

∂δf

∂t
∼ O(

vthδf

L
),

∂δE
∂t

∼ O(
vthδE

L
),

∂δB
∂t

∼ O(
vthδB

L
) (10)

Ion fluctuations develop small scales in velocity. The small collision rate allows the fluctuating
distribution to develop two scales in velocity: the long scale vthi and small scales ∆vi ∼ ν1/2vthi ∼ ε1/4vthi.
Thus for the small scales

∂δfi

∂ṽ
∼ O(ε−1/4 δfi

vthi
), (11)

This ordering is chosen so that collisions smooth the small scale velocity variations on the medium
time-scale. We will label the small velocity scales with tildes (ṽ).

These orderings have the simple consequences for the fluctuations illustrated in Figure 1.. Specifically:
the typical perpendicular flow velocity, roughly the E×B velocity, is of order εvth; the typical fluid
displacement is roughly ξp ∼ ρ and the typical field line displacement is roughly ξB ∼ ρ. Note also that
∇δf ∼ O(∇f) – i.e. the perturbed gradients are comparable with the equilibrium gradients. Thus the
fluctuations can locally flatten the gradients driving the turbulence.

2 Potentials and Field Equations.

The orderings given in the previous section have some simple consequences for the fields and Maxwell’s
equations. Consider Faraday’s law,

∂δB
∂t

= −∇× δE. (12)
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However from our ordering:

∇× δE ∼ O(εΩB0) and (13)

∂δB
∂t

∼ O(ε2ΩB0). (14)

Thus the dominant order electric field must satisfy ∇ × δE = 0, which (of course) means that we can
write:

δE ∼ −∇φ (15)

Thus the largest part of the electric field is electrostatic. However we shall need the inductive part of the
electric field to get the dynamics right (as we see below). It is therefore convenient to write the fields in
terms of the scalar and vector potentials, i.e.:

δE = −∇φ− ∂A
∂t

, δB = ∇×A. (16)

For definiteness we use the coulomb gauge,

∇ ·A = 0. (17)

Which (using Eq. (8)) yields ∇⊥ ·A⊥ = 0 to the order we keep. Note ⊥ and ‖ refer to the perpendicular
and parallel to the equilibrium field line b0. Thus,

A = A‖b0 +∇ξ × b0. (18)

where ξ is a scalar. To the order we keep:

δB⊥ = ∇A‖ × b0, δB · b0 = δB‖ = −∇2ξ, δB‖ ∼ O(|δB⊥|) (19)
and

δE⊥ = −∇φ−∇∂ξ

∂t
× b0, δE · b0 = δE‖ = −∇‖φ−

∂A‖
∂t δE‖ ∼ O(ε|δE⊥|). (20)

We note that the inductive part of the parallel electric field is comparable to the electrostatic part. The
inductive part of the perpendicular electric field is, however, small compared to the electrostatic part.
It must be kept because it yields a compressive part to the E×B velocity and a net acceleration as a
particle goes around a gyro-orbit. This sounds a bit cryptic, but it will be more apparent in the derivation
of the gyro-kinetic equations.

The key reason for introducing the potentials is that we reduce the field quantities from six scalers, the
components of δE and δB, to three, φ, A‖ and ξ (or equivalently δB‖). We need to extract from Maxwell’s
equations three equations for these three unknown fields in terms of current density and charge density.
It is trivial to show that the displacement current is small in this ordering. The appropriate equations
are then, Poisson’s equation and two components of Ampere’s law.

Poisson’s Equation. Since to dominant order ∇ · δE = −∇2φ,

∇2φ = − 1
ε0

(qni − ene) (21)

where ni and ne are the ion and electron densities. When k−1
⊥ is long compared to the Debye length one

can drop the left hand side of Poisson’s equation and obtain quasi-neutrality – i.e. qni = ene.

Parallel Ampere’s Law. Using ∇× δB = −∇2A we obtain,

∇2A‖ = −µ0J‖ = −µ0(qniVi − eneVe) · b0 (22)
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where Vi and Ve are the mean ion and electron flow velocities.

Perpendicular Ampere’s Law:

∇⊥B0 +∇⊥δB‖ = µ0b0 × J = µ0b0 × (qniVi − eneVe). (23)

Clearly we must solve for the distribution functions of ions and electrons to obtain the charge. In the slab
equilibrium we have equilibrium currents in the y direction and these should be balance the variation of
B0. This just gives the equilibrium relation p(x) + B2

0(x)/(2µo) = constant and it will not be needed
here. I have dropped the equilibrium Electric Field E0. since because the variation of B0 is slow in time
does not enter the equations at the order we want to keep.

3 Gyro-Kinetic Particle Motion

Before we plough through the derivation of the gyro-kinetic equation and sweat over the algebra we can
gain a little physical insight by looking at the single particle motion in the gyro-kinetic ordering. I will
start this in a general slowly varying field and then give the non-uniform slab result. First we define the
gyro-center position by a vector version of the simple uniform field (slab) result.

Figure 2: Defining the Gyro-center.

The exact gyro-center position is not actually a well defined quantity. However to lowest and first order
our ordering shows that the particle orbit looks locally to be like the orbit in a uniform field. Thus we
define (see Figure 2.) the gyro-center position R in terms of the particle position r and particle velocity
v:

R = r +
v × b0

Ω0
(24)

where (as before) b0 = b0(r) = B0/B0 is the unit vector along the local equilibrium field and Ω0 =
Ω0(r) = qB0/m is the local equilibrium gyro-frequency. The transformation to gyro-center position is
sometimes called the Catto Transformation after its inventor. We define the perpendicular, v⊥, and
parallel, v‖, and gyro-angle, θ with respect to the equilibrium field from the expression:

v = v‖b0 + v⊥(cos θ e1 + sin θ e2). (25)

The unit vectors b0, e1 and e2 form a local right handed coordinate basis i.e. e1 × e2 = b0, and they
vary on the macroscopic, L, spacial scale and the slow, τ , time scale. In the straight field (electrostatic)
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case so that b0 = z, e1 = x and e2 = y. The fastest motion is the gyro-motion and indeed;

dθ

dt
= −Ω0 +O(εΩ). (26)

We will show shortly that both v⊥ and v‖ vary on the medium time scale (with a small part varying on
the fast cyclotron time scale) and therefore can be considered constant on the fast (Ω) time scale. Now
consider the evolution of R. We differentiate Eq. (24) with respect to time:

dR
dt

= v +
dv
dt

× b0

Ω0
+ v × d

dt
(
b0

Ω0
) (27)

now using the equation of motion:

m
dv
dt

= q(δE + v ×B0 + v × δB0), (28)

we obtain to order ε,

dR
dt

= v‖b0 + δE× b0

B0
+ v‖

δB⊥

B0
+ v⊥

δB‖

B0
+ v ×

(
v · ∇(

b0

Ω0
)
)

. (29)

Note that the dominant motion is along the field lines and the cross field motion comes from the perturbed
fields and the inhomogeneity of the equilibrium fields.

Figure 3: Motion of Gyro-center R and its Average. Note that in one orbit the gyro-center moves a small
distance of order ερ. However over ε−1 gyro-orbits the gyro-center ”drifts” a distance O(ρ).
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We wish to know the motion of the gyro-center, R, over the medium time scale (times of order L/vth). The
right hand side of Eq. (54) oscillates on the fast time scale Ω−1 but when we integrate the perpendicular
motion this averages out i.e.:

δR⊥ =
∫ t

0

[
δE× b0

B0
+ v‖

δB⊥

B0
+ v⊥

δB‖

B0
+ v ×

(
v · ∇(

b0

Ω0
)
)]

dt

=
∫ t

0

[
< δE× b0

B0
>R + < v‖

δB⊥

B0
>R + < v⊥

δB‖

B0
>R + < v ×

(
v · ∇(

b0

Ω0
)
)

>R

]
dt +O(ερ). (30)

where the gyro-average (ring average) at fixed R is defined by:

< a(r,v, t) >R=
1
2π

∫ 2π

0

a(R− v × b0

Ω0
,v, t)dθ. (31)

In Eq. (31) the θ integration is done keepin R, v⊥ and v‖ fixed. Thus this gyro-average is an average
over a ring centered about R of radius v⊥/Ω0. Thus we think of the gyro-center motion as the
motion of this ring obeying the equation:

<
dR
dt

>=< v‖b0 >R + < δE× b0

B0
>R + < v‖

δB⊥

B0
>R + < v⊥

δB‖

B0
>R + < v ×

(
v · ∇(

b0

Ω0
)
)

>R

(32)
After some straightforward algebra we obtain:

<
dR
dt

>= v‖b0 − ∂ < χ >R

∂R
× (

b0

B0
) + v2

‖(
b0

Ω0
)× b0 · ∇b0 +

v2
⊥

2B0
(
b0

Ω0
)×∇B0. (33)

where:
χ = φ− v ·A (34)

and we have dropped the O(εvth) corrections to the parallel motion as they are small compared to the
v‖b0 term and they are not needed. The expression, Eq. (32) is obviously not very familiar so let us
expand out the terms in χ and look at the physical meaning of each term by referring to the drift kinetic
limit. Thus:

• v‖b0 is the motion along the equilibrium field.

• −∂<φ>R

∂R × ( b0
B0

) is the ring averaged E×B drift.

• ∂<v‖A‖>R

∂R × ( b0
B0

) is the correction to the parallel motion due to motion along the ring averaged
tilted perturbed field line.

• ∂<v⊥·A⊥>R

∂R × ( b0
B0

) is the ring averaged perturbed ∇B drift.

• v2
‖(

b0
Ω0

) × b0 · ∇b0 is the curvature drift in the equilibrium fields. This is zero in the straight field
case.

• v2
⊥

2B0
( b0
Ω0

)×∇B0 is the ∇B drift in the equilibrium fields. In the slab case this is v2
⊥

2B0

dB0
dx ( y

Ω0
).

Note that the perpendicular drifts, both equilibrium and perturbed, are O(εvth) in the gyro-kinetic
ordering. This is because although the perturbed fields are small they vary on the micro-scale. Because
perpendicular structures are small scale the small drifts can move the gyro-center across the turbulent
structure (eddy) on the turbulent time-scale.
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Figure 4: Gyro-average of the fluctuations over a ring of radius the larmor radius ρ = v⊥/Ω. For small
radii the average is almost the same as the value at the center, for large radii the average tends to cancel
and is almost zero. Electrons have smaller rings by the factor

√
me/mi

.

To complete our derivation of the particle motion we need the equations for the variation of v⊥ and
v‖. The variation of energy, E = 1

2mv2 + qφ(r, t), follows in a similar manner to the derivation above,
specifically:

<
dE
dt

>= q
∂ < χ >R

∂t
(35)

note that E varies on the medium time scale whereas the kinetic energy has an O(ε) variation on the fast
time scale due to the variation of φ over the gyro-orbit. The net work done on a particle over the medium
time scale and longer comes from integrating the right hand side of Eq. (55) over time. Note the same ring
averaged perturbed quantity < χ >R enters the energy and gyro-center evolution – you might suspect
that this is due to some underlying property of the equations, indeed it is related to the Hamiltonian
properties of the collisionless motion. I will not elaborate on this here as it does not illuminate the
physical picture. We have kept energy variations up to O(ε) (they are needed), but we shall only need
the O(1) part of the magnetic moment variation. Thus:

µ =
mv2

⊥
2B0(R, t)

= constant. (36)

To the order that is required Eqs (26), (33), (55) and (36) provide a set of equations to find the particle
orbits and energy variation. The perturbed distribution function is formally represented in the gyro-center
variables as:

δfi = δfi(R, E , Ẽ , µ, µ̃, θ, θ̃, σ, t). (37)

where we have introduced the variable σ = ±1 to signify the sign of v‖. The fast velocity scales are
explicitly denoted by the tildes.

We see in the next lecture how this enters the kinetic equations.
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4 Ordered Ion Fokker-Planck Equation.

From now on we will specialize to the case where the field is straight and the equilibrium depends only
on x – i.e. B = B0(x)z and F0(x,v, t). The system is assumed periodic over y and we identify the points
(x, y, z0) and (x, y + y0,−z0). Thus following the magnetic field through the system covers the surface
x = constant – the ”flux surface”. We will also assume the perturbation is entirely electrostatic (δB = 0).
The full electromagnetic toroidal case is not much harder – but certainly longer. Here we expand the Ion
Fokker Planck equation – to make things simple I will drop the subscript i. For convenience we write
(see last lecture) δf = δf1 + δf3/2 + ......etc.. We use the orderings stated in the last sections. The FP
equation with order (relative to vthF0/L) under each term is:

∂F0

∂t︸︷︷︸
ε2

+
∂δf

∂t︸︷︷︸
ε

+v · ∇F0︸ ︷︷ ︸
1

+ v⊥ · ∇δf︸ ︷︷ ︸
1

+ v‖z · ∇δf︸ ︷︷ ︸
ε

+
q

m

−∇φ︸ ︷︷ ︸
1

+v ×B︸ ︷︷ ︸
ε−1

 · ∂F0

∂v
+

q

m

−∇φ︸ ︷︷ ︸
ε3/4

+v ×B︸ ︷︷ ︸
ε−1/4

 · ∂δf

∂ṽ

+
q

m

−∇φ︸ ︷︷ ︸
ε

+v ×B︸ ︷︷ ︸
1

 · ∂δf

∂v
= C(F0, F0)︸ ︷︷ ︸

ε1/2

+ C̃(δf, F0)︸ ︷︷ ︸
ε

+ C̃(F0, δf)︸ ︷︷ ︸
ε

+... + C̃(δf), δf))︸ ︷︷ ︸
ε2

. (38)

Note that since δf has an expansion in ε1/2 the indications are the highest order of each term. The
collisional terms are denoted by the bilinear integro-differential operator C(f, f) – this operator has two
velocity space derivatives which are enhanced when acting on the small (ṽ) velocity scale (see Eq. (11)).
Thus C̃(f, f) indicates the enhanced collision operator.

We expect that a solution is most easily obtained in terms of the gyro-center variables. Thus we transform
the FP equation into these variables: Substituting the form Eq. (37) into Eq. (38) and dropping some
terms O(ε2) and higher we obtain:

∂δf

∂t︸︷︷︸
ε

+
dR
dt

· ∂δf

∂R︸ ︷︷ ︸
ε

+
dE
dt

· ∂δf

∂E︸ ︷︷ ︸
ε7/4:ε2

+
dµ

dt
· ∂δf

∂µ︸ ︷︷ ︸
ε7/4:ε2

− C̃(δf, F0)︸ ︷︷ ︸
ε

− C̃(F0, δf)︸ ︷︷ ︸
ε

+
dθ

dt

(
∂δf

∂θ

)
R︸ ︷︷ ︸

ε−1/4:1

= − dθ

dt

(
∂F0

∂θ

)
R︸ ︷︷ ︸

ε−1

− dR
dt

· ∂F0

∂R︸ ︷︷ ︸
1

− dE
dt

· ∂F0

∂E︸ ︷︷ ︸
ε

− dµ

dt
· ∂F0

∂µ︸ ︷︷ ︸
ε

+C(F0, F0)︸ ︷︷ ︸
ε1/2

(39)

where (see previous sections) we have

dR
dt

= v‖b0 + δE× b0

B0
− (v × b0

Ω0
)
v · ∇B0

B0
. (40)

and
dE
dt

= q
∂(φ)
∂t

. (41)

The process of simplifying the equations involves equating orders and solving the resulting equations. In
principle we need to go to O(ε2) to get the long transport time evolution of F0 – in fact we will only
go to O(ε) and then use the moment equations to get the slow evolution of F0. Those of you who know
the Chapman -Enskog expansion or neoclassical transport theory will recognize this approach. We now
expand Eq. (39) order by order.
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4.1 O(ε−1):

At this order from Eq. (39) we have simply:

−Ω0(x)
(

∂F0

∂θ

)
R,E,µ

= 0 (42)

from which we deduce that F0 is independent of gyro-angle θ (any initial dependance would be wiped
out by the fast gyration) so that:

F0 = F0(R, E , µ, t) (43)

and recall that F0 depends only on the long transport time scale. Now we proceed to O(ε−1/4):

4.2 O(ε−1/4):

The only contribution at this order is the θ̃ variation of δf .

−Ω0(X)
(

∂δf1

∂θ̃

)
R,E,µ

= 0 (44)

thus δfi = δfi(R, E , Ẽ , µ, µ̃, θ, σ, t).

4.3 O(1):

From Eq. (39) we obtain:

dR
dt

· ∇F0 = v‖b · ∇F0 = Ω0

(
∂δf1

∂θ

)
R,E,Ẽ,µ,µ̃,θ,σ,t

(45)

where we have dropped the O(ε) parts of dR
dt they will be included in next order. We have already defined

the ring average in Eq. (31) but in our new variables we think of the average at fixed R, E , Ẽ , µ, µ̃, σ, t.
i.e.

< a >R (R, E , Ẽ , µ, µ̃, σ, t) =
1
2π

∫ 2π

0

a(R− v × b0

Ω0
, E , Ẽ , µ, µ̃, θ, σ, t)dθ. (46)

This average annihilates the right hand side of Eq. (45) and yields the condition for solution:

b · ∇F0 (47)

i.e. the equilibrium must be constant along the field lines at constant E , Ẽ , µ, µ̃, σ, t. Thus since a field
line covers the flux surface we make F0 a function of X = x ·R, E , Ẽ , µ, µ̃, σ and t. Note that in fact F0

contains some of the perturbation since it includes φ in E . From Eqs. (45) and (47) we have

δf1 = h(R, E , Ẽ , µ, µ̃, σ, t) (48)

In O(ε) we derive an equation – the gyro-kinetic equation – that determines the evolution of h.

11



4.4 O(ε1/2):

In this order we obtain

C(F0, F0) = Ω0

(
∂δf3/2

∂θ

)
R,E,Ẽ,µ,µ̃,θ,σ,t

(49)

from Eq. (39). As before we ring average this equation to annihilate the right hand side. We obtain

C(F0, F0) = O(ε3/2). (50)

From Bolzmann’s H theorem and the constraint on the form of F0, Eq. (43), it is easy to show that F0

is the ”almost” Maxwellian:

F0(r,v, t) = n(t,X)
(

m

2πT (t, X)

)3/2

exp [−(
E

T (t, X)
)] (51)

Where as before E = (1/2)mv2 + qφ(r, t) and X = x + vy/Ω0. While this is the form of the distribution
function we still need to derive equations for h(R, v, v⊥, t), n(t, X) and T (t, X). This form of F0 is
essentially a local equilibrium response. It is common to expand F0 as:

F0(r,v, t) = n(t, x)
(

m

2πT (t, x)

)3/2

exp [−(
(1/2)mv2

T (t, x)
)]

(
1− qφ

T
− ρ · ∇ lnF0

)
(52)

Where ρ = z×v
Ω0

is the larmor radius. The φ term is confusingly called the adiabatic response. We
will use Eq. (51) and keep all the Boltzmann response to simplify equations at higher order. The term
C(F0, F0) = O(ε3/2) is dropped to higher order (eventually it gives rise to the classical transport). Now
we proceed to O(ε) where we obtain the gyro-kinetic equation as a solubility constraint for δf2.

4.5 O(ε):

Substituting the form Eq. (51) into Eq. (38) and dropping terms O(ε2) and higher we obtain:

∂h

∂t
+

dR
dt

· ∂h

∂R
− C̃(h, F0)− C̃(F0, h) = Ω0

(
∂δf2

∂θ

)
R

+
dR
dt

· ∂F0

∂R
+

dE
dt

· ∂F0

∂E
(53)

where (see Lecture # 1) we have

dR
dt

= v‖b0 + δE× b0

B0
− (v × b0

Ω0
)
v · ∇B0

B0
. (54)

and
dE
dt

= q
∂(φ)
∂t

. (55)

To obtain an equation for h we must annihilate δf2 from Eq. (54) – to do this we ring average. The ring
distribution h(R, µ, E , σ, t) satisfies the Gyro-kinetic equation:

∂h

∂t
+v‖

∂h

∂Z
+vD · ∂h

∂R
− ∂ < φ >R

∂R
×(

b0

B0
)· ∂h

∂R
−

〈
C̃(h)

〉
R

= q
F0

T0

∂ 〈φ〉R
∂t

− ∂ < φ >R

∂R
× (

b0

B0
) · ∂F0

∂R
(56)

and

vD = − v2
⊥

2Ω0

∇B0

B0
× b0 =

v2
⊥

2B0
(

1
Ω0

)
dB0

dx
y
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is the equilibrium grad B drift. In some loose sense the Gyro-kinetic equation is the kinetic equation
for rings of charge centered at R(t) of radius v⊥/Ω. It is important to note that φ and h have zero
spatial average over the box. The physical interpretation of the terms in Eq. (56) is straight forward, for
example:

• vD · ∂h
∂R is the convection of the perturbed ring distribution by the equilibrium grad B drift.

• −∂<φ>R

∂R × ( b0
B0

) · ∂h
∂R is the convection of the perturbed distribution by the ring averaged E cross B

drift. This is the only nonlinear term.

• q F0
T0

∂〈φ〉R
∂t is the work done on the particles by the field.

• −∂<φ>R

∂R × ( b0
B0

) · ∂F0
∂R is the convection of the equilibrium distribution by the ring averaged E cross

B drift.

Figure 5: Perpendicular motion of the guiding center is the E cross B drift plus the equilibrium grad B
drift.

Figure 6: Perpendicular motion of the guiding center is the E cross B drift plus the equilibrium grad B
drift.

5 Ordered Electron Fokker-Planck Equation.

The expansion of the electron equation is similar but differs because electrons move faster than ions
(vthe ∼ ε−1/2vthi), have a smaller larmor radius (ρe ∼ ε1/2ρi) and collide more than ions (νe ∼ ε−1/2νi).
Thus after some algebra one learns that:

F0e(r,v, t) = ne(t, x)
(

m

2πTe(t, x)

)3/2

exp [−(
Ee

Te(t, x)
)] (57)

Where Ee = (1/2)mv2 − eφ(r, t). We also learn that δf1 = he and δf3/2 are independent of θ.
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5.1 O(ε1/2):

At this order we learn that:
b · ∇he = 0 (58)

The solution of this has he = he(X, E , µ, σ, t) – i.e. constant on flux surface. We determine he in next
order.

5.2 O(ε):

Ring averaging the equation at this order we obtain the electron gyro-kinetic equation:

∂he

∂t
+v‖

∂δf3/2

∂Z
+vD · ∂he

∂R
− ∂ < φ >R

∂R
×(

b0

B0
)· ∂he

∂R
−〈C(he)〉R = −e

F0

T0

∂ 〈φ〉R
∂t

− ∂ < φ >R

∂R
× (

b0

B0
) · ∂F0

∂R
(59)

We can remove δf3/2 by averaging over Y and Z. Because the electron larmor radius is small we can
ignore the difference between r and R. Thus:

∂he

∂t
− C(he) = −e

F0

T0

∂φ̄

∂t
(60)

where φ̄ is the flux surface (y, z) averaged φ. This equation has the solution:

he =
−eF0φ̄

T0
(61)

6 Quasi-Neutrality.

We define a second ring average at fixed r as:

〈a(R, E , µ, σ, θ, t)〉r =
1
2π

∮
dθa(r +

v × z
Ω

, E , µ, σ, θ, t),

This average arises in Maxwell’s equations where for example the charge at r is due to particles with
gyro-centers on a circle of radius v⊥/Ω about r. 1Thus quasi neutrality can be written:

−niq
2φ

Ti
+ 2πq

∑
σ

∫ ∫
v⊥dv⊥dv‖ 〈hi(R, E , µ, σ, t)〉r =

nee
2(φ− φ̄)
Te

(64)

where we have expanded E in F0 to get the Boltzmann terms.
1Gyro-averages and Bessel Functions. Strictly speaking the Eq. (56) and Eq. (64) are an integro-differential system

in space since they involve the gyro-averages. It is common to use a fourier basis in both r and R since this ”diagonalizes”
the gyro-average. Specifically

< exp ik · r >R= J0(
k⊥v⊥

Ω
) exp ik ·R (62)

< exp ik ·R >r= J0(
k⊥v⊥

Ω
) exp ik · r (63)

Where J0(x) is the zeroth order Bessel function of the first kind. Thus in the fourier space gyro-averaging just becomes
multiplication by a Bessel function (that depends on v⊥).
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The two equations, Eq. (56) and Eq. (64) are essentially an autonomous set on the turbulent time-scale.
They are the Electrostatic Gyro-kinetic system. Of course F0 must also be known, this requires
calculating evolution on the long transport time-scale. However on the turbulent time-scale F0 must be
kept fixed and we can simply take it as known.

7 Equilibrium Transport Evolution.

To calculate the evolution of F0 can be computed by considering the moment equations for n0 and T0.
Thus the ion density evolution comes from,

∂ni

∂t
+∇ · Γi = 0. (65)

Where the flux is Γi =
∫

vfid
3v. To isolate the mean density evolution we must average the fluctuating

parts.
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