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Overview
 δf or local gyrokinetics has proven useful to treat local core

turbulence at k⊥ρ ~ 1 on turbulent saturation time scales

 BUT there are global or full f subtleties and complications
 Global axisymmetyric radial electric field in a tokamak

 Turbulent calculations in the pedestal and SOL

 Turbulent calculations on transport time scales

 Topics
 Today: Intrinsic ambipolarity & edge gyrokinetics

 Next time: Transport time scale gyrokinetics
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Terminology
 Full Fokker-Planck (FP) equation:

   df/dt ≡

 Drift kinetic equation (DKE): E=v2/2 + ZeΦ/M  &

 Gyrokinetic equation (GKE): E=v2/2 + ZeΦ/M  &

 Drift kinetic gyroaverage holds      or (r, θ ,ζ) fixed

 Gyrokinetic gyroaverage holds      fixed

  

€ 

∂f /∂t +
r v ⋅ ∇f + (Ze/M)(−∇Φ+ c−1r v ×

r 
B ) ⋅ ∇vf = C

  

€ 

∂f /∂t + (v||
r n + r v d) ⋅ ∇f + (Ze/M)(∂Φ /∂t)∂f /∂E = C {f}

€ 

〈dµ /dt〉ϕ= 0

  

€ 

∂f /∂t + (v||
r n + 〈r v d〉ϕ) ⋅ ∇Rf + (Ze/M)(∂〈Φ〉ϕ /∂t)∂f /∂E = 〈C{f}〉ϕ

  

€ 

r 
R = r r +Ω−1r v × r n 

  

€ 

r r € 

〈dµ /dt〉ϕ= 0
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Typical drift kinetic orderings
 Small parameters: 1 >> k⊥ρ ~ δ ~ ρ/L⊥ ~ ν/Ω

 Assumes k⊥L⊥ ~ 1 ~ k||L|| (allows L⊥/ρ >> k⊥L⊥ >> 1)
 Drift kinetics can order Ω−1∂/∂t ∼ δ but typically Ω−1∂/∂t ∼ δ2

 For zonal flow eΦκ/T ~ δ  so  e∂Φκ/∂t ~ TΩδ2

 Global f and Φ: f ≈ fM ≡ Maxwellian &
eΦ/T ~ 1 with e∂Φ/∂t ~ TΩδ2

 Fluctuations: eΦk/T ~ fk / fM ~  δ  << 1

 Allows ∇Φ ~ T/eL⊥ ~ k⊥Φk and ∇fk ~ ∇fM

 Drift ordering: VExB ~ δvi << vi



5

Drift kinetics in tokamak core
 Using canonical angular momentum
ψ∗= ψ − (Mc/Ze)R2             streamlines derivation of DKE

 Let f = f0 + f1 + f2 +… & gyroaverage at fixed

 Lowest order:

 Lowest order Maxwellian:
f0 = fM = fM(ψ,E) with E = v2/2 + (Ze/M)Φ

 But ψ ≈ ψ∗  suggests using f = f* + h with
f* = fM(ψ∗,E) = fM(ψ,E) + (ψ∗− ψ) ∂fM(ψ,E)/∂ψ +…

  

€ 

Ω
r v × r n ⋅ ∇vf0 = −Ω∂f0 /∂ϕ = 0

  

€ 

˙ f 0 = v||
r n ⋅ ∇f0 = C0{f0} = 0

  

€ 

∇ζ ⋅
r v 

  

€ 

r r 
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Axisymmetric B ion drift kinetics
                                          and electrostatically

df*/dt = c(∂Φ/∂ζ)∂fM/∂ψ∗ + (Ze/M)(∂Φ/∂t)∂fM/∂E
 Fokker-Planck equation becomes

dh/dt + (Ze/M)(∂Φ/∂t)∂fM/∂E + c(∂Φ/∂ζ)∂fM/∂ψ∗ = C{f* + h}
 Lowest order using h << fM  &     ,E,µ,ϕ variables gives

- Ω∂h1/∂ϕ = C0{fM(ψ.E)} = 0   with   h = h1 + h2 + …
 Next order: using ∂fM/∂ψ ⇒ fM(Mv2/2T2)∂T/∂ψ

- Ω∂h2/∂ϕ + dh1/dt = C1{h1- (Mc/Ze)R2          ∂fM/∂ψ}
+ (ZefM/T)∂Φ/∂t - c(∂Φ/∂ζ)∂fM/∂ψ∗

 Gyroaveraging gives desired O(δ) DKE:

  

€ 

r r 

  

€ 

∇ζ⋅
r v 

  

€ 

r 
B = I∇ζ +∇ζ × ∇ψ= Br n 

€ 

C1{h 1− fM (Iv||Mv2/2T2Ω)∂T/∂ψ}  

€ 

∂h 1/∂t + v||
r n ⋅∇h 1=

€ 

+ (ZefM/T)∂Φ /∂t − c(∂Φ /∂ζ)∂fM /∂ψ∗
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Intrinsic ambipolarity
 Use           &

to recover standard O(δ) form in steady axisymmetric state

 First form more convenient in steady axisymmetric state:

 Only a ∂T/∂ψ drive: no ∂Φ/∂ψ appears!

 In axisymmetric systems for k⊥L⊥ ~ 1, n & T evolution does
not depend on or in any way determine 〈Φ〉θ  through O(δ 2)

 Intrinsically ambipolar to O(δ ) so far

  

€ 

Iv||
r n ⋅ ∇E (v||/Ω) =

r v d ⋅∇ψ

€ 

f 1 = h 1− (Iv||/Ω)∂fM /∂ψ

  

€ 

v||
r n ⋅∇f 1−C1{f 1} = −

r v d⋅∇ψ∂fM /∂ψ = −
r v d⋅∇fM

  

€ 

v||
r n ⋅∇h 1= C1{h 1− (Iv||/Ω)fM(Mv2/2T− 5/2)∂lnT/∂ψ}



8

Toroidal angular momentum
 Flux surface averaging source free conservation of total

toroidal angular momentum in a quasineutral plasma

with 

 In the steady state must be consistent with charge
conservation & Ampere’s law

 Axisymmetric, steady state radial electric field determined
by

  

€ 

r 
J ⋅ ∇ψ

θ
=

c
V'

∂
∂ψ

V' R2∇ζ ⋅
t 
π i ⋅ ∇ψ θ

+ Mc ∂
∂t

nR2
r 
V ⋅ ∇ζ

θ

  

€ 

(c/4π) ∇ψ⋅∇ ×
r 
B 

θ
= 0 =

r 
J ⋅ ∇ψ

θ

  

€ 

t 
π i =M d3∫ vf(r v r v − v2

t 
I /3)

  

€ 

X
θ
≡ (1/V') dθdζX/

r 
B ⋅∇θ∫

  

€ 

R2∇ζ ⋅
t 
π i ⋅ ∇ψ θ

= 0

  

€ 

R2∇ζ ⋅
r 
J ×

r 
B =

r 
J ⋅ ∇ψ
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Intrinsic ambipolarity to O(δ 2)
 Direct evaluation of      using

     gives
since      doesn’t matter

 Using    to O(δ2) can show (notice     doesn’t matter)

(this is non-trivial to prove!)

  ∂Φ/∂ψ does not enter to O(ρpρ/L2) ~ O(δ2)

 To determine ∂Φ/∂ψ need to evaluate                            to
O(ρpρν/ΩL2) neoclassically ⇒ need f to O(ρpρν/ΩL2) ~ O(δ3)

  

€ 

f1 = h 1− (Mc/Ze)R2∇ζ ⋅
r v ∂fM /∂ψ+ O(δ2)

€ 

˜ f 

  

€ 

R2∇ψ⋅
t 
π i ⋅ ∇ζ θ

→ (MI /B) d3∫ vf1v||
r v d ⋅ ∇ψ θ

+ small→ 0

  

€ 

∇ψ⋅
t 
π i ⋅ ∇ζ= 0

  

€ 

t 
π i = M d3∫ vf(r v r v − v2

t 
I /3)

€ 

h 1

€ 

f 

  

€ 

R2∇ψ⋅
t 
π i ⋅ ∇ζ θ
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Gyrokinetic Φ(ψ)
 Sources

 Neoclassical + Reynolds stress: ∇Φ ~ T/eL⊥ ~ k⊥Φk

 Zonal flow generated by turbulence: ∇⊥Φk ~ k⊥T/ek⊥L⊥ ~ T/eL⊥

 Gyrokinetic quasineutrality presumably gets zonal flow
contribution correct, but not the neoclassical since
gyrokinetic equation only good through O(ρp/L⊥)

 Gyrokinetics gives correct neoclassical relation between
poloidal ion flow & ∂Φ/∂ψ since it calculates f to O(ρp/L⊥)
[coefficient sensitive to collision operator] 

 “Potential” problem if slowly varying part of Φ(ψ) helps to
regulate turbulence since it violates intrinsic ambipolarity

€ 

C{f0}
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Gyrokinetic implications
 Gyrokinetics is normally only good to O(δ) for k⊥ρ ~ 1

 Therefore, it should not determine the axisymmetric, long radial
wavelength portion of Φ(ψ) - zonal flow is short wavelength so ok

 If it does determine global Φ, then you can’t believe it and must
make sure your results are insensitive to it!

 Global (or full f) gyrokinetics should not determine the
axisymmetric, long wavelength portion of Φ(ψ) to O(δ2)
 Can we check this?
 How does gyrokinetics get into trouble?



12

Gyrokinetic orderings
 Small parameters:

 f and Φ have k⊥ρ ~ 1 but k||L ~ 1

 For k⊥L ~1, eΦ/T ~ 1 and f ≈ fM  ≡ Maxwellian

 For k⊥ρ ~1, eΦk/T ~ fk / fM ~ δ

 For general k⊥:

 Note ∇Φ ~ T/eL ~ k⊥Φk and ∇fk ~ ∇fM
 Drift ordering: VExB ~ δvi << vi

€ 

eφk
T
~ fk
fM
~ 1
k⊥L

€ 

δ =
ρ
L
~ ω∗

Ω
~ ν
Ω

<<1



13

Gyrokinetic details
 Evaluate the GK variables G = G0 + G1 + G2 +… by

removing gyrophase dependence order by order using
Ω∂Gj+1/∂ϕ = dGj/dt − 〈dGj/dt〉ϕ

 To keep µ an adiabatic invariant must retain the gyrophase
independent piece that makes 〈dµ/dt〉ϕ = 0

 The µ variable is only obtained to O(δ) since it is unclear
how to make 〈dµ/dt〉ϕ = 0  to higher order and the lowest
order f is presumed to be near Maxwellian
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Gyrokinetic variable R
 Define R such that dR/dt = 〈dR/dt〉ϕ+ small

where d/dt ≡ ∂/∂t + v⋅∇ – (Ze/M)∇Φ ⋅∇v – Ω∂/∂ϕ
 with 〈…〉ϕ ≡ gyroaverage at fixed R

R = r + R1 + R2, R1 = O(δL) and R2 = O(δ2L)
 To first order

 Imposing dR/dt = 〈dR/dt〉ϕ to first order

Then

Similarly

  

€ 

r ˙ R ≅ r ˙ r +
r ˙ R 1 ≅

r v −Ω∂
r 
R 1/∂ϕ

  

€ 

r 
R 1 =Ω−1 dϕ (r ˙ r − 〈r ˙ r 〉)∫ =Ω−1r v × r n 

  

€ 

r ˙ R ≅ r v −Ω∂
r 
R 1/∂ϕ = 〈

r ˙ R 〉 = 〈
r v 〉 = v||

r n 

  

€ 

r 
R 2 =Ω−1 dϕ (r ˙ r +

r ˙ R 1 − 〈
r ˙ r +

r ˙ R 1〉)∫
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Gyrokinetic validity
 GKE normally derived using              for which

   and

 Therefore

gives

 GKE normally gives f (r, v, t) = f (R, E, µ, t) + O(δ2) error
even though GKs good for arbitrary k⊥ρ: only good to O(δ)

 Desire GK variables to O(δ2) at k⊥L~1 with leading
collisional gyrophase dependence [it can be evaluated to
O(δ2)] : then can evaluate f (r, v, t) = f (R, E, µ, t) +O(δ3)

  

€ 

r 
R = r r +Ω−1r v ×r n 

  

€ 

d
r 
R /dt − 〈d

r 
R /dt〉ϕ ~ δvi ~ r v d ~ vp  

€ 

〈d
r 
R /dt〉ϕ =

r v d + ur n 

  

€ 

df /dt − 〈df /dt〉ϕ = −Ω∂˜ f /∂ϕ + (
r ˙ R − 〈

r ˙ R 〉ϕ) ⋅ ∇f + ...

  

€ 

˜ f ~ Ω−1 dϕ∫ (
r ˙ R − 〈

r ˙ R 〉ϕ) ⋅ ∇fM + ... ~ δ2fM
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Gyrokinetic equation
 Variables G ⇒    , E = v2/2 + ZeΦ/M, µ, ϕ
 Changing variables, Fokker-Planck equation becomes:

 Variables G constructed so dGj/dt − 〈dGj/dt〉ϕ + small.
 Leading ϕ dependence from
 Gyroaveraging at fixed    ,E,µ (recall 〈dµ/dt〉ϕ = 0) gives

to O(δ) when we ignore O(δ2) from  f & variable change
Here  with u parallel velocity &     drift velocity

  

€ 

r 
R 

  

€ 

∂f
∂t

+
r ˙ R ⋅ ∇Rf + ˙ ϕ 

∂f
∂ϕ

+ ˙ µ 
∂f
∂µ

+
Ze
M
∂Φ
∂t

∂f
∂E

= C{f}

  

€ 

r 
R 

  

€ 

∂f
∂t

+
r ˙ R ⋅ ∇Rf +

Ze
M
∂〈Φ〉ϕ
∂t

∂f
∂E

= 〈C{f}〉ϕ
€ 

−Ω∂˜ f /∂ϕ = C{f}− 〈C{f}〉ϕ

  

€ 

r ˙ R = ur n (
r 
R ) +

r v d   

€ 

r v d
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Alternate gyrokinetic forms
 Numerically often easier to use kinetic energy K or parallel

velocity u =[2(K - µB(R)]1/2

 Using kinetic energy K = v2/2 + Ze(Φ−〈Φ〉ϕ)/M +…

 Also possible to write in conservative form
 Will use the K form for discussion of quasineutrality

  

€ 

∂f
∂t

+ (ur n + r v d) ⋅ [∇Rf − Ze
M
∇R (Φ− 〈Φ〉ϕ) ∂f

∂K
] = 〈C{f}〉ϕ

  

€ 

r v d =
r v M − (c /B)∇R 〈Φ〉ϕ ×

r n 
  

€ 

〈Φ〉ϕ = (2π)−1 dϕΦ
r 
R −

r 
R 1 −

r 
R 2,t( )∫
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Quasineutrality (QN): Zni = ne
 Taylor expanding for ions to O(δ)

 For electrons (ITG ordering),
 with 〈…〉θ ≡ flux surface average

 For k⊥ρ ~ 1 and to O(δn)

 with

 For k⊥L ~ 1 & axisymmetry, need QN independent
of 〈Φ〉θ to O(δ2n) due to intrinsic ambipolarity!

  

€ 

fi(
r 
R ,K,µ,t) ≅ fi(

r r +Ω−1r v × r n ,v2/2,µ0,t) − Ze
Ti

(Φ− 〈Φ〉ϕ)fM

€ 

Z2e
Ti

d3v(Φ− 〈Φ〉ϕ)fM∫ +
en0

Te
(Φ− 〈Φ〉θ) = Z ˆ N i − n0€ 

ne= n0 +
en0
Te
(Φ− 〈Φ〉θ)

  

€ 

ˆ N i = d3vfi(
r r +Ω−1r v × r n ,v2/2,µ0,t)∫
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θ - pinch solution to O(δ2)
 Use Krook C{f} = – ν (f – fM) and 〈…〉ϕ to O(δ2fM)

with

 To find 〈Φ〉θ, need QN to O(δ2n) (valid for any ne)

with

 Yellow O(δ2) terms in fi result in exact cancellation: 0 = 0

€ 

fi = fM = fM0 1                                                                              
 

 
 

 

 
 

€ 

−∇ ⋅
Zcni

BΩ
∇⊥Φ

 

 
 

 

 
 +

ZniMc2

2TiB2
∇⊥Φ

2
= Z ˆ N i − ne

  

€ 

fM = ni
M

2πTi

 

 
 

 

 
 

3/ 2

exp −
M(r v −

r 
V i)2

2Ti

 

 
 

 

 
 , fM0 = ni

M
2πTi

 

 
 

 

 
 

3/ 2

exp −
MK
Ti

 

 
 

 

 
 

  

€ 

ˆ N i = d3v(1+
v||

Ω

r n ⋅ ∇ ×
r n )fi(

r r ,v2/2,µ0)∫ + (
t 
I − r n r n ) : ∇∇pi

2MΩ2

€ 

−
Mv⊥2

2pi
∇⋅

cni
BΩ

∇⊥Φ
 

 
 

 

 
 + 2 −Mv⊥

2

2Ti

 

 
 

 

 
 
Mc2

2TiB2
∇⊥Φ

2
+ ...
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θ - pinch and tokamak potential
 Any global axisymmetric, long wavelength 〈Φ〉θ should

satisfy QN to O(δ2)

 Typically δ2fM terms MISSING in QN ⇒ giving a non-
physical 〈Φ〉θ

 Even with full δ2fM terms, 〈Φ〉θ must be undetermined: any
initial guess works!

 Only need fi to O(δ2fM) if use

 Same in tokamaks:            gives 〈Φ〉θ at O(δ3p)
for fi to O(δ2fM)

€ 

Ze ∂Φ
∂r

+
1
ni
∂pi
∂r

= rB dr 3
rB

∂Ti
∂r

5
3
∂
∂r
lnB− ∂

∂r
ln pi

r
∂Ti
∂r

 

 
 

 

 
 

 

 
 

 

 
 ∫ ~ ∂Ti

∂r

  

€ 

R2∇ψ⋅ t π i ⋅ ∇ζ θ
= 0

  

€ 

R2∇ψ⋅ t π i ⋅ ∇ζ θ
= 0
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Bottom line!

Gyrokinetic quasineutrality works for k⊥ρ ~ 1

BUT it cannot determine the self-consistent
axisymmetric electric field in long wavelength
limit [see Felix Parra for more details]

Need an alternative equation for k⊥L ~ 1:
probably a moment approach similar to drift
kinetics (next time)
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Edge gyrokinetics
 Simplification: electrostatic gyrokinetics

    slowly varying and time independent

 To handle ρp ~ L⊥ conveniently replace radial gyrokinetic
variable by canonical angular momentum

 Variables                        , E* and µ* defined with d   /dt,
dE*/dt and dµ*/dt independent of gyrophase ϕ
⇒ fast gyromotion absorbed in GK variables
 d/dt ≡ Vlasov operator
 Gyrophase dependence from

 Need to find f (r, v, t) = f (R, E, µ, t) +      &

  

€ 

ψ∗ =ψ− (Mc /Ze)R2r v ⋅ ∇ζ =ψ+Ω−1r v × r n ⋅ ∇ψ− (Iv|| /Ω)

  

€ 

r 
R →ψ∗,ϑ∗,ζ∗   

€ 

r 
R 

  

€ 

r 
B 

€ 

−Ω∂˜ f /∂ϕ = C{f}− 〈C{f}〉ϕ

€ 

C{f0}

€ 

˜ f ~ O(fMδν /Ω)

€ 

˜ f 
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Exact isothermal ion solution
 An exact solution to the ion kinetic equation exists in the

isothermal limit when ion-electron collisions are neglected

 Function of total energy & canonical angular momentum to
make Vlasov operator vanish

 Must be Maxwellian to make ion-ion collision operator
vanish

 Therefore (T, η ,ω  constants)
€ 

f0 = f0(ψ∗,E)

€ 

fM(ψ∗,E) = η(M /2πT)3/ 2exp(−ME /T − eωψ∗/cT)
€ 

f0 = fM(ψ∗,E)

  

€ 

fM(ψ∗,E) = n(M /2πT)3/ 2exp[−M(r v −ωR2∇ζ)2/2T]
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Axisymmetric steady state edge GKs
 Conveniently retains finite poloidal gyroradius effects

 Preserves        and total energy = E as constants of the
motion in steady state axisymmetric limit to exactly recover
isothermal limit

 Axisymmetric steady state:

 In axisymmetric steady state can prove the ion temperature
must vary slowly compared to a poloidal ion gyroradius
             :                     gives         in core

               :     with
gives rigidly rotating Maxwellian          so

          when       in banana regime

€ 

˙ ϑ ∗∂f0 /∂ϑ∗ = 〈C{f0}〉ϕ€ 

ψ∗

€ 

ρp→ 0   

€ 

〈 d3v∫ lnf0〈C{f0}〉ϕ〉ϑ = 0

€ 

∂f0 /∂ϑ∗= 0

€ 

f0 = fM

€ 

ρp→L⊥   

€ 

d3rped∫ d3v∫ lnf0〈C{f0}〉ϕ = 0

€ 

f0 = f0(ψ∗,E) = fM
  

€ 

ρp∇lnT <<1   

€ 

ρp∇lnn ~ 1
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Pedestal pressure balance
 Assume pedestal flow subsonic (as in C-Mod):
 Since banana T variation slow:   where

 Ions electrostatically confined:
 
 Electrons magnetically confined:

 Not clear what establishes a ρp~ L pedestal

 Another reason sonic ordering inappropriate!

  

€ 

|
r 
V i| << vi

  

€ 

r 
V i ≈ ω iR2∇ζ

€ 

ω i = −c dΦ
dψ

+
1
en
dpi
dψ

 

 
 

 

 
 ≈ 0 and cTiR

vien
dn
dψ

~
ρp
L⊥

~ 1

€ 

dΦ
dψ

≈ −
1
en
dpi
dψ

≈ −
Ti
en
dn
dψ

  

€ 

r 
V e =ωeR2∇ζ + ue(ψ)

r 
B 

€ 

ωe = −c dΦ
dψ

−
1
en
dpe
dψ

 

 
 

 

 
 ≈

c
en
d(pe+pi)
dψ

and ωeR
vi

~
ρp
L⊥

~ 1
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Edge zonal flow GKE
 Subsonic zonal flow gyrokinetic equation (axisymmetric):

Let  

then

with Φ(ψ,t) = Φ0(t)exp[iS(ψ)]   &   Φ*(ψ*,t) = Φ0(t)exp[iS(ψ*)]
Taylor expanding S leads to Q = S’Iv||/Ω

 Same as Hinton & Rosenbluth
 Can retain finite orbit effects in       and      [see Kagan for

more details]

€ 

f0 = fM(ψ∗,E;T(ψ)) + h(ψ∗,ϑ∗,ζ∗,E,µ∗,t)

  

€ 

∂h
∂t

+ ˙ ϑ ∗
∂h
∂ϑ∗

− 〈Cii
l{g − Iv||

Ω
Mv2

2T2
∂T
∂ψ

fM}〉ϕ= −
e
T
∂Φ∗

∂t
fMJ0(k⊥v⊥

Ω
)eiQ

€ 

Φ∗

€ 

˙ ϑ ∗
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Full f edge gyokinetic equation
 Full electrostatic full f gyrokinetic equation:

with gyroaverage holding ψ* fixed

Can use different energy variable or parallel velocity

€ 

∂f
∂t

+ c
∂〈Φ〉ϕ
∂ζ∗

∂f
∂ψ∗

+ ˙ ϑ ∗
∂f
∂ϑ∗

+ ˙ ζ ∗
∂f
∂ζ∗

+
e
M
∂〈Φ〉ϕ
∂t

∂f
∂E

= 〈C{f}〉ϕ

  

€ 

˙ ϑ ∗ = (v||
∗r n ∗ +

r v d) ⋅ (∇ϑ)∗ + (Iv||/Ω)∂(v||
r n ⋅ ∇ϑ) /∂ψ

  

€ 

˙ ζ ∗ = (v||
∗r n ∗ +

r v d) ⋅ (∇ζ)∗ + (Iv||/Ω)∂(v||
r n ⋅ ∇ζ) /∂ψ

  

€ 

r v d =
r v m + (c /B)r n × 〈∇Φ〉ϕ
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Edge gyrokinetic subtleties
 In a subsonic ρp ~ L⊥ with global Φ0 (ψ) satisfying

 Zonal flow Φ1(ψ,t) can have k⊥ρp > 1 >> k⊥ρ

 Poloidal ExB drift can be significant:
since cIΦΟ′/B ≈ -(cIT/eBn)∂n/∂ψ ∼ viρp/L⊥ ∼ vi

 Poloidal ExB and orbit squeezing due to ΦΟ′′ alter zonal flow!

 Poloidal ExB and orbit squeezing effects on neoclassical
 Use f = f* + h with f* = fM(ψ∗,E) and expand Ti about ψ

 Transit average of C1 involves cIΦΟ′/B ≈ -(cIT/eBn)∂n/∂ψ altering
ion flow and heat flux, but not altering ion = electron particle xport

€ 

˙ ϑ ∗ ≈ (v|| + cIΦ0' /B) /qR

  

€ 

e∂Φ/∂ψ = −Ti∂lnn/∂ψ+O(∂lnTi/∂ψ) ≈ −Ti∂lnn/∂ψ

  

€ 

(v|| + cIΦ0' /B)
qR

∂h 1
∂θ

= C1{h 1− fM
IMv2

2TΩ
(v|| +

cIΦ0'

B
) ∂lnT
∂ψ

}
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Discussion
 Gyrokinetics should be made to satisfy intrinsic ambipolarity

 Can only turbulently evolve n & T; GKs can’t evolve the full Φ

 Edge gyrokinetics conveniently formulated using canonical
angular momentum as radial variable
 In the banana regime radial ion temperature variation must be

slow compared to the poloidal ion gyroradius
 Subsonic pedestal: ions electrostatic & electrons magnetic
 Zonal flow in pedestal different than in core
 Also works on axis and in internal transport barrier

 Next time: Hybrid gyrokinetic-fluid description
 Density, temperatures, potential, ion flow, current evolved by

conservation equations
 Gyrokinetic f only used for closure and (almost) anyones will do!


