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Overview
 Global or full f GKs needs to evolve Φ as well as n & T and

flows on transport time scales

 Must avoid introducing an extraneous Φ

 Desire to retain neoclassical ion heat and momentum
transport effects on evolution

 Want to avoid doing GKs to very high order

 Today: Transport time scale gyrokinetics using hybrid
gyrokinetic - fluid description
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Hybrid gyrokinetics-fluid
 Retains all neoclassical effects as well as turbulence
 Simplification: electrostatic
 Simplification: drift kinetic electrons (ITG & TEM)
 Evolve n, Ti, Te, Φ,      and      with conservation equations
 Strategy: f used only for closure (heat flows and viscosities)

- f not used to evaluate n, T,     and     directly
 Use higher order GK variables to retain ion viscosity
 Valid for PIC or continuum GKs
 No need to solve GK equation in a conservative form:

conservation properties built into fluid description
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Gyrokinetic limitations
 Numerically implemented GKs typically valid thru O(ρ/L)

 Evolves n & T without neoclassical transport effects  
 Often does not satisfy intrinsic ambipolarity
 Can’t evolve the axisymmetric, long wavelength Φ
 Moments of the gyrokinetic equation contain less information than

moments of the full Fokker-Planck equation
 Need to extend GKs

 Desire to avoid having to solve GKE to higher order

 Need GK variables to O(δ2) but not GKE

[since f = fM + δf for neoclassical effects, only need δf to O(δ)]
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Gyrokinetic validity reminder
 GKE normally derived using             for which

     and

 Therefore

gives

 GKE normally gives f (r, v, t) = f (R, E, µ, t) + O(δ2) error
even though GKs good for arbitrary k⊥ρ: only good to O(δ)

 Desire GK variables to O(δ2) at k⊥L~1 with leading
collisional gyrophase dependence [it can be evaluated to
O(δ2)] : then can evaluate f (r, v, t) = f (R, E, µ, t) + O(δ3)
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Gyrokinetic equation reminder
 Variables G ⇒    , E = v2/2 + ZeΦ/M, µ, ϕ
 Changing variables, Fokker-Planck equation becomes:

 Variables G constructed so dGj/dt = 〈dGj/dt〉ϕ + small.
 Leading ϕ dependence from
 Gyroaveraging at fixed    ,E,µ (recall 〈dµ/dt〉ϕ = 0) gives

to O(δ) when we ignore O(δ2) from  f & variable change
Here  with u parallel velocity &     drift velocity
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Hybrid features
 Hybrid gyrokinetic - fluid description is a way forward

 Can solve any consistent gyrokinetic equation to order δ = ρ/L
 Conservation of number, charge, momentum & energy
 Insures intrinsic ambipolarity
 Evolve n, T, Φ,    and

 Use next order gyrokinetic variables only in ion viscosity

 Use moments of full Fokker-Planck equation to gain an order
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Moment approach in a tokamak
 In a strongly magnetized (B →∞) plasma easier to evaluate

certain moments of f indirectly

 Direct evaluation of             using a stationary
Maxwellian gives a vanishing radial particle flux

 Taking the (Mc/Ze)R2∇ζ⋅    moment of the full Fokker-
Planck equation

using              and          then inserting a
Maxwellian gives order δ ≡ ρ/L corrections

                &
with
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Moment evaluation of ion heat flux
 A direct evaluation of the classical radial collisional heat flux

      requires f to order O(νρ/ΩL)
 The diamagnetic flow only requires f to O(ρ/L) and can be

evaluated by using
to obtain

 To avoid calculating f to higher order (we only need
gyrophase dependent terms), form           moment
of the full Fokker=Planck equation to find the classical term

 Notice this evaluation only required the leading order
gyrophase dependent correction to the Maxwellian! 
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Neoclassical vs. classical in a tokamak
 The (Mc/2Ze)R2v2∇ζ⋅      moment of the full FP equation

gives the flux surface averaged collisional radial heat flux

 The leading gyrophase dependent correction to the
Maxwellian gives classical radial ion heat transport

 The leading gyrophase independent correction to the
Maxwellian gives the neoclassical radial ion heat transport

 Only need the leading corrections to the Maxwellian to
evaluate the radial tranport of heat

 Can use same procedure with turbulence
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Hybrid overview
 Conservation of number, charge and energies

 Moment evaluation of heat flux

 Gyrokinetic reminders

 Conservation of total and electron momentum

 Moment evaluation of viscosity (not for the faint hearted)

 Retains all turbulent, neoclassical & classical effects to
evolve profiles including the axisymmetric radial electric
field!
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Number, charge & energy
 Number:

 Charge:    with

 Ion energy:

 Electron energy:

energy exchange =
momentum exchange =
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Ion heat flow
 Start with

 A direct evaluation of                    using the lowest order
gyrokinetic f is independent of ν in the axisymmetric limit so
misses collisional radial heat flux

 To pick up an order form    moment of full FP

 To lowest order find (Q known)

anomalous collisional

ο Variables R, E and µ defined with dR/dt, dE/dt and dµ/dt independent of ϕ
⇒ fast gyromotion absorbed in GK variables
 Here d/dt ≡ Vlasov operator

 Need to find f (r, v, t) from f (R, E, µ, t)
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Full ion heat flow expression
 Putting everything together and neglecting the time

derivative term

 The time derivative term is ignored since it gives an O(δ)
correction to the fluctuating heat flux that when averaged
over a turbulent saturation time results in a O(δ2) correction
to the background evolution
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Neoclassical and classical limit
 The neoclassical and classical terms are in

 Only ∇Ti terms should contribute since

f = fM + (Mc/Ze)R∇ζ                  and

 Q has the property         so only     v2∂T/∂ψ term
from ∂fM/∂ψ will enter and it gives classical transport

 h1 & v||v2∂T/∂ψ give neoclassical (only depends on ∂T/∂ψ)

 Really have to do all this gyrokinetically
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Need a gyrokinetic f for ions
 Use your favorite GK variables & a PIC or Eulerian code

 For example,       , K = v2/2 + Ze(Φ− 〈Φ〉ϕ)/M, µ, ϕ

with the gyroaverage performed at fixed     , Κ, µ and
f = f(   ,K,µ,t) in velocity integrals performed at fixed

 For heat flux we only need the leading gyrokinetic variables

           , K = v2/2 + Ze(Φ− 〈Φ〉ϕ)/M   &    µ0=    /2Β
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Usual gyrokinetic orderings apply
 Small parameters:

 f and Φ have k⊥ρ ~ 1 but k||L ~ 1

 For k⊥L ~1, eΦ/T ~ 1 and f ≈ fM  ≡ Maxwellian

 For k⊥ρ ~1, eΦk/T ~ fk / fM ~ δ

 For general k⊥:

 Note ∇Φ ~ T/eL ~ k⊥Φk and ∇fk ~ ∇fM
 Drift ordering: VExB ~ δvi << vi
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Global of full f gyrokinetic evolution
 Evolution of n and T only contains what is in the density

and energy moments of the full f gyrokinetic equation

 Drift term in GKE contains ExB turbulent transport but no
neoclassical & classical collisional transport in GKE

 Profile evolution only due turbulence

 Can’t properly evolve the long wavelength axisymmetric
potential profile since Reynolds stress incomplete and
collisional terms missing
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Momentum conservation
 Electrons (neglect inertia & gyro+perp viscosity):

 Ions + electrons:

 Solve electron momentum for
 To lowest order radial particle flux

 Intrinsically ambipolar in axisymmetric limit since we use
requiring 
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Ion viscosity
 Start with

 Parallel anisotropy:        with

 Gyroviscosity & perpendicular viscosity evaluated using
moment of full FP equation to find form

 Perpendicular viscosity (using self-adjointness of        ):

F known, neglect ∂/∂t & need variables to O(δ2) in first term
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Ion viscosity & comments
 Ion gyroviscosity

 Reynolds stress part of gyroviscosity
 Need f to O(δ2) in first term for classical (need leading order

collisional correction to f from       )

Viscosity comments
 Good news:

 Long wavelengths can be done analytically [Simakov & Catto PPCF]
 Can assume Bp/B << 1 to retain O(Bδ2/Bp) poloidal gyroradius

neoclassical corrections and ignore O(δ2) classical transport

 Bad news:
 GKs gives f (r, v, t) = f (R, E, µ, t) but need to evaluate integrals at

fixed r and the expressions are complicated
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Radial momentum transport
 Conservation of toroidal angular momentum determines  

       and it enters both Reynolds stress & collisional
viscosity as

 Both ~ 10-5 for ITER: B=5.3 T, T = 8 keV, n = 1019 m-3,
R = 6 m, and                  with 0.1 de-phasing of

 Expect relaxation to steady state to be anomalous since
balancing ion inertia & Reynolds stress                O(δ 2p)
gives time to establish zonal flow

 But for times >>                       should retain collisional
viscosity and Reynolds stress to establish global
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Vorticity “replaces” quasineutrality

 Vorticity is used along with quasineutrality:
 The plasma is still quasineutral
 Vorticity must retain all physics in quasineutrality
 Must at least satisfy intrinsic ambipolarity to O(δ2) [not

determine long wavelength axisymmetric Φ to O(δ2)]
 Must retain Φ evolution including neoclassical effects for

global or full f descriptions
 Could evolve axisymmetric and non-axisymmetric pieces

separately
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Vorticity requirements
 Vorticity = charge conservation must be evaluated carefully:

 Need full      from momentum conservation in
 Ion inertial term gives time derivative of vorticity
 Must retain gyroviscosity/Reynolds stress and perpendicular

viscosity to get neoclassical effects

 Vorticity requirements differ for δf and full f
 Desire vorticity for a δf code to not determine the long wavelength

axisymmetric radial electric field
 Vorticity for a full f or global code needs to keep more physics to

determine the long wavelength axisymmetric radial electric field
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Final Comments
 Global gyrokinetics must satisfy intrinsic

ambipolarity

 Hybrid gyrokinetic-fluid description needed to
properly evolve turbulence with neoclassical
retained
 Density, temperatures, potential, ion flow,

current evolved by conservation equations
 Gyrokinetic f only used for closure and (almost)

anyones will do!


