

Intrinsic Ambipolarity & Edge Gyrokinetics

Peter J. Catto *Plasma Science & Fusion Center, MIT* with Felix Parra, Grisha Kagan & Andrei Simakov

Overview

□ δf or local gyrokinetics has proven useful to treat local core turbulence at $k_{\perp}\rho \sim 1$ on turbulent saturation time scales

□ BUT there are global or full f subtleties and complications

- Global axisymmetyric radial electric field in a tokamak
- Turbulent calculations in the pedestal and SOL
- Turbulent calculations on transport time scales

Topics

- Today: Intrinsic ambipolarity & edge gyrokinetics
- Next time: Transport time scale gyrokinetics

Terminology

□ Full Fokker-Planck (FP) equation: $df/dt = \partial f / \partial t + \vec{v} \cdot \nabla f + (Ze/M)(-\nabla \Phi + c^{-1}\vec{v} \times \vec{B}) \cdot \nabla_v f = C$ Drift kinetic equation (DKE): $E=v^2/2 + Ze\Phi/M \& \langle d\mu/dt \rangle_{\phi} = 0$ $\partial f / \partial t + (v_{\parallel} \vec{n} + \vec{v}_{d}) \cdot \nabla f + (Ze/M)(\partial \Phi / \partial t) \partial f / \partial E = \overline{C} \{f\}$ Gyrokinetic equation (GKE): $E = v^2/2 + Ze\Phi/M \& \langle d\mu/dt \rangle_{\phi} = 0$ $\frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} + \frac{\partial v_d}{\partial \omega} \cdot \nabla_R f + \frac{\partial c}{\partial t} + \frac{\partial c}{\partial t} - \frac{\partial c}{\partial t} = \frac{\partial f}{\partial E} = \frac{\partial c}{\partial t}$ Drift kinetic gyroaverage holds \vec{r} or (r, θ , ζ) fixed Gyrokinetic gyroaverage holds $\vec{R} = \vec{r} + \Omega^{-1}\vec{v} \times \vec{n}$ fixed

Typical drift kinetic orderings

□ Small parameters: 1 >> $k_{\perp}\rho \sim \delta \sim \rho/L_{\perp} \sim \nu/\Omega$

- Assumes $k_{\perp}L_{\perp} \sim 1 \sim k_{\parallel}L_{\parallel}$ (allows $L_{\perp}/\rho >> k_{\perp}L_{\perp} >> 1$)
- Drift kinetics can order $\Omega^{-1}\partial/\partial t \sim \delta$ but typically $\Omega^{-1}\partial/\partial t \sim \delta^2$
- For zonal flow $e\Phi_{\kappa}/T \sim \delta$ so $e\partial \Phi_{\kappa}/\partial t \sim T\Omega \delta^2$
- □ Global f and Φ : f ≈ f_M = Maxwellian & e Φ/T ~ 1 with $e\partial \Phi/\partial t$ ~ $T\Omega\delta^2$
- \Box Fluctuations: $e\Phi_k/T \sim f_k / f_M \sim \delta << 1$
- \Box Allows $\nabla \Phi \sim T/eL_{\perp} \sim k_{\perp} \Phi_{k}$ and $\nabla f_{k} \sim \nabla f_{M}$
- \Box Drift ordering: V_{ExB} ~ $\delta v_i \ll v_i$

Drift kinetics in tokamak core

Using canonical angular momentum \$\psi_*=\psi - (Mc/Ze)R^2\nabla\zeta \cdot \vec v\$ streamlines derivation of DKE
Let f = f_0 + f_1 + f_2 + ... & gyroaverage at fixed \$\vec r\$
Lowest order: \$\Overline{V}\times \vec n \cdot \nabla_v f_0 = -\Overline{O}\delta f_0 / \delta \vec = 0\$
Lowest order Maxwellian: \$\vec f_0 = v_{||}\vec n \cdot \nabla f_0 = C_0 \{f_0\} = 0\$ \$f_0 = f_M = f_M(\psi, E)\$ with \$E = v^2/2 + (Ze/M)\$\Delta\$

□ But $\psi \approx \psi_*$ suggests using f = f_{*} + h with f_{*} = f_M(ψ_*, E) = f_M(ψ, E) + ($\psi_* - \psi$) $\partial f_M(\psi, E) / \partial \psi$ +...

Axisymmetric B ion drift kinetics

- $\Box \quad \dot{B} = I\nabla\zeta + \nabla\zeta \times \nabla\psi = B\vec{n} \text{ and electrostatically} \\ df_*/dt = c(\partial \Phi/\partial \zeta)\partial f_M/\partial \psi_* + (Ze/M)(\partial \Phi/\partial t)\partial f_M/\partial E$
- □ Fokker-Planck equation becomes dh/dt + (Ze/M)($\partial \Phi / \partial t$) $\partial f_M / \partial E$ + c($\partial \Phi / \partial \zeta$) $\partial f_M / \partial \psi_*$ = C{f_{*} + h}
- \Box Lowest order using h << f_M & \vec{r} , E, μ , ϕ variables gives
 - $\Omega \partial h_1 / \partial \phi = C_0 \{ f_M(\psi, E) \} = 0$ with $h = h_1 + h_2 + ...$
- □ Next order: using $\partial f_M / \partial \psi \Rightarrow f_M (Mv^2/2T^2) \partial T / \partial \psi$
 - $\Omega \partial h_2 / \partial \phi + dh_1 / dt = C_1 \{h_1 (Mc/Ze) R^2 \nabla \zeta \cdot \vec{v} \partial f_M / \partial \psi \}$ $+ (Zef_M / T) \partial \Phi / \partial t - c(\partial \Phi / \partial \zeta) \partial f_M / \partial \psi_*$

 $\label{eq:generalized} \begin{array}{|c|c|c|} & \Box & Gyroaveraging gives desired O(\delta) \ \mathsf{DKE:} \\ & \partial \bar{h}_1 / \partial t + v_{\parallel} \bar{n} \cdot \nabla \bar{h}_1 = C_1 \{ \overline{h}_1 - f_M (Iv_{\parallel} M v^2 / 2T^2 \Omega) \partial T / \partial \psi \} \\ & \quad + (Zef_M / T) \partial \Phi / \partial t - c (\partial \Phi / \partial \zeta) \partial f_M / \partial \psi_* \end{array}$

Intrinsic ambipolarity

Use Iv_{||}n̄ · ∇|_E (v_{||}/Ω) = v̄_d · ∇ψ & f̄₁ = h̄₁ - (Iv_{||}/Ω)∂f_M/∂ψ to recover standard O(δ) form in steady axisymmetric state v_{||}n̄ · ∇f̄₁ - C₁{f̄₁} = -v̄_d · ∇ψ∂f_M/∂ψ = -v̄_d · ∇f_M
First form more convenient in steady axisymmetric state: v_{||}n̄ · ∇h̄₁ = C₁{h̄₁ - (Iv_{||}/Ω)f_M(Mv²/2T - 5/2)∂ℓnT/∂ψ}
Only a ∂T/∂ψ drive: no ∂Φ/∂ψ appears!

□ In axisymmetric systems for $k_{\perp}L_{\perp} \sim 1$, n & T evolution does not depend on or in any way determine $\langle \Phi \rangle_{\theta}$ through O(δ^2)

 $\hfill\square$ Intrinsically ambipolar to $O(\delta$) so far

Toroidal angular momentum

Flux surface averaging source free conservation of total toroidal angular momentum in a quasineutral plasma

$$\begin{split} \left\langle \vec{J} \cdot \nabla \psi \right\rangle_{\theta} &= \frac{c}{V'} \frac{\partial}{\partial \psi} V' \left\langle R^2 \nabla \zeta \cdot \vec{\pi}_i \cdot \nabla \psi \right\rangle_{\theta} + Mc \frac{\partial}{\partial t} \left\langle nR^2 \vec{V} \cdot \nabla \zeta \right\rangle_{\theta} \\ \text{with } \vec{\pi}_i &= M \int d^3 v f(\vec{v}\vec{v} - v^2 \vec{I}/3) \qquad R^2 \nabla \zeta \cdot \vec{J} \times \vec{B} = \vec{J} \cdot \nabla \psi \\ \left\langle X \right\rangle_{\theta} &\equiv (1/V') \oint d\theta d\zeta X / \vec{B} \cdot \nabla \theta \end{split}$$

In the steady state must be consistent with charge conservation & Ampere's law

$$(c/4\pi)\left\langle \nabla \psi \cdot \nabla \times \vec{B}\right\rangle_{\theta} = 0 = \left\langle \vec{J} \cdot \nabla \psi \right\rangle_{\theta}$$

□ Axisymmetric, steady state radial electric field determined by $\langle R^2 \nabla \zeta \cdot \vec{\pi}_i \cdot \nabla \psi \rangle_{\theta} = 0$

 $\begin{array}{l} \mbox{Intrinsic ambipolarity to } O(\delta^2) \\ \hline \mbox{Direct evaluation of } \vec{\pi}_i = M \int d^3 v f(\vec{v}\vec{v} - v^2\vec{I}/3) \mbox{ using} \\ f_1 = \overline{h}_1 - (Mc/Ze)R^2 \nabla \zeta \cdot \vec{v} \partial f_M / \partial \psi + O(\delta^2) \mbox{ gives } \nabla \psi \cdot \vec{\pi}_i \cdot \nabla \zeta = 0 \\ \mbox{ since } \overline{h}_1 \mbox{ doesn't matter} \end{array}$

□ Using \tilde{f} to $O(\delta^2)$ can show (notice \bar{f} doesn't matter) $\langle R^2 \nabla \psi \cdot \vec{\pi}_i \cdot \nabla \zeta \rangle_{\theta} \rightarrow \langle (MI/B) \int d^3 v f_1 v_{\parallel} \vec{v}_d \cdot \nabla \psi \rangle_{\theta} + \text{ small} \rightarrow 0$ (this is non-trivial to prove!)

 $\Box \ \partial \Phi / \partial \psi$ does not enter to $O(\rho_p \rho / L^2) \sim O(\delta^2)$

□ To determine $\partial \Phi / \partial \psi$ need to evaluate $\langle R^2 \nabla \psi \cdot \vec{\pi}_i \cdot \nabla \zeta \rangle_{\theta}$ to $O(\rho_p \rho v / \Omega L^2)$ neoclassically \Rightarrow need f to $O(\rho_p \rho v / \Omega L^2) \sim O(\delta^3)$

Gyrokinetic $\Phi(\psi)$

Sources

- Neoclassical + Reynolds stress: $\nabla \Phi \sim T/eL_{\perp} \sim k_{\perp} \Phi_{k}$
- Zonal flow generated by turbulence: $\nabla_{\perp} \Phi_k \sim k_{\perp} T/ek_{\perp} L_{\perp} \sim T/eL_{\perp}$
- Gyrokinetic quasineutrality presumably gets zonal flow contribution correct, but not the neoclassical since gyrokinetic equation only good through O(ρ_p/L₁)
- □ Gyrokinetics gives correct neoclassical relation between poloidal ion flow & $\partial \Phi / \partial \psi$ since it calculates f to O(ρ_p / L_\perp) [coefficient sensitive to collision operator]
- □ "Potential" problem if slowly varying part of $\Phi(\psi)$ helps to regulate turbulence since it violates intrinsic ambipolarity

Gyrokinetic implications

□ Gyrokinetics is normally only good to $O(\delta)$ for $k_{\perp}\rho \sim 1$

- Therefore, it should not determine the axisymmetric, long radial wavelength portion of $\Phi(\psi)$ zonal flow is short wavelength so ok
- If it does determine global Φ, then you can't believe it and must make sure your results are insensitive to it!
- □ Global (or full f) gyrokinetics should not determine the axisymmetric, long wavelength portion of $\Phi(\psi)$ to O(δ^2)
 - Can we check this?
 - How does gyrokinetics get into trouble?

Gyrokinetic orderings □ Small parameters: $\delta = \frac{\rho}{L} \sim \frac{\omega_*}{\Omega} \sim \frac{\nu}{\Omega} <<1$ \Box f and Φ have $k_{\perp}\rho \sim 1$ but $k_{\parallel}L \sim 1$ \Box For $k_{\perp}L \sim 1$, $e\Phi/T \sim 1$ and $f \approx f_{M} \equiv$ Maxwellian \Box For $k_{\perp}\rho \sim 1$, $e\Phi_k/T \sim f_k / f_M \sim \delta$ $\Box \text{ For general } k_{\perp}: \ \frac{e\phi_k}{T} \sim \frac{f_k}{f_M} \sim \frac{1}{k_{\perp}L}$ • Note $\nabla \Phi \sim T/eL \sim k_{\perp} \Phi_{k}$ and $\nabla f_{k} \sim \nabla f_{M}$ Drift ordering: $V_{ExB} \sim \delta v_i \ll v_i$

Gyrokinetic details

□ Evaluate the GK variables $G = G_0 + G_1 + G_2 + ...$ by removing gyrophase dependence order by order using $\Omega \partial G_{j+1} / \partial \varphi = dG_j / dt - \langle dG_j / dt \rangle_{\varphi}$

□ To keep μ an adiabatic invariant must retain the gyrophase independent piece that makes $\langle d\mu/dt \rangle_{0} = 0$

□ The μ variable is only obtained to O(δ) since it is unclear how to make $\langle d\mu/dt \rangle_{\phi} = 0$ to higher order and the lowest order f is presumed to be near Maxwellian

Gyrokinetic variable **R** \Box Define **R** such that d**R**/dt = $\langle d\mathbf{R}/dt \rangle_{o}$ + small where $d/dt \equiv \partial/\partial t + \mathbf{v}\cdot\nabla - (Ze/M)\nabla\Phi \cdot\nabla_{\mathbf{v}} - \Omega\partial/\partial\phi$ • with $\langle ... \rangle_{0} = gyroaverage$ at fixed **R** $\square \mathbf{R} = \mathbf{r} + \mathbf{R}_1 + \mathbf{R}_2, \ \mathbf{R}_1 = O(\delta L) \text{ and } \mathbf{R}_2 = O(\delta^2 L)$ **To first order** $\vec{R} \approx \vec{r} + \vec{R}_1 \approx \vec{v} - \Omega \partial \vec{R}_1 / \partial \phi$ \square Imposing d**R**/dt = $\langle d\mathbf{R}/dt \rangle_{o}$ to first order $\vec{R} \approx \vec{v} - \Omega \,\partial \vec{R}_1 / \partial \phi = \langle \vec{R} \rangle = \langle \vec{v} \rangle = v_{||} \vec{n}$ $\vec{R}_1 = \Omega^{-1} \int d\phi (\vec{r} - \langle \vec{r} \rangle) = \Omega^{-1} \vec{v} \times \vec{n}$ Then Similarly $\vec{R}_2 = \Omega^{-1} \int d\phi (\dot{\vec{r}} + \dot{\vec{R}}_1 - \langle \dot{\vec{r}} + \dot{\vec{R}}_1 \rangle)$

Gyrokinetic validity

□ GKE normally derived using $\vec{R} = \vec{r} + \Omega^{-1}\vec{v}\times\vec{n}$ for which $\langle d\vec{R}/dt \rangle_{\phi} = \vec{v}_{d} + u\vec{n}$ and $d\vec{R}/dt - \langle d\vec{R}/dt \rangle_{\phi} \sim \delta v_{i} \sim \vec{v}_{d} \sim v_{p}$

- $$\label{eq:formula} \begin{split} \square \mbox{ Therefore } & df/dt \left\langle df/dt \right\rangle_{\phi} = -\Omega \partial \tilde{f}/\partial \phi + (\dot{\vec{R}} \left\langle \dot{\vec{R}} \right\rangle_{\phi}) \cdot \nabla f + ... \\ & \mbox{ gives } & \\ & \tilde{f} \sim \Omega^{-1} \int d\phi (\dot{\vec{R}} \left\langle \dot{\vec{R}} \right\rangle_{\phi}) \cdot \nabla f_{M} + ... \sim \delta^{2} f_{M} \end{split}$$
- □ GKE normally gives $f(\mathbf{r}, \mathbf{v}, t) = f(\mathbf{R}, E, \mu, t) + O(\delta^2)$ error even though GKs good for arbitrary $k_{\perp}\rho$: only good to $O(\delta)$
- Desire GK variables to O(δ²) at k_⊥L~1 with leading collisional gyrophase dependence [it can be evaluated to O(δ²)]: then can evaluate f (r, v, t) = f (R, E, μ, t) +O(δ³)

Gyrokinetic equation

 \Box Variables G $\Rightarrow \vec{R}$, E = v²/2 + Ze Φ/M , μ , ϕ Changing variables, Fokker-Planck equation becomes: $\left|\frac{\partial f}{\partial t} + \dot{\vec{R}} \cdot \nabla_R f + \dot{\phi} \frac{\partial f}{\partial \phi} + \dot{\mu} \frac{\partial f}{\partial \mu} + \frac{Ze \,\partial \Phi}{M \,\partial t} \frac{\partial f}{\partial E} = C\{f\}\right|$ □ Variables G constructed so $dG_i/dt - \langle dG_i/dt \rangle_{o}$ + small. Leading φ dependence from $-\Omega \partial \tilde{f} / \partial \varphi = C\{f\} - \langle C\{f\} \rangle_{\omega}$ □ Gyroaveraging at fixed \mathbf{R} , E, μ (recall $\langle d\mu/dt \rangle_{\phi} = 0$) gives $\frac{\partial f}{\partial t} + \dot{\vec{R}} \cdot \nabla_R f + \frac{Ze \partial \langle \Phi \rangle_{\varphi}}{M \partial t} \frac{\partial f}{\partial F} = \langle C\{f\} \rangle_{\varphi}$ to $O(\delta)$ when we ignore $O(\delta^2)$ from f & variable change Here $\vec{R} = u\vec{n}(\vec{R}) + \vec{v}_d$ with u parallel velocity & \vec{v}_d drift velocity

Alternate gyrokinetic forms

Numerically often easier to use kinetic energy K or parallel velocity u =[2(K - μB(R)]^{1/2}

□ Using kinetic energy K = $v^2/2 + Ze(\Phi - \langle \Phi \rangle_{\phi})/M + \dots$

$$\frac{\partial f}{\partial t} + (u\vec{n} + \vec{v}_{d}) \cdot [\nabla_{R}f - \frac{Ze}{M}\nabla_{R}(\Phi - \langle \Phi \rangle_{\phi})\frac{\partial f}{\partial K}] = \langle C\{f\} \rangle_{\phi}$$

$$\vec{v}_{d} = \vec{v}_{M} - (c/B)\nabla_{R}\langle \Phi \rangle_{\phi} \times \vec{n} \qquad \langle \Phi \rangle_{\phi} = (2\pi)^{-1}\phi d\phi \Phi (\vec{R} - \vec{R}_{1} - \vec{R}_{2}, t)$$

Also possible to write in conservative form
Will use the K form for discussion of quasineutrality

Quasineutrality (QN): $Zn_i = n_e$ \Box Taylor expanding for ions to O(δ) $f_{i}(\vec{R}, K, \mu, t) \approx f_{i}(\vec{r} + \Omega^{-1}\vec{v} \times \vec{n}, v^{2}/2, \mu_{0}, t) - \frac{Ze}{T} (\Phi - \langle \Phi \rangle_{\varphi}) f_{M}$ □ For electrons (ITG ordering), $n_e = n_0 + \frac{en_0}{T} (\Phi - \langle \Phi \rangle_{\theta})$ • with $\langle ... \rangle_{\theta} =$ flux surface average \Box For $k_1 \rho \sim 1$ and to $O(\delta n)$ $\frac{Z^2 e}{T_i} \int d^3 v \left(\Phi - \langle \Phi \rangle_{\varphi} \right) f_M + \frac{e n_0}{T_o} \left(\Phi - \langle \Phi \rangle_{\theta} \right) = Z \hat{N}_i - n_0$ • with $\hat{N}_i = \int d^3 v f_i(\vec{r} + \Omega^{-1} \vec{v} \times \vec{n}, v^2/2, \mu_0, t)$ \Box For $k_{\perp}L \sim 1$ & axisymmetry, need QN independent of $\langle \Phi \rangle_{\overline{\theta}}$ to O($\delta^2 n$) due to intrinsic ambipolarity!

$$\begin{array}{l} \theta \text{ - pinch solution to } O(\delta^2) \\ \hline \text{Use Krook } C\{f\} = -\nu (f - f_M) \text{ and } \langle \ldots \rangle_{\phi} \text{ to } O(\delta^2 f_M) \\ f_i = \langle f_M \rangle = f_{M0} \bigg[1 - \frac{M v_\perp^2}{2 p_i} \nabla \cdot \bigg(\frac{c n_i}{B \Omega} \nabla_\perp \Phi \bigg) + \bigg(2 - \frac{M v_\perp^2}{2 T_i} \bigg) \frac{M c^2}{2 T_i B^2} |\nabla_\perp \Phi|^2 + \ldots \bigg] \\ \text{with} \\ f_M = n_i \bigg(\frac{M}{2 \pi T_i} \bigg)^{3/2} \exp \bigg(- \frac{M (\vec{v} - \vec{V}_i)^2}{2 T_i} \bigg), \quad f_{M0} = n_i \bigg(\frac{M}{2 \pi T_i} \bigg)^{3/2} \exp \bigg(- \frac{M K}{T_i} \bigg) \\ \hline \text{To find } \langle \Phi \rangle_{\theta}, \text{ need QN to } O(\delta^2 n) \text{ (valid for any } n_e) \\ - \nabla \cdot \bigg(\frac{Z c n_i}{B \Omega} \nabla_\perp \Phi \bigg) + \frac{Z n_i M c^2}{2 T_i B^2} |\nabla_\perp \Phi|^2 = Z \hat{N}_i - n_e \\ \text{with} \\ \hat{N}_i = \int d^3 v (1 + \frac{v_{\parallel}}{\Omega} \vec{n} \cdot \nabla \times \vec{n}) f_i (\vec{r}, v^2/2, \mu_0) + (\vec{I} - \vec{n} \vec{n}) : \frac{\nabla \nabla p_i}{2 M \Omega^2} \\ \hline \text{ Yellow } O(\delta^2) \text{ terms in } f_i \text{ result in exact cancellation: } 0 = 0 \end{array}$$

$\boldsymbol{\theta}$ - pinch and tokamak potential

- Any global axisymmetric, long wavelength $\langle \Phi \rangle_{\theta}$ should satisfy QN to O(δ^2)
- □ Typically $\delta^2 f_M$ terms MISSING in QN \Rightarrow giving a non-physical $\langle \Phi \rangle_{\theta}$
- Even with full $\delta^2 f_M$ terms, $\langle \Phi \rangle_{\theta}$ must be undetermined: any initial guess works!
- $\Box \quad \text{Only need } f_i \text{ to } O(\delta^2 f_M) \text{ if use } \left\langle R^2 \nabla \psi \cdot \vec{\pi}_i \cdot \nabla \zeta \right\rangle_{\theta} = 0$

$$\operatorname{Ze}\frac{\partial \Phi}{\partial r} + \frac{1}{n_{i}}\frac{\partial p_{i}}{\partial r} = rB\int dr \frac{3}{rB}\frac{\partial T_{i}}{\partial r} \left[\frac{5}{3}\frac{\partial}{\partial r}\ln B - \frac{\partial}{\partial r}\ln\left(\frac{p_{i}}{r}\frac{\partial T_{i}}{\partial r}\right)\right] \sim \frac{\partial T_{i}}{\partial r}$$

Same in tokamaks: $\langle R^2 \nabla \psi \cdot \vec{\pi}_i \cdot \nabla \zeta \rangle_{\theta} = 0$ gives $\langle \Phi \rangle_{\theta}$ at O($\delta^3 p$) for f_i to O($\delta^2 f_M$)

Bottom line!

Gyrokinetic quasineutrality works for $k_{\perp}\rho \sim 1$

BUT it cannot determine the self-consistent axisymmetric electric field in long wavelength limit [see Felix Parra for more details]

Need an alternative equation for $k_{\perp}L \sim 1$: probably a moment approach similar to drift kinetics (next time)

Edge gyrokinetics

- □ Simplification: electrostatic gyrokinetics \vec{B} slowly varying and time independent
- □ To handle $\rho_p \sim L_1$ conveniently replace radial gyrokinetic variable by canonical angular momentum $\psi_* = \psi - (Mc/Ze)R^2 \vec{v} \cdot \nabla \zeta = \psi + \Omega^{-1} \vec{v} \times \vec{n} \cdot \nabla \psi - (Iv_{\parallel}/\Omega)$
- □ Variables $\vec{R} \rightarrow \psi_*, \vartheta_*, \zeta_* E_*$ and μ_* defined with $d\vec{R}/dt$, dE_*/dt and $d\mu_*/dt$ independent of gyrophase ϕ
 - \Rightarrow fast gyromotion absorbed in GK variables
 - d/dt = Vlasov operator
 - Gyrophase dependence from $-\Omega\partial \tilde{f}/\partial \phi = C\{f\} \langle C\{f\} \rangle_{\phi}$

□ Need to find f (r, v, t) = f (R, E, µ, t) + \tilde{f} & $\tilde{f} \sim O(f_M \delta v / \Omega)$

Exact isothermal ion solution

- An exact solution to the ion kinetic equation exists in the isothermal limit when ion-electron collisions are neglected
- Function of total energy & canonical angular momentum to make Vlasov operator vanish

 $\mathbf{f}_0 = \mathbf{f}_0(\boldsymbol{\psi}_*, \mathbf{E})$

□ Must be Maxwellian to make ion-ion collision operator vanish $f_0 = f_M(\psi_*, E)$

□ Therefore (T, η , ω constants) $f_M(\psi_*, E) = \eta (M/2\pi T)^{3/2} exp(-ME/T - e\omega\psi_*/cT)$ $f_M(\psi_*, E) = n(M/2\pi T)^{3/2} exp[-M(\vec{v} - \omega R^2 \nabla \zeta)^2/2T]$

Axisymmetric steady state edge GKs

- Conveniently retains finite poloidal gyroradius effects
- Preserves Ψ_{*} and total energy = E as constants of the motion in steady state axisymmetric limit to exactly recover isothermal limit
- \Box Axisymmetric steady state: $\dot{\vartheta}_* \partial f_0 / \partial \vartheta_* = \langle C\{f_0\} \rangle_{\varphi}$
- $\label{eq:powerseq} \begin{array}{|c|c|c|} \hline & \mbox{In axisymmetric steady state can prove the ion temperature} \\ & \mbox{must vary slowly compared to a poloidal ion gyroradius} \\ & \mbox{ρ_p} \rightarrow 0: \langle \int d^3 v \ell n f_0 \langle C\{f_0\} \rangle_{\phi} \rangle_{\vartheta} = 0 \ \mbox{gives $f_0 = f_M$ in core} \\ & \mbox{ρ_p} \rightarrow L_{\perp}: \int_{ped} d^3 r \int d^3 v \ell n f_0 \langle C\{f_0\} \rangle_{\phi} = 0 \ \ \mbox{with $\partial f_0 / \partial \vartheta_* = 0$} \\ & \mbox{gives rigidly rotating Maxwellian $f_0 = f_0(\psi_*, E) = f_M$ so} \\ & \mbox{ρ_p} \nabla \ell n T <<1$ when ρ_p} \nabla \ell n n \sim 1$ in \underline{banana} regime} \end{array}$

Pedestal pressure balance

Assume pedestal flow subsonic (as in C-Mod): $|V_i| \ll v_i$ □ Since banana T variation slow: $V_i \approx \omega_i R^2 \nabla \zeta$ where $\omega_{i} = -c \left(\frac{d\Phi}{d\psi} + \frac{1}{en} \frac{dp_{i}}{d\psi} \right) \approx 0 \quad \text{and} \quad \frac{cT_{i}R}{v_{i}en} \frac{dn}{d\psi} \sim \frac{\rho_{p}}{L_{\perp}} \sim 1$ □ lons <u>electrostatically</u> confined: $\frac{d\Phi}{d\psi} \approx -\frac{1}{en} \frac{dp_i}{d\psi} \approx -\frac{T_i}{en} \frac{dn}{d\psi}$ \Box Electrons magnetically confined: $\vec{V}_e = \omega_e R^2 \nabla \zeta + u_e(\psi) \vec{B}$ $\omega_{e} = -c \left(\frac{d\Phi}{d\psi} - \frac{1}{en} \frac{dp_{e}}{d\psi} \right) \approx \frac{c}{en} \frac{d(p_{e} + p_{i})}{d\psi} \quad \text{and} \quad \frac{\omega_{e}R}{v_{i}} \sim \frac{\rho_{p}}{L_{\perp}} \sim 1$

□ Not clear what establishes a $\rho_p \sim L$ pedestal

□ Another reason sonic ordering inappropriate!

Edge zonal flow GKE

□ Subsonic zonal flow gyrokinetic equation (axisymmetric):

Let
$$f_0 = f_M(\psi_*, E; T(\psi)) + h(\psi_*, \vartheta_*, \zeta_*, E, \mu_*, t)$$
 then

$$\frac{\partial h}{\partial t} + \dot{\vartheta}_* \frac{\partial h}{\partial \vartheta_*} - \left\langle C_{ii}^{\ell} \{g - \frac{Iv_{\parallel}}{\Omega} \frac{Mv^2}{2T^2} \frac{\partial T}{\partial \psi} f_M \} \right\rangle_{\phi} = -\frac{e}{T} \frac{\partial \Phi_*}{\partial t} f_M J_0(\frac{k_{\perp}v_{\perp}}{\Omega}) e^{iQ}$$

with $\Phi(\psi,t) = \Phi_0(t)\exp[iS(\psi)]$ & $\Phi_*(\psi_*,t) = \Phi_0(t)\exp[iS(\psi_*)]$ Taylor expanding S leads to Q = S'Iv_{||}/ Ω Same as Hinton & Rosenbluth

Can retain finite orbit effects in ϑ_* and Φ_* [see Kagan for more details]

Full f edge gyokinetic equation

□ Full electrostatic full f gyrokinetic equation:

$$\begin{split} \frac{\partial f}{\partial t} + c \frac{\partial \langle \Phi \rangle_{\phi}}{\partial \zeta_{*}} \frac{\partial f}{\partial \psi_{*}} + \dot{\vartheta}_{*} \frac{\partial f}{\partial \vartheta_{*}} + \dot{\zeta}_{*} \frac{\partial f}{\partial \zeta_{*}} + \frac{e}{M} \frac{\partial \langle \Phi \rangle_{\phi}}{\partial t} \frac{\partial f}{\partial E} &= \langle C\{f\} \rangle_{\phi} \\ \text{with gyroaverage holding } \psi_{*} \text{ fixed} \\ \dot{\vartheta}_{*} &= (v_{\parallel}^{*}\vec{n}_{*} + \vec{v}_{d}) \cdot (\nabla \vartheta)_{*} + (Iv_{\parallel}/\Omega) \partial (v_{\parallel}\vec{n} \cdot \nabla \vartheta) / \partial \psi \\ \dot{\zeta}_{*} &= (v_{\parallel}^{*}\vec{n}_{*} + \vec{v}_{d}) \cdot (\nabla \zeta)_{*} + (Iv_{\parallel}/\Omega) \partial (v_{\parallel}\vec{n} \cdot \nabla \zeta) / \partial \psi \\ \vec{v}_{d} &= \vec{v}_{m} + (c/B)\vec{n} \times \langle \nabla \Phi \rangle_{\phi} \\ \text{Can use different energy variable or parallel velocity} \end{split}$$

Edge gyrokinetic subtleties

□ In a subsonic $\rho_p \sim L_{\perp}$ with global $\Phi_0(\psi)$ satisfying $e\partial \Phi/\partial \psi = -T_i \partial \ell n n/\partial \psi + O(\partial \ell n T_i/\partial \psi) \approx -T_i \partial \ell n n/\partial \psi$

• Zonal flow $\Phi_1(\psi,t)$ can have $k_{\perp}\rho_p > 1 >> k_{\perp}\rho$

- Poloidal ExB drift can be significant: $\dot{\vartheta}_* \approx (v_{\parallel} + cI\Phi'_0/B)/qR$ since $cI\Phi_0'/B \approx -(cIT/eBn)\partial n/\partial \psi \sim v_i\rho_p/L_\perp \sim v_i$
- Poloidal ExB and orbit squeezing due to $\Phi_0^{\prime\prime}$ alter zonal flow!

Poloidal ExB and orbit squeezing effects on neoclassical

• Use $f = f_* + h$ with $f_* = f_M(\psi_*, E)$ and expand T_i about ψ $\frac{(v_{\parallel} + cI\Phi'_0/B)}{qR} \frac{\partial \overline{h}_1}{\partial \theta} = C_1 \{\overline{h}_1 - f_M \frac{IMv^2}{2T\Omega} (v_{\parallel} + \frac{cI\Phi'_0}{B}) \frac{\partial \ell nT}{\partial \psi} \}$

• Transit average of C₁ involves $cI\Phi_0'/B \approx -(cIT/eBn)\partial n/\partial \psi$ altering ion flow and heat flux, but not altering ion = electron particle xport

Discussion

□ Gyrokinetics should be made to satisfy intrinsic ambipolarity

- Can only turbulently evolve n & T; GKs can't evolve the full Φ
- Edge gyrokinetics conveniently formulated using canonical angular momentum as radial variable
 - In the banana regime radial ion temperature variation must be slow compared to the poloidal ion gyroradius
 - Subsonic pedestal: ions electrostatic & electrons magnetic
 - Zonal flow in pedestal different than in core
 - Also works on axis and in internal transport barrier

Next time: Hybrid gyrokinetic-fluid description

- Density, temperatures, potential, ion flow, current evolved by conservation equations
- Gyrokinetic f only used for closure and (almost) anyones will do!

