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We absolutely must leave room for doubt or there is no progress We absolutely must leave room for doubt or there is no progress and no  learning. and no  learning. 
There is no learning without posing a question. And  a question There is no learning without posing a question. And  a question requires doubt...Now requires doubt...Now 
the freedom of doubt, which is absolutely essential for the devethe freedom of doubt, which is absolutely essential for the development of science, lopment of science, 
was born from a struggle with constituted authorities... was born from a struggle with constituted authorities... FEYNMANNFEYNMANN, 1964, 1964
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One owes to Euler the first general formulas for fluid 
motion ... presented in the simple and luminous 
notation of partial differences... By this discovery, all 
fluid mechanics was reduced to a single point 
analysis, and if the equations involved were integrable, 
one could determine completely, in all cases the 
motion of a fluid moved by any forces..                         
LAGRANGE Mécanique analitique, Paris, 1788, Sec X. p. 271 
Of course, fluid mechanics can, in principle, be worked 

entirely in the Lagrangian frame ...even neglecting 
viscous forces... yield awkward moment equations.
CORRSIN 1962.  
...the use of the viscous Lagrangian equations in 
turbulence theory is still a matter for the future , MONIN
AND YAGLOM 1971



INTRODUCTORY NOTES 
AND RELATED



Examples showing Examples showing 
how extremely  intricatehow extremely  intricate

is the Lis the L--EE-- relationrelation



SAME FLOW SAME FLOW -- NOT THE NOT THE 
SAME PATTERNSAME PATTERN

Seeing is not necessarily believingSeeing is not necessarily believing



CimbalaCimbala, J.M., , J.M., NagibNagib, H. M and , H. M and RoshkoRoshko, A. (1988) Large structures in the far , A. (1988) Large structures in the far 
wakes of twowakes of two--dimensional bluff bodies, J. Fluid Mech., dimensional bluff bodies, J. Fluid Mech., 190190, 265, 265----298.298.

All frames (i.e. four different Lagrangian fields) correspond to the same Eulerian flow. 
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LAMINAR LAMINAR EULERIANEULERIAN FLOW FLOW 
AT AT ReRe∼∼1 (1 (EE--LAMINARLAMINAR))

CHAOTIC CHAOTIC LAGRANGIANLAGRANGIAN
((LL--TURBULENTTURBULENT))



MIXING IN PMM, Re ~ 1 (!)Re ~ 1 (!)
KUSH & OTTINO (1992)
RELEVANT TO MICROFLUIDICS with Re RELEVANT TO MICROFLUIDICS with Re ~ ~ 0 0 (!(!);   );   
Linked twist maps (LTMs),   Bernoulli mixing…

The complexity and problematic aspects The complexity and problematic aspects 
of the relation between the of the relation between the LagrangianLagrangian
and and EulerianEulerian fields is seen in the example fields is seen in the example 
of of LagrangianLagrangian ((kinematickinematic) chaos or ) chaos or 
LagrangianLagrangian turbulence (chaotic turbulence (chaotic 
advection) with a priori prescribed and advection) with a priori prescribed and 
not random not random EulerianEulerian velocity field (Evelocity field (E--
laminar). This is why laminar). This is why LagrangianLagrangian
description description -- being physically more being physically more 
transparent transparent -- is much more difficult than is much more difficult than 
the the EulerianEulerian description. In such Edescription. In such E--
laminar but Llaminar but L--turbulent flows the turbulent flows the 
LagrangianLagrangian statistics has no statistics has no EulerianEulerian
counterpart, as in the flow shown at the counterpart, as in the flow shown at the 
leftleft. . 



Dye visualization of two 
simple corotating
vortices merging into one 
vortex with  simple velocity 
field,  but not that simple 
filed of the passive 
scalar(s)  
LEWEKE 2000



KUSH & OTTINO (1992)



The structure of a passive marker (L) can be The structure of a passive marker (L) can be 
(and usually is) very complicated, whereas (and usually is) very complicated, whereas 
the corresponding velocity field (E)  is the corresponding velocity field (E)  is 
rather simple. The passive tracer may have rather simple. The passive tracer may have 
a nontrivial structure (and statistics!) a nontrivial structure (and statistics!) 
whereas the velocity field has none. whereas the velocity field has none. 



VVisualizations.isualizations. EE-- versus Lversus L--
Flow visualizations used for studying the structure of dynamicalFlow visualizations used for studying the structure of dynamical
fields (velocity, fields (velocity, vorticityvorticity, etc.) of turbulent flows may be quite , etc.) of turbulent flows may be quite 
misleadingmisleading, , making the question "what do we see?" extremely making the question "what do we see?" extremely 
nontrivial.  The meaning of nontrivial.  The meaning of ‘‘seeingseeing’’ turbulent flow is not so turbulent flow is not so 
simple as the simple as the EulerianEulerian flow structure is different from the flow structure is different from the 
LagrangianLagrangian one: watching the evolution of material one: watching the evolution of material ‘‘colouredcoloured
bandsbands’’ (as suggested by Reynolds 1884) in a flow may not (as suggested by Reynolds 1884) in a flow may not 
reveal the nature of the underlying motion, and even in the reveal the nature of the underlying motion, and even in the 
case of right qualitative observations the right result may comecase of right qualitative observations the right result may come
not necessarily for the right reasons. The famous verse by not necessarily for the right reasons. The famous verse by 
Richardson belongs to this kind of observation (which is not Richardson belongs to this kind of observation (which is not 
necessarily right either).necessarily right either).



66                                                              THE FUNDAMENTAL EQUATIONSTHE FUNDAMENTAL EQUATIONS oh. 4/8/0oh. 4/8/0
On the other hand we find that convectional motions are hindered by the formation of small eddies resembling those due to 
dynamical instability. Thus 0. K. M. Douglas writing of observations from aeroplanes remarks : "The upward currents of large 
cumuli give rise to much turbulence within, below, and around the clouds, and the structure of the clouds is often very 
complex." One gets a similar impression when making a drawing of a rising cumulus from a fixed point; the details change 
before the sketch can be completed. We realize thus that: : big whirls have little whirls that feed on their velocity, and lbig whirls have little whirls that feed on their velocity, and little ittle 
whirls have lesser whirls and so on to viscositywhirls have lesser whirls and so on to viscosity—— in the molecular sensein the molecular sense……
Thus, because it is not possible to separate eddies into clearly defined classes according to the source of their energy; and as 
there is no object, for present purposes, in making a distinction based on size between cumulus eddies and eddies a few metres
in diameter (since both are small compared with our coordinate chequer), therefore a single coefficient is used to represent the 
effect produced by eddies of all sizes and descriptions.





……. even wrong theories may help in designing machines. even wrong theories may help in designing machines. . 
(FEYNMAN, 1996)(FEYNMAN, 1996) FeynmannFeynmann R., 1996 Lectures on Computation, AddisonR., 1996 Lectures on Computation, Addison--Wesley. Wesley. 

Do you see here a cascade?Do you see here a cascade?



This is a part of a broader question. Namely, This is a part of a broader question. Namely, 
what can be learnt about the properties and what can be learnt about the properties and 
especially dynamics of especially dynamics of geninegenine turbulence (NSE, turbulence (NSE, 
Euler) from studies of passive objects (particles, Euler) from studies of passive objects (particles, 
scalars, vectors)? In particular, what can be scalars, vectors)? In particular, what can be 
learnt about the velocity field and other learnt about the velocity field and other 
dynamical variables in real turbulence from dynamical variables in real turbulence from 
comparison of the comparison of the behaviourbehaviour of passive objects in of passive objects in 
real and some real and some ‘‘syntheticsynthetic’’ turbulence?turbulence?
We are again back with (some aspect of) the LWe are again back with (some aspect of) the L--E E 
relationrelation



The Lagrangian description of fluid  flows is physically more 
natural than the Eulerian one, since it is related most directly to 
the motion of fluid elements. Nevertheless,  mostly technical 
difficulties (both in physical and numerical experiments) strongly 
hindered use of the Lagrangian approach in most of fluids 
dynamical problems.  The traditional  problems for which 
Lagrangian description is considered  especially appropriate are 
transport and mixing in diverse applications, e.g. geophysical 
and environmental, cloud formation, chemical technology, 
combustion and material processing, sedimentation, bio-medical 
and recently microfluidics, and many others. In most of the 
above issues  the concern  is with  with the kinematic aspects, 
i.e. with what is called today “passive turbulence”. 



The term kinematic(s) is associated with several issues, all of 
which have in common things which are not directly related to 
the (Euler Navier-Stokes) dynamics of turbulence. In other 
words the dynamics of fluid motion, except incompressibility, 
does not enter into the problems in question: the velocity field is 
assumed to be known  a priory. These issues include the 
following:  i) kinematic (statistical) properties/structure of real 
turbulent and artificial (in some sense, e.g. Gaussian, synthetic, 
KS, low Re with random excitation) random flows such as 
(an)isotropy, (in)homogeneity, etc. ii) passive objects in 
random flow fields including artificial ones. iii) - Kinematic
(Lagrangian) chaos.  



In other words the main concern is in the evolution of passive objects 
(fluid particles, passive scalars such as dispersing contaminants, chemical species, 
temperature, moisture; passive vectors such as material lines, (weak) magnetic field in 
an electrically conducting fluid; passive surfaces such as material surfaces, and in some 
cases reacting surfaces and turbulent flames; material volumes) in random fluid 
flows. An essential point is that the evolution of passive objects obeys linear 
equations in which the velocity field does not `know' anything about the 
presence of these objects and therefore the velocity field is considered as 
given a priori be it a real fluid flow field or some artificial one. There is no 
involving phenomenon as pressure*. This does not mean that the problems of 
the evolution of passive objects are simple. The main complication and 
simultaneously rich variety of phenomena comes from the fact that the 
velocity field enters as a coefficient in front of the spatial derivatives, i.e. it is 
due its multiplicative character, so that statistical problems become in a 
sense nonlinear.
*Hence `shocks' in the form of ramp-cliff structures just like in the Burgers equation.



Another aspect is associated with the dynamics of inviscid fluids, such as theoretical problems of 
Euler equations,  inviscid vortex dynamics and vortex methods, stability, dynamics of interfaces and 
surface waves, compressible flows.  Though these issues seem to have little to do with genuine 
turbulence, there are views/beliefs that such things like possible  singularity formation and collapse in 
Euler flows  and  that the infinite Reynolds number limit of turbulent flow is described by singular 
solutions of Euler equations . Some people regard these as “very attractive scenarios”. They are 
definitely very attractive and mathematically beautiful (since Onsager 1949),  but it is more than not 
clear whether they have anything  to do with real turbulence at whatever large Reynolds numbers.  
One cannot take seriously claims like “The existence of such near singularities for turbulent velocity 
fields at high Reynolds number has been confirmed by data from experiments  and simulations” or 
“Observations from experiments and simulations suggest that material objects advected by such a 
rough velocity become fractal...” , since all the experimental and numerical evidence is obtained at 
moderate Reλ at which no singularities, fractal structure, etc. are  expected and observed (if such 
exist at all). This evidence cannot be used as supporting any  models at infinite Reλ, which in principle 
cannot be confirmed or disproved by experimental or numerical evidence. We will return to these 
issues in a later lecture on mathematical issues including the question  “ how much mathematics does  
help to understand turbulence?” We will make a relevant ad hoc reminding below



There is little (if any) treatment of dynamical aspects of turbuThere is little (if any) treatment of dynamical aspects of turbulent flows (e.g. lent flows (e.g. 
those corresponding to those described by NSE in those corresponding to those described by NSE in EulerianEulerian setting)setting) in in 
LagrangianLagrangian setting (one of our main concerns here).  One of the reasons issetting (one of our main concerns here).  One of the reasons is the the 
view that view that 
A principal objective of any theory of fluid motion is the A principal objective of any theory of fluid motion is the 
prediction of the spread of matter or "tracer" within the prediction of the spread of matter or "tracer" within the 
fluid.  fluid.  BENNET 2006
But the main reasons take their origin in the difficulties to haBut the main reasons take their origin in the difficulties to handle the ndle the 
LagrangianLagrangian equations and related issues.equations and related issues.
Is it true that dynamical issues Is it true that dynamical issues per seper se can be can be 
treated satisfactory in treated satisfactory in EulerianEulerian setting only?  Is setting only?  Is 
there any need to use for this purpose the there any need to use for this purpose the 
LagrangianLagrangian setting too? Are there problems setting too? Are there problems 
which require such an approach?which require such an approach?



SOME BASIC INFORMATION

EulerianEulerian and and LagrangianLagrangian descriptionsdescriptions



In what is called Eulerian description the observation of the system is 
made in a fixed  frame as the fluid goes by. In this case the motion is 
characterized by the velocity field u(x,t) as a function of position 
vector, x,  and time t.  In the Lagrangian description the observation 
is made following  the fluid particles(wherever they move)*. Here the 
dependent variable is the position of a fluid particle X(a,t) , as a 
function of the particle label, a, (usually it’s initial position, i.e. 
X(a,0) ≡ a, and time t. The relation between the two ways of 
description is given by  the following  equation **

i.e. the Lagrangian velocity field,                                    is related to 
the Eulerian velocity field,                as                             .

(E(E--L)L)



If the Eulerian velocity field is known/given – as in all problems 
of kinematic nature – then the above equation serves for 
determination of the trajectory of a fluid particle with the initial 
position X(0) ≡ a . This equation is nonlinear (for almost all) 
even for very simple fluid flows and  is generically non-integrable
for (again almost) all such flows, i.e. the fluid particle trajectories 
are chaotic. We will call (as in Tsinober 2001)  these Lagrangian
chaotic flows as L-turbulent which may be both E-laminar or E-
turbulent. This chaotic property of the trajectories of the fluid 
particles makes it more difficult to follow them, i.e. much more
difficult to utilize the Lagrangian description of even the simplest 
fluid flows which exhibit Lagrangian chaos.



In other words it can be claimed that
Lagrangian description =
NSE (i.e Euler)  + the equation

(E(E--L)L)



‘ ’

Alternatively one can Alternatively one can wrirtewrirte up the equations directly up the equations directly 
in the in the LagrangianLagrangian variablesvariables



see, e.g. Corrsin 1962; Monin & Yaglom 1971, ch 5, section  9.1.    
∗∗
∗

‘ ’



However, in pure However, in pure LagrangianLagrangian setting the equations are setting the equations are 
intractable (so far) and in order to obtain true (not intractable (so far) and in order to obtain true (not 
modellingmodelling!) !) LagrangianLagrangian information one has to solve the information one has to solve the 
problem in problem in EulerianEulerian setting and using this information setting and using this information 
toghetretoghetre with the equation with the equation (E(E--L) L) one can obtain the one can obtain the 
LagrangianLagrangian dynamics of any fluid particledynamics of any fluid particle. . As the Euler As the Euler 
information  is defined on the computational grid it is information  is defined on the computational grid it is 
necessary to use an appropriate/adequate interpolation necessary to use an appropriate/adequate interpolation 
scheme. scheme. 



There are mixed, i. e. Eulerian-Lagrangian descriptions, which date back to 19th century, see 
references in Lamb 1932 and Cartes et al 2007, Phys Fluids, 19, 077101/1-7  

**

* The Lagrangian description is the analog of the classical particle mechanics where individual 
particles are labeled and  tracked.  It is also analog to Heisenberg representation in quantum  
mechanics. The Eulerian description is the analog to tge Schrodinger representation in quantum 
mechanics.



There is an elegant version of the Lagrangian equations for an inviscid (!) flows using instead of the Lagrangian
Variables Xi(a,t) it is using the Jacobi matrix ∂(Xi)/∂(ai) which  completely describes the  fluid motion 
(YAKUBOVICH & ZENKOVICH 2001; BENNET 2006)

*





Conservation laws in ideal fluid flows.

Ricca, 2001 , Geometric and topological aspects  of vortex motion, in RL Ricca (ed.), An 
introduction to the  the Geometry and Topology of Fluid Flows,  pp. 203-228 Kluwer,



Conservation laws in ideal fluid flows.



As an important addition 
(at the enxt slide) it is 
reminded that the 
modified helicity
(discussed in the lecture 
on helicity last year) with 
a special choice of the 
gauge is  is also alocal
(pointwise) Lagrangian
invariant



MODIFIED HELICITY
Helicity is a global quantity which in many cases is not well defined. It appears that 
one can choose the gauge ϕ in such a way that the helicity density is a Lagrangian
(non-dissipative) invariant, i.e. it is conserved (pointwise) along the paths of fluid 
particles and therefore for any fluid volume. Such a choice is possible both for 
magnetic field (ELSASSER, 1956; CHILDRESS & GILBERT, 1995) and for 
nonconducting fluid flows (KUZMIN, 1983; OSELEDETS, 1989). It is possible 
to do so also for a viscous flow (OSELEDETS, 1989) chosing ϕ obeying the 
equation

Dφ/Dt = p − u2/2 + ν∇2φ
Then the modified helicity density  hm = ω·v, with v = u+∇ϕ satisfies the 
equation 

Dhm/Dt = ν{∇²hm -2(∂ωi/∂xk)(∂vi/∂xk)}                  
i.e. is aa Lagrangian invariant if ν = 0. 



Conservation laws in ideal fluid flows.

In absence of dissipative and diffusive effects the invariance of circulation is of course just one 
manifestation of the ideal conditions of fluid motion. In this context it is natural to expect the 
existence of families of such quantities (not all necessarily scalars). One possible classification of 
invariants is based on their nature: (i) local  (metric)   - pointwise,   (ii) – global (metric) –
integral,  ( iii) – topological   (non-metric)  - algebraic  

Ricca, R.L.  2001 , Geometric and topological aspects  of vortex motion, in RL Ricca (ed.), An 
introduction to the  the Geometry and Topology of Fluid Flows,  pp. 203-228 Kluwer. 
Tur, A. and Yanovsky, V. 1993 , Invariants in dissipationless hydrodynamic media,  J. Fluid 
Mech., 248, 67-106.;
The Lagrangian conservation laws are a consequence of Noether’s theorem due to the so called 
relabelling symmetry  (Salmon 1988, Bennet 2006). In fact,  there are many such invariants all 
frequently called Cauchy invariants and related in some way to the conservation of circulation. 
We are now ready for a historical digression.



A REMINDING  ON WHY IDEAL 
CONSERVATION LAWS DO NOT 

HOLD IN TURBULENT FLOWS AT 
ANY REYNOLDS NUMBERS

VorticityVorticity is not is not ““approximatelyapproximately”” frozen if fluid frozen if fluid 
flows at any Reynolds number flows at any Reynolds number 

and the Kelvin theorem is violated.          and the Kelvin theorem is violated.          
Turbulence is not a slightly viscous phenomenon.Turbulence is not a slightly viscous phenomenon.



The main (but not the only) point of concern here is that The main (but not the only) point of concern here is that 
vorticityvorticity is not is not ““approximatelyapproximately”” frozen if fluid flows at any frozen if fluid flows at any 
Reynolds number and the Kelvin theorem is violated: Reynolds number and the Kelvin theorem is violated: 
turbulence is not a slightly viscous phenomenon. So as in turbulence is not a slightly viscous phenomenon. So as in 
Euler approach one has to deal with equations explicitly Euler approach one has to deal with equations explicitly 
containing viscosity. In pure containing viscosity. In pure LagrangianLagrangian setting these setting these 
equations are intractable (so far) and in order to obtain true equations are intractable (so far) and in order to obtain true 
(not (not modellingmodelling!) !) LagrangianLagrangian information one has to solve the information one has to solve the 
problem in problem in EulerianEulerian setting. Using this information one can setting. Using this information one can 
obtain the obtain the LagrangianLagrangian dynamics of any fluid particledynamics of any fluid particle. . As the As the 
Euler information  is defined on the computational grid it is Euler information  is defined on the computational grid it is 
necessary to use an appropriate/adequate interpolation necessary to use an appropriate/adequate interpolation 
scheme. scheme. 



Experimentally direct Experimentally direct particepartice tracking tracking velocimetryvelocimetry
allows to access allows to access LagrangianLagrangian information at low to information at low to 
moderate Remoderate Reλλ. We will get to the issue of methods . We will get to the issue of methods 
(with the emphasis on the experimental ones) in a (with the emphasis on the experimental ones) in a 
later lecture.later lecture.



•Frozenness in large 
scales

In an In an inviscidinviscid flowflow
DDωω//DDtt =  (=  (ωω·∇·∇))uu;  ;  DDll//DtDt == ((ll·∇·∇))uu
D(D(ωω--ll))//DDtt =  {(=  {(ωω--ll))·∇·∇}}uu
So So ωω == l  l  at all timesat all times if initially  if initially  ωω –– l =l = 00;                                   ;                                   
However, in a flow with  However, in a flow with  νν≠≠ 00 whatever smallwhatever small an approximatean approximate balance (balance (TennkesTennkes & & 

Lumley )Lumley ) holds  holds  〈ω〈ωiiωωkkssikik〉〉 ≈≈ ν〈ων〈ωii∇∇22ωωii〉〉,, holds,holds, i.e. the vortex lines i.e. the vortex lines 
are not frozen into the fluid at whatever high  Reynolds number are not frozen into the fluid at whatever high  Reynolds number (vortex lines are (vortex lines are 
loosing their identity as material lines at any Reynolds number)loosing their identity as material lines at any Reynolds number) –– otherwise how otherwise how 
the the enstrophyenstrophy production can be approximately balanced   by  viscous terms aproduction can be approximately balanced   by  viscous terms again gain 
at any at any –– whatever large whatever large –– Reynolds numberReynolds number. . 
In other words  in slightly viscous flows In other words  in slightly viscous flows frozennesfrozennes is meaningless with a consequent is meaningless with a consequent 
(not slight!) violation of the Kelvin circulation theorem (not slight!) violation of the Kelvin circulation theorem -- just like the claim that  just like the claim that  
turbulence is slightly viscous at whatever large Re.turbulence is slightly viscous at whatever large Re. In this context the question: In this context the question: 
what happens with what happens with enstrophyenstrophy and strain production as and strain production as ν→ν→00 is of special interest.is of special interest.



The above is not entirely new (at least in part)The above is not entirely new (at least in part) . . . . 

.  .  a material line which is initially a material line which is initially coinsidingcoinsiding with a vortex with a vortex 
line continues to do so. It is thus possible and convenient line continues to do so. It is thus possible and convenient 
to regard a vortexto regard a vortex--line as having a continuing identity and line as having a continuing identity and 

as moving with the fluidas moving with the fluid ((In a viscous fluid it is, of In a viscous fluid it is, of 
course, possible to draw the pattern of vortex course, possible to draw the pattern of vortex 
lines at any instant, but there is no way in which lines at any instant, but there is no way in which 
particular vortexparticular vortex--line can be identified at different line can be identified at different 
instantsinstants).). BATCHELOR, BATCHELOR, 19671967 ,  ,  p. 274p. 274



SOME  ISSUES OF  CONCEPTUALSOME  ISSUES OF  CONCEPTUAL
NATURENATURE



Accelerations, Random Taylor Accelerations, Random Taylor 
Hypothesis (RTH) or sweeping Hypothesis (RTH) or sweeping 

decorrelationdecorrelation hypothesishypothesis.
Accelerations. Accelerations. In what senseIn what sense is RTH is RTH 

valid?valid?



The issue concerns a commonly used concept known as 
the random Taylor hypothesis or the sweeping 
decorrelation hypothesis which is an important 
generalization of the common Taylor hypothesis. It was 
suggested by TENNEKES 1975 that in turbulence at 
high Reynolds number the dissipative eddies flow past an 
Eulerian observer in a time frame much shorter than the 
time scale which characterizes their own  dynamics, i.e.
τE  /τL ∼ Re -1/4 (hence in the Lagrangian setting the correlations are 
expected to be much larger which is mostly - but not always - the case).  



In turn this implies that Taylor’s ‘‘frozen turbulence’’
approximation would be valid (at least qualitatively) 
for the analysis of the advection of the turbulence 
microstructure by the large-scale motions. Already 
at the very beginning one encounters an ambiguity 
(not the only one) as the time scale (like many other 
things) of the  Eulerian observer depends on the 
velocity of the Eulerian frame in which the Eulerian
observer lives:



The four upperfour upper pictures, from 
TOLLMIEN 1931 correspond to 
the visualization of a turbulent 
water flow in an open 6 cm 
wide channel photographed by a 
moving camera at various 
speeds. The mean velocity of the 
flow is 16.7cm/s16.7cm/s.             
The two lowertwo lower pictures are from 
PRANDTL AND TIETJENS 1934.   
In the right picture, the camera 
moves with the speed equal to 
the velocity of water in the  
center of the channel. In the left 
picture, the speed of the camera 
is small and close to the velocity 
of the water near the walls.



CONVENTIONAL TAYLOR HYPOTHESIS

t
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x ∂
∂
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∂ −1
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2/12 <<Uu

Works (roughly) when

Uberoi, MS. and Corrsin, S 1952, Diffusion of heat from a line source in isotropic turbulence, NACA Rep., 1142, 1953 
{originally NACA, TN 2710, 1(52)}.
Lin, CC 1953, On Taylor Hypothesis and the acceleration terms in the Navier-Stokes Equations,  Quart. app. Math. 10, 
4.
and references in  TsinoberTsinober, A. , A. YeungYeung, P.K. and P. , P.K. and P. VedulaVedula, P. (2001) Random Taylor hypothesis and the behavior of , P. (2001) Random Taylor hypothesis and the behavior of 
local and convective accelerations in isotropic turbulence, local and convective accelerations in isotropic turbulence, Physics of FluidsPhysics of Fluids, , 1313,  1974,  1974--1984. 1984. 

The explicit dynamic conditions are more complex, see



JOINT PDFS FOR CONVENTIONAL 
TAYLOR HYPOTHESIS

velocity temperature



To assess its validity it should be recognized that, in fact, Tennekes’
hypothesis consists of two ingredients. First,  it is proposed that the 
Lagrangian acceleration a of fluid particles is in some sense small, such 
that time scales measuring Eulerian and Lagrangian rates of change 
could be estimated by simply setting a = 0 which is good for the 
purpose of getting at least qualitaively correct estimate.  However, it is 
obvious, that a = 0 cannot be perfectly true (this has  far more 
serious consequences in a number of conceptual issues (see below)  
than usually appreciated (can one imagine that the flow is governed by 
the equation like  ∂u/∂t + (u·∇)u = 0? or ∇p + ν∇2u = 0?)
It is noteworthy that the above assumption was formulated for the 
turbulent fluctuations  (which are local pointwise in space and time) 
instead of for statistical measures of these quantities.



The second assumption made by Tennekes is of statistical nature, 
namely, that the microstructure is statistically independent of the energy 
containing eddies.  This assumption appears also too strong and should be 
replaced by a more limited interpretation of this hypothesis in the sense 
that the microstructure is statistically decorrelated from the energy 
containing eddies as there is a growing body of experimental evidence 
(see refs in Tsinober 2001) showing  that large and small scales are not 
statistically independent though  weakly correlated (see the lecture on 
nonlocality). In this connection it is important to stress that the RTH is 
frequently misinterpreted (following the original Taylor hypothesis of 
frozenness) in the sense that the small scales are just swept as a kind of 
passive objects and in the dynamical context (at best) are just a passive 
sink of energy.   



In the above issues one already encounters the grand and multi-faceted 
problem (as we will see below it is thethe problem) of the relationship 
between the Eulerian and Lagrangian settings (see also next slide). 
Indeed the LagrangianLagrangian acceleration a is represented via its EulerianEulerian
components al= ∂u/∂t and ac= (u·∇)u as a = al + ac . So if the 
RTH holds the two vectors have to be strongly anti-aligned (i.e. the 
angle θ between the two should ∼ π) resulting in strong mutual 
cancellation.

This was really observed both in DNS and laboratory (field) 
experiments.
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RANDOM TAYLOR HYPOTHESIS 
TENNEKES 1975
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DNS



A      B     C     D 

Reλ 38     38 90    90

Gauss NSE Gauss NSE

Field experiment Reλ= 6800

PTV Reλ= 80
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PDFS OF THE COSINE 
OF THE ANGLE

BETWEEN 

AND

TsinoberTsinober, A. , A. YeungYeung, P.K. and P. , P.K. and P. VedulaVedula, P. (2001) , P. (2001) 
Random Taylor hypothesis and the behavior of local Random Taylor hypothesis and the behavior of local 
and convective accelerations in isotropic turbulence, and convective accelerations in isotropic turbulence, 
Physics of FluidsPhysics of Fluids, , 1313,  1974,  1974--19841984. . 

Note the strong effect of purely Note the strong effect of purely kinematickinematic nature nature 
in a Gaussian field, see also next slidein a Gaussian field, see also next slide



JOINT PDFS OF AND

NSE, ReNSE, Reλλ= 243= 243 GaussianGaussian
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MORE GENERALLY

For any quantity (scalar, vector, tensor)

The Lagrangian derivative DQ/Dt=∂Q/∂t + u_k∂Q/∂xk

is much smaller than its Eulerian components.
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EXAMPLES 
FOR OTHER 
QUANTITIES
from DNS of NSE

Temperature gradient G

Vorticity ωMagnetic field B



Express the local convective accelerations in a frame moving with 
mean velocity U in terms of  their values                               and    

in the frame with  U = 0. tl ∂
∂

=
ua

A SMALL EXCERCISE

( )uua ∇⋅=c

AND A QUESTION

The  question is whether the smallness of  DQ/Dt = ∂Q/∂t + 
uk∂Q/∂xk as compared to both ∂Q/∂t and uk∂Q/∂xk can be 
seen as an indication of the existence of a small parameter in turbulence 
theory.



KOLMOGOROV 4/5 LAW, 
NONLOCALITY AND SWEEPING 
DECORRELATION HYPOTHESIS 





Israel Switzerland Airborn



Conventional Conventional KolmogorovKolmogorov
4/5 law 1941b4/5 law 1941b

〈〈((ΔΔuu11))33〉〉 = = --4/54/5εεrr

Equivalent HosokawaEquivalent Hosokawa’’s s 
relation 2007relation 2007
〈〈uu22

++uu−−〉〉 = = εεrr/30/30

Kolmogorov 4/5 law, non-locality and sweeping decorrelation hypothesis, 
M. Kholmyansky, and  A. Tsinober (2007) submitted

2u2u++ = u= u11(x(x ++ rr) + u) + u11((xx), 2u), 2u-- = u= u11((xx + + rr) ) −− uu11((xx))
uu11((xx) is the longitudinal velocity component) is the longitudinal velocity component



Conventional Conventional KolmogorovKolmogorov
4/5 law 1941b4/5 law 1941b

〈〈((ΔΔuu11))33〉〉 = = --4/54/5εεrr

Equivalent HosokawaEquivalent Hosokawa’’s s 
relation 2007relation 2007
〈〈uu22

++uu−−〉〉 = = εεrr/30/30

Kolmogorov 4/5 law, non-locality and sweeping decorrelation hypothesis, 
M. Kholmyansky, and  A. Tsinober (2007) submitted

2u2u++ = u= u11(x(x ++ rr) + u) + u11((xx), 2u), 2u-- = u= u11((xx + + rr) ) −− uu11((xx))
uu11((xx) is the longitudinal velocity component) is the longitudinal velocity component



For more on the experiments seeFor more on the experiments see
G. G. GulitskiiGulitskii, M., , M., Kholmyansky,WKholmyansky,W. . KinzlebachKinzlebach, B. , B. LLüüthithi, A. , A. TsinoberTsinober and S. and S. YorishYorish
(2007) Velocity and temperature derivatives in high Reynolds num(2007) Velocity and temperature derivatives in high Reynolds number turbulent ber turbulent 
flows in the atmospheric surface layer. Part I. Facilities, methflows in the atmospheric surface layer. Part I. Facilities, methods and some ods and some 
general results, general results, J. Fluid MechJ. Fluid Mech.. 589589, 57, 57——81.81.
G. G. GulitskiiGulitskii, M., , M., KholmyanskyKholmyansky, W. , W. KinzlebachKinzlebach, B. , B. LLüüthithi, A. , A. TsinoberTsinober and S. and S. YorishYorish
(2007) Velocity and temperature derivatives in high Reynolds num(2007) Velocity and temperature derivatives in high Reynolds number turbulent ber turbulent 
flows in the atmospheric surface layer. Part II. flows in the atmospheric surface layer. Part II. AccelerarationsAccelerarations andrelatedandrelated
matters, matters, J. Fluid MechJ. Fluid Mech. . 589589, 83, 83——102.102.
G. G. GulitskiiGulitskii, M., , M., Kholmyansky,WKholmyansky,W. . KinzlebachKinzlebach, B. , B. LLüüthithi, A. , A. TsinoberTsinober and S. and S. YorishYorish
(2007) Velocity and temperature derivatives in high Reynolds num(2007) Velocity and temperature derivatives in high Reynolds number turbulent ber turbulent 
flows in the atmospheric surface layer. Part III. Temperature anflows in the atmospheric surface layer. Part III. Temperature and d jointstatisticsjointstatistics of of 
temperature and velocity derivatives, temperature and velocity derivatives, J. Fluid MechJ. Fluid Mech. . 589589, 103, 103-- 123.                        123.                        
and references thereinand references therein



Following KRAICHNAN 1964 there are two main ingredients in 
the (Eulerian) decorrelation: the mentioned sweeping of 
microstucture by the large scale motions (and associated kinematic
nonlocality) and the local straining (which is roughly pure 
Lagrangian). It appears that this kind of “decomposition” is 
insufficient as it is missing an essential  dynamical aspect - the 
interaction between the two as it is clearly demonstrated by the
Hosokawa’s version of the Kolmogorov 4/5 law.  As we have seen 
the random Taylor hypothesis (and, of course, the conventional 
Taylor hypothesis) lack/discard this aspect at the outset (this does 
not mean that these hypotheses are useless): both are ‘too 
kinematic’, while acceleration is a dynamic quantity in the first place



Relation between Lagrangian
and Eulerian statistical 

properties of turbulent flow
This is a longThis is a long--standing and most difficult problem posed by standing and most difficult problem posed by CorrsinCorrsin in in 
1957.  The general reason is because the 1957.  The general reason is because the LagrangianLagrangian field is an extremely field is an extremely 
complicated noncomplicated non--linear functional of the linear functional of the EulerianEulerian field and vice versa (there field and vice versa (there 
is also a problem of is also a problem of invertibilityinvertibility).  The complexity of this relation can be ).  The complexity of this relation can be 
seen in the example of seen in the example of LagrangianLagrangian turbulence (chaotic advection) with a turbulence (chaotic advection) with a 
priori prescribed and not random priori prescribed and not random EulerianEulerian velocity field (Evelocity field (E--laminar) among laminar) among 
others. In this extreme example the others. In this extreme example the LagrangianLagrangian statistics has no statistics has no EulerianEulerian
counterpart. counterpart. In other words, generally,  it may be meaningless to In other words, generally,  it may be meaningless to 
look for such a relation.look for such a relation.



Given the marker dispersion the problem is to determine the
source(s) of agitation.  In general, owing to chaotic advection, 
this inverse problem is impossible to solve. AREF 1984.

... the possession of such relationship would imply that one 
had (in some sense) solved the general turbulence problem. 
Thus it seems arguable that such an aim, although natural, 
may be somewhat illusory. Nevertheless attempts to realize tis
aim can teach us about the subject… MCCOMB, 1990.

It is clear that some aspects of the fluid motion are easier to 
understand in in the Eulerian framework while others are easier 
to describe in the Lagrangian framework.  FRIEDLANDER & LIPTON-
LIFSCHITZ 2003

What one sees is real. The problem is interpretation



Advances in Geophysics, 6, 441-448 !959; ATMOSPHERIC DIFFUSION AND AIR POLLUTION, Proceedings of a Symposium held at Oxford, August 24-29 ,1958

See also Corrsin 1957, Review of Surveys in Mechanics: G. I. Taylor 70th Anniversary Volume, edited by G. K. BATCHELOR &  R. M. DAVIES, J. Fluid Mechanics , 2,  616-612; 







At the same meeting in 1958 Corrsin proposed (see next slide) the so 
called independence approximation to relate the Lagrangian and Eulerian
velocity correlations assuming that at large times the probability 
distributions of  i) particle displacemenets and of the Eulerian velocity 
field become statistically independent.  Generally this hypothesis (as a 
host of others)  is not correct as is shown , e.g. in  recent  experiments 
by Ott and Mann (New Journal of Physics 7 (2005) 142).  Corrsin also 
proposed simple estimates for the relations between characteristic scales 
of tirbulent flows  in 1963, an important estimate was given by 
Tennekes in 1975.  Later references on request.

INDEPENDENCE APPROXIMATION 
AND MANY OTHER  



Corrsin, S. (1959) Progress Report on some turbulent diffusion reearch, Advances in Geophysics, 6, 161-
164 ATMOSPHERIC DIFFUSION AND AIR POLLUTION, Proceedings of a Symposium held at Oxford, August 24-29 ,1958.



Lumley 1962 (at te Meeting in Marseiles in 1961) pointed to the 
general mathematical nature of the difficulties in relating the 
the two formulations.  Roughly,  there is a general relationship in 
terms of path  (Feynman, functional)  integrals, but is does not
help much (if at all).  
Apart of this ‘formalistic’ issue (as mentioned)  there is one more 
important aspect associated with the ‘more chaotic’ nature of the 
Lagrangian setting. This can be seen as an indication that the pure 
Lagrangian dynamical equations (so far intractable for viscous
flows) are more rich than their Navier Stokes counterpart as 
explained below.

MORE ON DIFFICULTIES 



CimbalaCimbala, J.M., , J.M., NagibNagib, H. M and , H. M and RoshkoRoshko, A. (1988) Large structures in the far , A. (1988) Large structures in the far 
wakes of twowakes of two--dimensional bluff bodies, J. Fluid Mech., dimensional bluff bodies, J. Fluid Mech., 190190, 265, 265----298.298.

All frames (i.e. four different Lagrangian fields) correspond to the same Eulerian flow. 

SAME FLOW SAME FLOW -- NOT THE SAME PATTERNNOT THE SAME PATTERN
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Dye visualization of two 
simple corotating
vortices merging into one 
vortex with  simple velocity 
field,  but not that simple 
filed of the passive 
scalar(s)  
LEWEKE 2000



Kinematics versus DynamicsKinematics versus Dynamics
EE--LaminarLaminar bubut t LL--turbulent. turbulent. 

EE--turbulent  necessarily Lturbulent  necessarily L--turbulent.turbulent.



Since the equations describing the evolution of passive objects Since the equations describing the evolution of passive objects are linear, it are linear, it 
may seem that there is no place for chaotic may seem that there is no place for chaotic behaviourbehaviour of passive objects if the of passive objects if the 
velocity field is not random and is regular and fully laminar, bvelocity field is not random and is regular and fully laminar, because the ecause the 
chaotic chaotic behaviourbehaviour appears/shows up in nonlinear systems. There is, appears/shows up in nonlinear systems. There is, 
however, no real contradiction or paradox. This apparent contradhowever, no real contradiction or paradox. This apparent contradiction is iction is 
resolved via looking at the resolved via looking at the thethe fluid flow in the fluid flow in the LagrangianLagrangian setting in which setting in which 
the observation is made following the fluid particles wherever tthe observation is made following the fluid particles wherever they move. hey move. 
Here the dependent variable is the position of a fluid particle,Here the dependent variable is the position of a fluid particle, XX((aa,t,t),), as a as a 
function of the particle label, function of the particle label, aa, (usually it's initial position, i.e., (usually it's initial position, i.e. aa ≡≡ XX(0))(0))
and time, and time, t.t. The relation between the two ways of description is given by thThe relation between the two ways of description is given by the e 
following equationfollowing equation

∂∂XX((aa,t))/,t))/∂∂tt = = uu[[XX((aa,t,t); t]          ); t]          (E(E--L)L)
i.e. the i.e. the LagrangianLagrangian velocity field, velocity field, vv((aa,t,t) = ) = ∂∂XX((aa,t))/,t))/∂∂tt, is related to the , is related to the 

EulerianEulerian velocity field, velocity field, uu((xx,t,t),), as as V(V(aa,t,t) ) ≡≡ u u [[X(X(aa,t);t,t);t]. ]. 



∂∂XX((aa,t))/,t))/∂∂tt = = uu[[XX((aa,t,t); t]          ); t]          {E{E--L}L}
i.e. the i.e. the LagrangianLagrangian velocity field, velocity field, vv((aa,t,t) = ) = ∂∂XX((aa,t))/,t))/∂∂tt, is related to the , is related to the 

EulerianEulerian velocity field, velocity field, u(u(xx,t,t),), as as V(V(aa,t,t) ) ≡≡ u u [[X(X(aa,t);t,t);t].]. Though the Though the 
EulerianEulerian velocity field, velocity field, uu((xx;t;t) is not chaotic and is regular and laminar, the ) is not chaotic and is regular and laminar, the 
LagrangianLagrangian velocity field velocity field vv((aa,t,t) ) ≡≡ uu[[XX((aa,t);t,t);t] is chaotic because ] is chaotic because XX((aa,t,t) is ) is 
chaotic: the equation (Echaotic: the equation (E--L) is not L) is not integrableintegrable even for simplest laminar even for simplest laminar 
Euler fields with the exception of very simple flows such as uniEuler fields with the exception of very simple flows such as unidirectional directional 
ones. ones. It has to be reminded  that this chaotic It has to be reminded  that this chaotic 
behaviourbehaviour is of purely is of purely kinematickinematic nature resulting nature resulting 
solely  from the equation {Esolely  from the equation {E--L} (and various L} (and various 
equations for passive objects equations for passive objects -- reminding again reminding again --
linear in Euler setting)  and  has nothing to do with linear in Euler setting)  and  has nothing to do with 
dynamics, i.e. genuine (as NSE) turbulence.dynamics, i.e. genuine (as NSE) turbulence.



MIXING IN PMM, Re ~ 1 (!)Re ~ 1 (!)
KUSH & OTTINO (1992)
RELEVANT TO MICROFLUIDICS with Re RELEVANT TO MICROFLUIDICS with Re ~ ~ 0 0 (!(!);   );   
Linked twist maps (LTMs),   Bernoulli mixing…

The complexity and problematic aspects The complexity and problematic aspects 
of the relation between the of the relation between the LagrangianLagrangian
and and EulerianEulerian fields is seen in the example fields is seen in the example 
of of LagrangianLagrangian ((kinematickinematic) chaos or ) chaos or 
LagrangianLagrangian turbulence (chaotic turbulence (chaotic 
advection) with a priori prescribed and advection) with a priori prescribed and 
not random not random EulerianEulerian velocity field (Evelocity field (E--
laminar). This is why laminar). This is why LagrangianLagrangian
description description -- being physically more being physically more 
transparent transparent -- is much more difficult than is much more difficult than 
the the EulerianEulerian description. In such Edescription. In such E--
laminar but Llaminar but L--turbulent flows the turbulent flows the 
LagrangianLagrangian statistics has no statistics has no EulerianEulerian
counterpart, as in the flow shown at the counterpart, as in the flow shown at the 
leftleft. . 



KUSH & OTTINO (1992)



AA . Schematic representation of a channel typeSchematic representation of a channel type
micromixermicromixer. Streamline patterns are shown at the . Streamline patterns are shown at the 
ends ends oftheofthe mixing element. The details of the mixing element. The details of the 
shape and internal structure of the channel, the shape and internal structure of the channel, the 
motion of boundaries, and the manner of driving motion of boundaries, and the manner of driving 
are not shown; they can be anything that are not shown; they can be anything that 
produces the desired crossproduces the desired cross--sectional flow sectional flow ((which which 
defines the family of designsdefines the family of designs))..
B.B. Two blobs shown in the superposition of the Two blobs shown in the superposition of the 
outer streamlines in the cross section at the end outer streamlines in the cross section at the end 
of each mixing element for a case where the flow of each mixing element for a case where the flow 
features underlying the LTM theorems provide features underlying the LTM theorems provide 
good mixing good mixing properties.Theproperties.The integer integer ndenotesndenotes the the 
number of mixing segments (where a mixing number of mixing segments (where a mixing 
segment is two concatenated mixing elements). segment is two concatenated mixing elements). 
The flow appears well mixed after 10 mixing The flow appears well mixed after 10 mixing 
elements.elements.
C.C. The same blobs as in The same blobs as in BB, but for a case where , but for a case where 
the flow features underlying the LTM theorems the flow features underlying the LTM theorems 
fail to provide good mixing.fail to provide good mixing.

Mixer with a twistMixer with a twist
OttinoOttino and Wiggins, 2004and Wiggins, 2004



HJ Kim and A Beskok
2007 Quantification of chaotic 
strength and mixing in a micro fluidic 
system, J. Micromech. Microeng. 17 , 
2197–2210. 
Snapshots of spread of passive tracer 
particles for cases B&C at period T = 6 
(a) and A&D at period T = 6 (b).                        
A total of 40 000 passive particles are 
tracked in time. Snapshots show the 
dispersing state at respective times. 
Figure (a) shows flow domain filled with
passive tracer particles, and these 
particles are distributed uniformly at t = 
102. Figure (b) shows presence of two 
small void regions that remain near the 
vertical centerline of the domain at t = 
102. The insets show the geometric 
structure of the void region.

MICROMIXING



LIU M, MUZZIO FJ, PESKIN RL 1994LIU M, MUZZIO FJ, PESKIN RL 1994

Quantification of mixing in Quantification of mixing in aperiodicaperiodic chaotic flows, chaotic flows, 
Chaos,  Chaos,  SolitonsSolitons & Fractals& Fractals, , 4 4 (6), 869(6), 869--893 .1994893 .1994
(a)(a) Initial location of particles in the cavity flow.Initial location of particles in the cavity flow.
(b)(b) Positions of the particles after 8 periods of thePositions of the particles after 8 periods of the
periodic flow with periodic flow with T T = 7.0. The red particles are = 7.0. The red particles are 
located inside the chaotic regions and undergo rapid located inside the chaotic regions and undergo rapid 
mixing. The blue particles are inside an island of mixing. The blue particles are inside an island of 
regular motion and hardly mix at all.regular motion and hardly mix at all.
(c)(c) Mixing is greatly enhanced by using the SB Mixing is greatly enhanced by using the SB 

aperiodicaperiodic flow After the same 8 periods, particles of flow After the same 8 periods, particles of 
both colors are thoroughly mixed throughout the flow both colors are thoroughly mixed throughout the flow 
domaindomain.

MIXING IN APERIODIC
CHAOTIC FLOWS
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Tip for mixing 
of  two 

components   
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Re∼0



MULTISCALE AND/OR RANDOM  
AND /OR E-LAMINAR BUT NOT 

E-GEINUINE



The above qualificationThe above qualification includes  all artificial velocity fields includes  all artificial velocity fields 
both random and/or  both random and/or  multiscalemultiscale or not .  or not .  The field of particle The field of particle 
trajectories is (can be seen) as a passive object: it is a trajectories is (can be seen) as a passive object: it is a 
LagrangianLagrangian signature of the underlying (and signature of the underlying (and prescibedprescibed) velocity ) velocity 
field of any nature be it genuinely turbulent, or field of any nature be it genuinely turbulent, or LagrangianLagrangian
chaotic such as Echaotic such as E--Laminar, synthetic random or not, restricted Laminar, synthetic random or not, restricted 
Euler,  Euler,  kinematickinematic simulations of simulations of LagrangianLagrangian chaotic evolution, chaotic evolution, 
turbulentturbulent--like like multiscalemultiscale fields, including real Efields, including real E--laminar flows laminar flows 
at Reat Re≈≈0 from linear Stokes equations with random forcing, 0 from linear Stokes equations with random forcing, 
flows in porous media,flows in porous media, microdevicesmicrodevices, to name some, to name some. . 



We stress that the EWe stress that the E--turbulence is a turbulence is a dynamical dynamical 
phenomenon whereas this is not necessarily the case phenomenon whereas this is not necessarily the case 
with the  Lwith the  L--turbulence which may be a turbulence which may be a purely purely 
kinematickinematic one . In other words the flow can be  one . In other words the flow can be  
purely   Lpurely   L--turbulent (i.e. Eturbulent (i.e. E--laminar) as in the  above laminar) as in the  above 
examples with artificial velocity fields or real flows at examples with artificial velocity fields or real flows at 
very low Reynolds numbersvery low Reynolds numbers



However, if the flow is EHowever, if the flow is E--turbulent (i.e. Re >> 1) it is turbulent (i.e. Re >> 1) it is 
LL--turbulent as well.  An important consequence is turbulent as well.  An important consequence is 
that the structure and evolution of passive objects in that the structure and evolution of passive objects in 
genuine turbulent flows arises fromgenuine turbulent flows arises from two two (essentially (essentially 
and unfortunately  inseparable) contributions: one and unfortunately  inseparable) contributions: one 
due to the due to the LagrangianLagrangian chaos and the other due to the chaos and the other due to the 
random nature of the (random nature of the (EulerianEulerian) velocity field itself) velocity field itself.  .  



Hence, one can expect adequate Hence, one can expect adequate kinematickinematic simulation or simulation simulation or simulation 
in random and/or in random and/or multiscalemultiscale real Ereal E--laminar flows  of those laminar flows  of those 
properties (properties (LagrangianLagrangian) which are insensitive (or weakly sensitive)  ) which are insensitive (or weakly sensitive)  
to the differences between the genuine turbulent velocity fieldsto the differences between the genuine turbulent velocity fields and and 
those used for the purposes of modeling (quite a nonthose used for the purposes of modeling (quite a non--trivial issue).  trivial issue).  
An important counterexample is the difference between An important counterexample is the difference between backwards backwards 
and forwards relative dispersion (with the mean square separatioand forwards relative dispersion (with the mean square separation n 
following particle pairs backwards in time being twice as large following particle pairs backwards in time being twice as large as as 
forwards) in genuine turbulenceforwards) in genuine turbulence. Another one is the qualitative  Another one is the qualitative  
difference in alignment properties of a passive vector in genuindifference in alignment properties of a passive vector in genuine e 
(NSE) and Gaussian velocity field(NSE) and Gaussian velocity field



Forwards and Backwards Relative DispersionForwards and Backwards Relative Dispersion
We find that, in general, backwards relative dispersion proceedsWe find that, in general, backwards relative dispersion proceeds at a at a 
much faster rate than relative dispersion forwards in time, and much faster rate than relative dispersion forwards in time, and the the 
difference between the two is sensitive to the nature of the flodifference between the two is sensitive to the nature of the flow field. w field. 
The difference vanishes for Gaussian flows and for whiteThe difference vanishes for Gaussian flows and for white--noise in time noise in time 
flows for which relative dispersion can be described by a diffusflows for which relative dispersion can be described by a diffusion ion 
equation, suggesting that theories such as twoequation, suggesting that theories such as two--point closure and point closure and 
kinematickinematic simulation do not differentiate between backwards and simulation do not differentiate between backwards and 
forwards dispersion. Backwards relative dispersion is very sensiforwards dispersion. Backwards relative dispersion is very sensitive to tive to 
the details of the tails of the probability density function forthe details of the tails of the probability density function for the the EulerianEulerian
velocity difference between two pointsvelocity difference between two points

B. L. Sawford, P. K. Yeung, and M. S. Borgas, 2005 Comparison of backwards and forwards relative   
dispersion in turbulence, Phys. Fluids 17,  095109.                                                               
J.  Berg, B. Lüthi, J. Mann, and S. Ott, An experimental investigation: backwards and forwards relative
dispersion in turbulent flow, Phys Rev. E 74, 016304



Alignment of passive vector Alignment of passive vector (B)withwith the the 
eigenfrarmeeigenfrarme of the rate of strain tensor in of the rate of strain tensor in 
genuine (NSE)     and      genuine (NSE)     and      gaussiangaussian

velocity fieldsvelocity fields
DB/Dt = (B·∇)u + ηΔB



A COUNTEREXAMPLE



Zaks, M.A. and Straube, 
A.V. (2002) Steady 
Stokes flow with long-
range correlations, 
fractal Fourier spectrum 
and anomalous transport, 
Phys. Rev. Lett., 89, 
244101--1-4.



CONCLUDING CONCLUDING 
REMARKSREMARKS



VVisualizationsisualizations EE-- versus Lversus L--
Flow visualizations used for studying the structure of dynamicalFlow visualizations used for studying the structure of dynamical
fields (velocity, fields (velocity, vorticityvorticity, etc.) of turbulent flows may be quite , etc.) of turbulent flows may be quite 
misleadingmisleading, , making the question "what do we see?" extremely making the question "what do we see?" extremely 
nontrivial.  nontrivial.  
Seeing is not necessarily believing.Seeing is not necessarily believing.



EE-- versus Lversus L--structure(sstructure(s), ), 
i.e. i.e. structure(sstructure(s) in E) in E-- versus Lversus L--settings.settings.
Passive objects have lots of Passive objects have lots of structure(sstructure(s) in Gaussian ) in Gaussian 
velocity fieldsvelocity fields** which by definition is which by definition is ““structurelessstructureless””. . 

**and other artificial, random and not random.and other artificial, random and not random.



EulerianEulerian and and LagrangianLagrangian settings are different settings are different 
conceptually not just/only technically. conceptually not just/only technically. EulerianEulerian
setting is revealing the pure dynamical chaotic setting is revealing the pure dynamical chaotic 
aspects of genuine turbulence as contrasted to aspects of genuine turbulence as contrasted to 
““mixingmixing”” of kinematical with the dynamical ones of kinematical with the dynamical ones 
in the in the LagrangianLagrangian setting, i.e. in genuine setting, i.e. in genuine 
turbulence the latter contains both which seem to turbulence the latter contains both which seem to 
be essentially inseparable. be essentially inseparable. 



On the mathematical side there is an important aspect On the mathematical side there is an important aspect 
associated with the associated with the ‘‘more chaoticmore chaotic’’ nature of the nature of the LagrangianLagrangian
setting. Namely, one is tempted to conjecture that the pure setting. Namely, one is tempted to conjecture that the pure 
LagrangianLagrangian dynamicaldynamical equations (so far intractable for equations (so far intractable for 
viscous flows)viscous flows)

are more rich than their are more rich than their NavierNavier Stokes counterpartStokes counterpart

The former being equivalent to the latter plus the equation  The former being equivalent to the latter plus the equation  



Some important consequencesSome important consequences



FirstFirst, Euler setting seems (?!) to be preferable for , Euler setting seems (?!) to be preferable for 
studying genuine dynamical aspects of (e.g. NSE) studying genuine dynamical aspects of (e.g. NSE) 
genuine turbulence due to genuine turbulence due to impossibility to separate impossibility to separate 
the the LagrangianLagrangian ((kinematickinematic) chaos from the ) chaos from the genuinlygenuinly
dynamical (dynamical (EulerianEulerian//intinsicintinsic) ) stochasticitystochasticity. . Second,Second,
generally, simple relations (and even not so simple) generally, simple relations (and even not so simple) 
cannot be expected between cannot be expected between EulerianEulerian and and LagrangianLagrangian
statistics. For example, there exist no such a relation for statistics. For example, there exist no such a relation for 
a host of a host of LagrangianLagrangian chaotic flows having no chaotic flows having no EulerianEulerian
counterpart at all.  So one has to resort to an ad hoc counterpart at all.  So one has to resort to an ad hoc 
approach for different cases/classes of flows.approach for different cases/classes of flows.



Third,Third, studying studying LagrangianLagrangian statistics of a variety of statistics of a variety of 
artificial and/or purely Eartificial and/or purely E--laminar flows may not laminar flows may not 
provide adequate information of the Lprovide adequate information of the L--statistics of statistics of 
genuine turbulencegenuine turbulence as not containing the pure as not containing the pure 
dynamical dynamical stochasticitystochasticity of genuine turbulence. of genuine turbulence. 
All the above brings us to the questions posed at the All the above brings us to the questions posed at the 
beginning: beginning: Is it true that dynamical issues Is it true that dynamical issues per seper se can can 
and should be treated satisfactory in and should be treated satisfactory in EulerianEulerian setting setting 
only? Is there any need to use for this purpose the only? Is there any need to use for this purpose the 
LagrangianLagrangian setting too? Are there problems which setting too? Are there problems which 
require such an approach?require such an approach?



A plausible answer is that there are important A plausible answer is that there are important 
problems/questions of dynamical nature for which problems/questions of dynamical nature for which 
LagrangianLagrangian information is of utmost importance (as well),  information is of utmost importance (as well),  
i.ei.e one has to employ both settings. The one has to employ both settings. The firstfirst example is example is 
given by the class of flows where turbulence memory given by the class of flows where turbulence memory 
and/or sensitivity to the inflow conditions plays an and/or sensitivity to the inflow conditions plays an 
essential role (e.g. jets, mixing essential role (e.g. jets, mixing layeslayes, wakes and flows , wakes and flows 
past grids too past grids too –– the recent example of flows past fractal the recent example of flows past fractal 
grids provides especially strong evidence for this). grids provides especially strong evidence for this). 
It has to be mentioned that the issues concerning the Taylor andIt has to be mentioned that the issues concerning the Taylor and the the 
Random Taylor hypotheses and a number of questions on Random Taylor hypotheses and a number of questions on 
accelerations belong to this sort of problems too.accelerations belong to this sort of problems too.



Most of flows mentioned above belong to the kind of the Most of flows mentioned above belong to the kind of the 
so called so called partly turbulent flowspartly turbulent flows. The main special . The main special 
features of these flows are the features of these flows are the coexistence of regionscoexistence of regions
with laminar and turbulent states of flow and continuous with laminar and turbulent states of flow and continuous 
transition of fluid particles (purely transition of fluid particles (purely LagrangianLagrangian objects!) objects!) 
from laminar state into turbulent onefrom laminar state into turbulent one via the via the 
entrainment entrainment process through the boundary between the process through the boundary between the 
two. Hence the necessity of two. Hence the necessity of LagrangianLagrangian approach in approach in 
studying of this transition process in the proximity of studying of this transition process in the proximity of 
the laminarthe laminar--turbulent interface. This issue will be turbulent interface. This issue will be 
addressed in a separate lectureaddressed in a separate lecture



PTF - ENTRAINMENT

A turbulent jet from A turbulent jet from 
testing a Lockheed testing a Lockheed 
rocket engine in the rocket engine in the 
Los Angeles hillsLos Angeles hills

Mount St. Helen volcano   Mount St. Helen volcano   
on 18 May 1980on 18 May 1980

The  laminarThe  laminar--
turbulent turbulent 
““interfaceinterface”” is is 
sharp so that  sharp so that  
fluid particlesfluid particles

(note the (note the LagrangianLagrangian
aspect aspect !!)) ““are  are  
foundfound”” abruptlyabruptly
in a turbulent in a turbulent 
environmentenvironment

laminar
irrotational

turbulent
rotational



Partly Partly 

TurbulentTurbulent

FlowsFlows



Flow past a 4 cm FLAT Flow past a 4 cm FLAT 
PLATE      Re ~ 1000PLATE      Re ~ 1000

Oil slick past  a                       Oil slick past  a                       
WRECKED TANKER                         WRECKED TANKER                         
Re ~ 100 millionRe ~ 100 million

Mount St. Helen volcano on 18 Mount St. Helen volcano on 18 

May 1980, US GeologicalMay 1980, US Geological SurveySurvey

A turbulent jetA turbulent jet
from testing a from testing a 
Lockheed rocket Lockheed rocket 
engine in theengine in the
Los Angeles hillsLos Angeles hills

A turbulent boundary layer flowA turbulent boundary layer flow

Flow past a bluff bodyFlow past a bluff body



Flows with Flows with polymer solutionspolymer solutions provide another important  provide another important  
example where example where LagrangianLagrangian approach is unavoidable at approach is unavoidable at 
least for two additional reasons 1) since the material least for two additional reasons 1) since the material 
elements (again purely elements (again purely LagrangianLagrangian objects!) in such flows objects!) in such flows 
are not passive and 2) there  are no equations  (as NSE are not passive and 2) there  are no equations  (as NSE 
for Newtonian fluidsfor Newtonian fluids) ) reliably describing flows of reliably describing flows of 
polymer solutions. So one needs polymer solutions. So one needs LagrangianLagrangian
experimentationexperimentation with such turbulent flows in the with such turbulent flows in the 
first place. first place. 
A similar statement is true of flows with any other A similar statement is true of flows with any other 
active additives.active additives.



DILUTE POLYMER SOLUTIONSDILUTE POLYMER SOLUTIONS

BLOD FLOW ??BLOD FLOW ??



Finally, there is a more general consideration. The Finally, there is a more general consideration. The 
LagrangianLagrangian description of fluid  flows is physically description of fluid  flows is physically 
more natural than the more natural than the EulerianEulerian one, since it is related one, since it is related 
most directly to the motion of fluidmost directly to the motion of fluid elements. elements. 
Further insight into the basic physics of Further insight into the basic physics of 
turbulent flows requires information on turbulent flows requires information on time time 
evolutionevolution and associated and associated LagrangianLagrangian statistics of statistics of 
such quantities like such quantities like vorticityvorticity, strain, , strain, 
accelerations, etc. as relating the spatial accelerations, etc. as relating the spatial 
structure  (the most popular time snapshots) and structure  (the most popular time snapshots) and 
the time dimension. the time dimension. 



A BIT OF HISTORY 
Lagrange versus Euler or vice versaLagrange versus Euler or vice versa



H.LAMB 1932, Hydrodynamics, Cambridge Univ. Press, pp 2-3

P. FRANK 1935, Die differential- und integral Gleichungen der Mechanik und Physik,  2nd ed., Part 2 Vieweg; 
L.D.LANDAU AND E.M.LIFSHITS (1959) Fluid Mechanics, Pergamon and many others.                                    
A detailed account on the ‘misnomer’ by which the ‘Lagrangian’ equations are ascribed to Lagrange is  found in  C. 
TRUESDELL 1954, The Kinematics of Vorticity, Indiana University Press, pp. 30-31  and references therein 
(see two next slides)



H.LAMB 1932, Hydrodynamics, Cambridge Univ. Press, pp 12-13
Note ‘ Lagrangian’ instead of   Lagrangian

Note that these equations (given in Lamb)  are equivalent to those quoted above with ν=0. 

For incompressible flows



See pp. 30-32






