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We abgolutely must Leave room for doubt or there is no progress and no Cearning.
There is no Learning without poging a guegtion. And a guegtion reguires dosbt..Now
the freedom of doubt, which is absolutely essential for the development of science,
wag 6orn from a strsuggle with constituted authovities... FEYNMANN, 1964




One owes to €uler the first general formulasg for fCuid
motion ... presented in the simple and Cuminous
notation of partial differences... By this discovery, all
Fluid mechanics was reduced to a single point
analysis, and if the equations involved were integraGle,
one could determine completely, in all cases the
motion of a fluid moved Gy any forces..

LAGRANGE Mecanique analitique, Paris, 1788, Sec X. p. 271

Of course, fluid mechanicsg can, in principle, Ge worked
entirely in the Lagrangian frame ...even neglecting
vigscous forces... yield awgward moment equations.
CORRSIN 1962.

..the uge of the viscous Lagrangian equations in

turGulence theory ig stiCl a matter for the future  MONIN
AND YAGLOM 1971




INTRODUCTORY NOTES
AND RELATED




Lxamples showing

how extremely iniricate
Is the I-£- relation




SAME FLOW - NOT THE
SAME PATTERN

Seceing is not necessarily Gelieving




Rll frames (1.e. four different Lagrangian fields) correspond to the same Eulerian flow.
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Ficure 1. Circular-cylinder wake at Ke = 90; smoke wire at (a) z/d = 4, (b) 50, (¢) 100 and
d) 150.
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Cimbala, J.M., Nagib, H. M and Roshko, A. (1988) Large structures in the far
wakes of two-dimensional bluff bodies, J. Fluid Mech., 190, 265--298.




J. M. Cimbala, H. M. Nagib and A. Roshko

Locally introduced streaklines no longer
mark Karmadn vortex street

Spectral peak at Kdrmadn-vortex-street

frequency no longer present
O
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Figurk 7. Exponential decay of Kdrmdn vortex street; circular-cylinder wake at Re = 140 (Q)
and 150 {A).




LAMINAR EULERIAN FLOW.
AT Re~1 (E-LAMINAR)

CHAOTIC LAGRANGIAN
(L-TURBULENT)




MIXING INPMM, Re ~ 1 (1)

KUSH & OTTINO (1992)

RELEVANT TO MICROFLUIDICS with Re ~ 0 (¥);

Linked twist maps (LTMs), Bernoulli mixing...

The complexity and problematic aspects
of the relation between the Lagrangian

and Eulerian fields is seen in the example

of Lagrangian (kinematic) chaos or

Lagrangian turbulence (chaotic

=1 2}i advection) with a priori prescribed and

18 not random Eulerian velocity field (E-
*|§ laminar). This is why Lagrangian

.~ /|§ description - being physically more

" b ‘I transparent - is much more difficult than

the Eulerian description. In such E-
laminar but L-turbulent flows the
Lagrangian statistics has no Eulerian
counterpart, as in the flow shown at the
left




Dye visualization of two

@ 8 simple corotating

vortices merging into one
vortex with simple velocity
8 field, but not that simple
filed of the passive
scalar(s)

8 LEWEKE 2000




FiGcure 8. Mixing in the PPM as the mixing strength is increased. The mixing strength parameter and
Reynolds numbers are (a) =0, Reppm:axia=0.6, and Reppm.cs=0; (&) S=4+0.1, Reppm-axiai=0.5, and
RFPPM:..-N =1.3; (c) ﬁ=1ﬂi0‘1, RfPPM:axlal =0,6, and REPPM:¢5=3,5; (if) ﬁ=15 i{lz, REPPM:axial ='D.5, and
R‘?PFM:cs=4-1; fﬁj ﬁ=201‘[}35 RgPPM:a:ial ={]5, and REPPM:ES=5-5; m JB=25 i[lii, RePPM:uEaL=D—5: and
REPPM:;;,I; —_-?3, (gj ﬁ=30¢0,6, REP'PM_'axiaI=Da3, and REPPM;.C;=5-9;. and {(hj ﬂ=4ﬂiﬂg, REPPM:axia]=U.3, and
Reppy.c, =7.5. KUSH & OTTINO (1992)




The structure of a passive marker (L) can be
(and wswally is) very complicaied, whereas
the corresponding velocity field (£) is

rather simple. The passive tracer may have
a nontrivial structure (and statisties))
whereas the velocity field has none.




Visualizations. E- versus L-

Flow visualizations used for studying the structure of dynamical
fields (velocity, vorticity, etc) of turbulent fows may be quite
misleading, making the question "what do we see?” extremely
nontrivial  The meaning of Seeing’ turbulent fow Is not so
simple as the Eulerian fow structure is different from the

Lagrangian one: watching the evolution of material toloured
bands’ (as suggested by Reynolds 1684) in a How may not
reveal the nature of the underlying motion, and even in the
case of rght gualitative observations the right result may come
not necessanly for the right reasons. The famous verse by
Richardson belongs to this kind of observation (which is not
necessarily right either),




WEATHER PREDICTION

BY
NUMERICAI PROCESS

BY

LEWIS F. RICHARDSON, B.A., F.R.MEer.Soc., F:Inst.P.

] THE FUNDAMENTAL BQUATIONS - oh. 4/8/0
On the other hand we find that convectional motions are hindered by the formation of small eddies resembling those due to
dynamical instability. Thus 0. K. M. Douglas writing of observations from aeroplanes remarks : "'The upward currents of large
cumuli give rise to much turhulence within, below, and around the clouds, and the structure of the clouds is often very
complex.” One gets a similar impression when making a drawing of a rising cumulus from a fixed point; the details change
hefore the sketch can be completed. We realize thus that: big whirls have little whirls that feed on Cheir velocily, aml ittle
whirls bave lesser whirls and so on to viscusity— in the molecular sense...

Thus, becanse it is not possible to separate eddies into clearly defined classes according to the source of their energ\ end iy
there is no object, for present purposes, in making a distinction based on size between cumulus eddies and eddies a few metres
in diameter (stnce hoth are small compared with our coordinate chequer), therefore a sinole coeificient is used o represent the

effect produced by eddies of all sizes and descriptions.

CAMBRIDGE

AT THE UNIVERSITY PRESS
1g22 .







Do you:see here a cascade!
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....even wrong theories may help in designing machines,

(FEYNMZ#AN, 1996 ) Feymmannh., 1996 Lectures on Compatation, Addison-Wesley:




This is a part of a hroader question. Namely,
what can be learnt about the properties and
especially dynamics of genine turbulence (NSE,
Euler) from studies of passive objects (particles,
scalars, vectors)? In particular, what can be

learnt about the velocity field and other
dynamical variables in real torbulence from
comparison of the behavionr of passive objects in
real and some ‘synthetic’ turbulence?

We are again hack with (some aspect of) the L-E
relation




The Lagrangian description of fluid flows is physically more
natural than the Eulerian one, since it is related most directly to
the motion of fluid elements. Nevertheless, mostly technical
difficulties (both in physical and numerical experiments) strongly
hindered use of the Lagrangian approach in most of fluids
dynamical problems. The traditional problems for which

Lagrangian description 1s considered especially appropriate are
transport and mixing n diverse applications, e.g. geophysical
and environmental, cloud formation, chemical technology,
combustion and material processing, sedimentation, bio-medical
and recently microfluidics, and many others. In most of the
above issues the concern 1s with with the Amematic aspects,
.e. with what is called today “passive turbulence”.




The term kinematic(s) 1s associated with several issues, all of
which have in common things which are not directly related to
the (Euler Navier-Stokes) dynamics of turbulence. In other
words the dynamics of fluid motion, except incompressibility,
does not enter into the problems in question: the velocity field is
assumed to be known  priory. These issues include the

following: 7) kinematic (statistical) properties/structure of real
turbulent and artificial (in some sense, e.g. Gaussian, synthetic,
KS, low Re with random excitation) random flows such as
(an)isotropy, (in)homogeneity, etc. 77} passive objects in
random flow fields including artificial ones. 77/ - Kinematic
(Lagrangian) chaos.




In other words the main concern is in the eva/ution of passive objects
(fluid particles, passive scalars such as dispersing contaminants, chemical species,
temperature, moisture; passive vectors such as material lines, (weak) magnetic field in
an electrically conducting fluid; passive surfaces such as material surfaces, and in some

cases reacting surfaces and turbulent flames; material volumes) 77 random Huid
fows. An essential point is that the evolution of passive objects obeys linear
equations in which the velocity field does not “know' anything about the
presence of these objects and therefore the velocity field is considered as
given a priori be it a real fluid flow field or some artificial one. There is no
mvolving phenomenon as pressure™. This does not mean that the problems of
the evolution of passive objects are simple. The main complication and
simultaneously rich variety of phenomena comes from the fact that the
velocity field enters as a coefficient in front of the spatial derivatives, L.e. it is
due its multiplicative character, so that statistical problems become in a
sense nonlinear,

*Hence “shocks' in the form of ramn-cliff structures iust like in the Burgers eauation.



Another aspect is associated with the dynamics of inviscid fluids, such as theoretical problems of
Euler equations, inviscid vortex dynamics and vortex methods, stability, dynamics of interfaces and
surface waves, compressible flows. Though these issues seem to have little to do with genuine
turbulence, there are views/beliefs that such things like possible singularity formation and collapse in
Euler flows and that the infinite Reynolds number limit of turbulent flow is described by singular
solutions of Euler equations . Some people regard these as “very attractive scenarios”. They are
definitely very attractive and mathematically beautiful (since Onsager 1949), but it is more than not
clear whether they have anything to do with real turbulence at whatever large Reynolds numbers.
One cannot take seriously claims like /e existence of such near singularities for turbulent velocity
fields at high Reynolds number fias been confirmed by data from experiments and simulations” or
“Observations from experiments and simulations suggest that material objects advected by such a
rough velocity become fractal..”, sinceall the experimental and numerical evidence is obtained at
moderate Re, at which no singularities, fractal structure, etc. are expected and observed (if such
exist at all). This evidence cannot be used as supporting any models at infinite Re, , which in principle
cannot be confirmed or disproved by experimental or numerical evidence. We will return to these
issues in a later lecture on mathematical issues including the question “ how much mathematics does
help to understand turbulence?” We will make a relevant a7 /oc reminding below




There is little (if any) treatment of dynamical aspects of turbulent flows (e.g.
those corresponding to those described by NSE in Eulerian setting) in
Lagrangian setting (one of our main concerns here). One of the reasons is the

view that

A principal objective of any theory of feuid motion ig the

prediction of the spread of matter or "tracer” within the
flsid. BENNET 2006

But the main reasons take their origin in the difficulties to handle the
Lagrangian equations and related issues.

Is it true that dynamical issues per se can be
treated satisfactory in Eulerian setting only? Is
there any need to use for this purpose the
Lagrangian setting too? Are there problems
which require such an approach?




SOME B&SIC INFORMATION

Lulerian and bagrangian descriptions




In what is called Eulerian description the observation of the system is
made in a fxed frame as the fluid goes by. In this case the motion is
characterized by the velocity field u(x,t) as a function of position
vector, X, and time t. In the Lagrangian description the observation
is made /ollowing the fluid particles(wherever they move)™. Here the
dependent variable is the position of a fluid particle X(a.t),asa
function of the particle label, a, (usually it’s initial position, 1.e.
X(a,0) = a, and time t. The relation between the two ways of

description is given by the following equation **

axé,? ) _ u(X(a,t);t] (E-L)

Le. the Lagrangian velocity field, v(a,t) = -3%?—’” is related to
the Eulerian velocity field, u(x,t) as V(a.,t) = u[X(a,t); .




I the Eulerian velocity field is known/given — as in all problems
of kinematic nature — then the above equation serves for
determination of the trajectory of a fluid particle with the iitial
position X(0) = a . This equation is nom/inear (for almost all)
even for very simple flud flows and is generically non-infegrable
for (again almost) all such flows, 1.e. the fluid particle trajectories

are chaotic. We will call (as in Tsinober 2001) these Lagrangian
chaotic flows as L-turbulent which may be both E-laminar or E-
turbulent. This chaotic property of the trajectories of the fluid
particles makes it more difficult to follow them, i.e. much more
difficult to utilize the Lagrangian description of even the simplest
fluid flows which exhibit Lagrangian chaos.




In other words 1t can be claimed that
Lagrangian description =

NSE (e Luler) + the equation

0X(a,t)
ot

= u(X(a,t); 1]




Aliernatively one can wrirte up the equations directly
In the Lagrangian variables

LAGRANGIAN EULERITAN
Observation following the system : Observation of the system in a fixed
: frame as flmid goes by

INDEPENDENT; VARIABLES

wherever 1t moves

: X i
DEPENDENT VARIABLES
X(a,t) U(x, t)

GOVERNING : EQUATIONS
D(X;)/Dl(a;) = [X1, X2, X3| =1 : OU; [0z =0
0°X; /0% = [Xj, Xy p| + : Du;/Dt = 0U; /6t + U,0U; /0xi=
I“"[Xn.l Xﬂ—l—l, [-X'n, Xn-l—l.. aX@/aﬂ: _ap/amz aa L’vEUi
(34+1=1)
00/0t = X[ X, Xpat [Xn Xnp1 9], | 06/8t + uy868/0zy = V6"
Viscous terms are strongly : Pressure is inherently ‘non-Lagrangian

nonhnear (fifth order nonlinearit due to 1ts nonlocalit




LAGRANGIAN EULERTAMN
Observation following the system Observation of the system 1n a fixed

wherever 1t moves : frame as fluid goes by
INDEPENDENT': VARIABLES
x, t
DEPENDENT : VARIABLES

: U(x, t)
GOVERNING : EQUATIONS *
D(X;)/D(a;) = [X1, X2, X3|=1] oU; f0x; =0
9*X; /8% = [X;, Xy p| + : Du;/Dt = 08U, /0t + U,0U; [0z =
V[ X, Xnt1, [Xn, Xns1, 0X;/01], : —0p/dz; + vV
(3+1=1)
09/0t = X[Xn, Xns1 [Xn Xny1 9], i 00/8t + up80/0z), = xV2**
Viscous terms are strongly : Pressure is inherently cnon-Lagrangiam
nonlinear (fifth order nonlinearity) due to 1ts nonlocality

Rate of strain 12 nonloecal 1n some sense !

% see, e.g. Corrsin 1962; Monin & Yaglom 1971, ch 5, section 9.1.
* *The ’solution’ to this equation with x = 0 and with an intial condition 8(x,0) = §(x) is

f(x,t) = §{x — X(0,t)} 1. e. the PDF of §(x,t) coinsides with the one of X(0.t). This means
if the scalar field rnarked particle by particle so that 8(x,t) = [60(a)d{x — X(a,t)}da then
the equations 98/0t + (U - V)8 = 0 and M = U[X(a,t);t] are equivalent.




However, in pure Lagrangian setting the equations are
intractable (so far) and in order to obtain true (not
modelling!) Lagrangian information one has to solve the
problem in Eulerian setting and using this information

toghetre with the equation (E-L) one can obtain the
Lagrangian dynamics of any fluid particle. As the Euler
information 1 defined on the computational grid it is
necessary to use an appropriate/adequate interpolation
scheme.




* The Lagrangian description is the analog of the classical particle mechanics where individual
particles are labeled and tracked. It is also analog to Heisenberg representation in quantum
mechanics. The Eulerian description is the analog to tge Schrodinger representation in quantum
mechanics.

*The relation between the two ways of description can be seen also by looking at
any conservative property of fluid particles (i.e. a nondiffusive passive scalar) such as
nondiffusive ‘dye’ or any other (e.g. radioactive) label. Due its conservative character it
is time independent in the Lagrangian description, i.e. has the form d(a), but is time
dependent in some fixed point of space, X, i.e. in the Eulerian description, and has the
form 6(x,t). Hence, both are related via ¥(a) =f[X(x,t),t]. Since @5@ =& =0i

‘: + uk% = 0, which is just an expression of the fact that the material

follows that g—
derivative of any Lagrangian conservative property should vanish (see Monin and Yaglom,

1971).

There are mixed, i. e. Eulerian-Lagrangian descriptions, which date back to 19t century, see

references in Lamb 1932 and Cartes et al 2007, Plys Huids, 19, 077101/1-7




LAGRANGIAN EULERTAN
Observation following the system : Observation of the system 1n a fixed
: frame as fluud goes by

INDEPENDENT; VARIABLES

wherever 1t moves

: X, t
DEPENDENT : VARIABLES
X (a,t) U(x, t)
GOVERNING : E QUATIONS®
D(X;)/D(a;) = [X1, X2, X3] =1 i OU; [0z = 0
8% X; /0% = [Xj Xy p| + i Du;/Dt = 0U; /0t + U,0U; /Oxp=
V[ X Xnt1, [Xn, Xni1, 0X;/08], i —dp/dz; + VvV,
(B3+1=1)
)0t = X[ X Xps1 [Xn Xnt1, 9], © 00/8t + ur80/0zy, = xV26°
Viscous terms are strongly : Pressure is inherently non-Lagrangian
nonlinear (fifth order nonlinearity) : due to 1ts nonlocality

Rate of strain 1s nonlocal 1n some sense :

There is an elegant version of the Lagrangian equations for an inviscid (!) flows using instead of the Lagrangian
Variables X(a,t) it is using the Jacobi matrix O(X.)/0(a,) which completely describes the fluid motion

(YAKUBOVICH & ZENKOVICH 2001; BENNET 2006)




EULERTAHN LAGRANGIAN

Observation of the system in a fixed Observation following the system
frame as fluid goes by wherever 1t moves

INDEPENDENT VARIABLES
x, t a(particle label, e.g. initial position), ¢
DEPENDENT VARIABLES
U(x,t) X(a,t) - particle position at time ¢

GOVERNING EQUATIONS

Bu@jﬂmi =0 F(Xi)/ﬂ{&j) = [Xl--.- XE-.- Xg] =0
Du.;/'ﬂt = ijﬂt + ukam/’ﬂ:n;ﬂ: HEX@/HEE’} = [Xj? ij j?] +

—apfﬂﬂ:g + H?Eu,‘, H[Xr;, Xnt+1, [Xr;, Xnt+1, HX.g/ﬂt]?

80 /8t + ux00/0xy, = x V28 09/t = X[ Xn, Xns1, [Xn, Xnst1 9],

Pressure 1s inherently non-Lagrangian Viscous terms are strongly nonlinear
due to its nonlocality (fifth order nonlinearity)




Conservation laws in ideal fluid flows.
Definition 1.6 The circulation (or flux of vorticity) is defined by

(5) k=fud=[wddo,
: JC S

where C (of elementary directional length dl) is a simple unknotted, closed
circutt C = 08, and § (of elementary area do ) is a simply connected two-
dimensional surface of unit normal ¥, pointing in the positive direction
induced by the w-field.

The two integrals are related by Stokes’s theorem and in ideal conditions
(Euler’s equations) the common value x = constant is an invariant of fluid
motion (Helmholtz’s III law and Kelvin’s theorem; see [30]). Moreover,

Definition 1.7 The vorticity field w is said to be frozen in D if and only
if it satisfies the transport (Helmholtz) equation

(6)

Ricca, 2001, Geomelric and fapological aspects of vortex motion, in RL Ricca (ed.), An
itroduction to the the Geometry and Topology of Fluid Flows, pp. 203-228 Kluwer




Conservation laws in 1deal fluid fows,

(6)

A formal solution to (6) is represented by the Cauchy equations

Ldi(x, t) — wj(aa tﬂ)% 3 (T)
that encapsulate both convection of the w-field from a to x, and rotation
and distortion of the fluid elements by the deformation tensor dz;/da;
(incompressibility is given by the condition det(dz;/da;) = 1). Since the
tensor is a time-dependent diffeomorphisin of position, it maps contintously
(i.e. without cuts or reconnections) the initial field w(a, tp) to w(x, 1), thus
establishing a topological equivalence between initial and final configuration
(Figure 3). We write

w(a,tg) ~ w(x,t), (8)
and we regard equation (6) as a master equation for frozen fields and equa-

tion (7) as a topological equivalence statement for the initial and final
configuration fields.




2.1. LOCAL INVARIANTS AND DIFFERENTIAL FORM CONSERVATION
LAWS

@ A an important addition
Local fluid invariants can be classified in four categories: Sr oo
[ type: conserved quantity p {e.g. mass per unit volume). (ﬂt Ihe QHXI Sllde) " IS

Governing equation for scalar quantities as a balance conservation law: -
| reminded that the

op modified heliity

':a—{-]-v'(pu):().

I type: Lagrangian invariant S (e.g. a passive scalar, like ink).

Governing equation for scalar quantities advected Lagrangian invari- : (dlsmssed ||| the leﬂllfe
i _ o9 on felicty last year) with
0 special choice of the

antly by the flow:

P +{u-V)&=0.
HI type: frozen-in vector field w (e.g. vorticity). . .
Governing equation for vector quantities advected along the flow stream gﬂ“ge |S |S also ﬂloml

lines: : ntun I
W o). (vointwise) Lagrangian

ot
IV type: Frobenius invariant S (e.g. momentum of a vortex ring). ||Wﬂr|ﬂm

Governing equation for vector quantities advected by Frobenius-type
surfaces frozen in the flow (see Figure 4):

dS
'&“{Z(SXV)XH.

All local fluid invariants can be classified in these four categories, These
four types of invariants can be expressed in terms of differential forms,
each one corresponding to an invariant wP-form (p=0,1,2,3) obeying the
onservation law
Jw?

£t,uwp = ‘“a"'t" + Lyw? =0, (9)




MODIFIED HELICITY

Helicity is a global quantity which in many cases is not well defined. It appears that
one can choose the gauge ¢ in such a way that the helicity density is a Lagrangian
(non-dissipative) invariant, i.e. it is conserved (pointwise) along the paths of fluid
particles and therefore for any fluid volume. Such a choice is possible both for
magnetic field (ELSASSER, 1956; CHILDRESS & GILBERT, 1995) and for
nonconducting fluid flows (kuzmin, 1983; 0SELEDETS, 1989). It is possible

to do so also for a viscous flow (0SELEDETS, 1989) chosing ¢ obeying the
equation

D@/Dt=p — u?/2 + vV2Q
Then the modified helicity density h = @-v, with v =u+V o satisfies the

equation
Dh_/Dt = v{V?h_ -2(0,/%,)(Ov:/0x,)}
L. is a Lagrangian mvariant if v = 0.




Conservation laws in ideal fluid fows,

In absence of dissipative and diffusive effects the invariance of circulation is
of course just one manifestation of the ideal conditions of fluid motion. In
this context it is natural to expect the existence of families of such quantities
(1ot all necessarily scalarsj. Gne possible classification of invariants is based

on their nature:

(7) local (metric) —  pointwise

(i7) global (metric) — integral

(zi1) topological (non-metric) s algebraic
Ricca, RL. 2001, Geometric and fopological aspects of vortex motion, in RL Ricca (ed.), An
introduction to the the Geometry and Topology of Fluid Flows, pp. 203-228 Kluwer.
Tur, A. and Yanovsky, V. 1993 , Invariants in dissipationless hydrodynamic media, ./ Fuid
Mech,, 248, 61-106.
The Lagrangian conservation laws are a consequence of Noether’s theorem due to the so called
relabelling symmetry (Salmon 1988, Bennet 2006). In fact, there are many such invariants all
frequently called Cauchy invariants and related in some way to the conservation of circulation.
We are now ready for a historical digression.




A REMINDING. ON WHY IDE AL
CONSERVATION LAWS DO NOT
HOLD IN TURBULENT FLOWS AT
ANY REYNOLDS NUMBERS

Vorticity is not “approximately” frozen if fHuid
Hows at any Reynolds number
and the Kelyin theorem Is violaied.
Turbulence is not a slightly viscous plhenomenon.




The main (but not the only) point of concern here is that
vorticity is not “approximately” frozen if fluid flows at any
Reymolds number and the Kelvin theorem is violated:
turbulence is not a slightly viscous phenomenon. So as in
Euler approach one has to deal with equations explicitly
containing viscosity. In pure Lagrangian setting these

equations are intractable (so far) and in order to obtain true
(not modelling!) Lagrangian information one has to solve the
problem in Evlerian setting. Using this information one can
obtain the Lagrangian dynamics of any fluid particle. As the
Euler information is defined on the computational grid it is
necessary to use an appropriate/adequate interpolation
scheme,




Experimentally direct partice tracking velocimetry
allows to access Lagrangian information at low to
moderate Re,. We will get to the issue of methods
(with the emphasis on the experimental ones) in a

later lecture,




In an inviscid flow

Do/Dt = (- V)uy DIVDt =(1-V)u

D(»-1)/Dt = {(»-1): V}u

Sod =1 atalltimes if initially &> — 1 =0;

However, in a flow with v+ 0 whatever small an approximate balance (Tennkes &
Lumley ) holds (.0, S: ) = V(O)ivzc)i}, holds, i.e. the vortex lines
are not frozen into the flwid at whatever high Reynolds number (vortex lines are

loosing their identity as material lines at any Reynolds number) — otherwise how
the enstrophy production can be approximately balanced by viscous terms again
at any — whatever large — Reynolds number.

In other words in slightly viscous flows frozennes is meaningless with a consequent
(mot slight!) violation of the Kelvin circulation theorem - just like the claim that
turbulence is slightly viscous at whatever large Re. In this context the question:
what happens with enstrophy and strain production as v—>0 is of special interest.




The above is not entirely new (at least in part) |
. a material Line which ig initially coingiding with a vootcx

Cine continmeg to do go. It ig thug posgible and convenient

to regard a vortex-line ag having a continuing identity and

ag moving with the fuid (In a vigeous [Leuid it ig, of

cosrge, pogsible to draw the pattern of vortex
Cineg at any ingtant, Bet there ig no way in which
particslar vortex-ine can be identified at different
ingtantg). BATCHELOR, 1967, p.274




SOME ISSUES OF CONCEPTUAL




Accelerations, Random Taylor
Hypothesis (RIH) or sweeping
decorrelation hypothesis.

Hecelerations., In what sense is RTH
valid?




The issue concerns a commonly used concept known as
the random Taylor hypothesis or the sweeping
decorrelation hypothesis which 1s an important
generalization of the common Taylor hypothesis. It was
suggested by TENNEKES 1975 that in turbulence at

high Reynolds number #e dissipative eddies flow past an
Lulerian observer in a time frame much shorter than the
lime scale wiich characterizes their own dynamics, 1.e.
7. [ 7, ~Re -V (hence in the lagrangian setting the correlations are
expected to be much larger which is mostly - but not always - the case).




In turn this implies that Taylor's “frozen turbulence”
approximation would be valid (at least qualitatively)
for the analysis of the advection of the turbulence
microstructure by the large-scale motions. Already
at the very beginning one encounters an ambiguity

(not the only one) as the time scale (like many other
things) of the Zu/erian observer depends on the
velocity of the Eulerian frame in which the Zu/erian

observer lives:




2 = e

1*—-——\

v=25.0 cm/s ;""

ﬂes?/ :

The four wpper pictures, from
TOLLMIEN 1931 correspond to
the visualization of a turbulent
water flow in an open 6 cm
wide channel photographed by a
moving camera at various
speeds. The mean velocity of the
flow is 16.Icm/s.

The two lower pictures are from
PRANDTL AND TIETJENS 1934.
In the right picture, the camera
moves with the speed equal to
the velocity of water in the
center of the channel. In the left
picture, the speed of the camera
is small and close to the velocity
of the water near the walls.




CONVENTIONAL TAYLOR HYPOTHESIS

Works (roughly) when

<u2>1/2 /U << 1

The explicit dynamic conditions are more comples, see

Uberoi, MS. and Corrsin, S 1952, Diffusion of heat from a line source in isotropic turbulence, ¥4¢A4 Rep,, 1142, 1953
{originally MA(A, TN2710, 1(52)}.

Lin, CC 1953, On Taylor Hypothesis and the acceleration termsin the Navier-Stokes Equations, (uart app:Math. 10,
; . . . . .

and references in Tsinober, A. Yeung, P.K. and P. Vedula, P. (2001) Random Taylor hypothesis and the hehavior of
local'and.convective accelerations in isotropic turbulence, ysics of Fluids, 13, 1974-1984.




JOINT PDFS FOR C @N&ANT[@NAL
TAYL@R HYPOTHESIS

velocity temperature

(-1/u)dT/ot
<




To assess its validity it should be recognized that, in fact, Tennekes’

hypothesis consists of two ingredients. First

it 1s proposed that the

Lagrangian acceleration a of fluid particles is in some sense small, such
that time scales measuring Eulerian and Lagrangian rates of change
could be estimated by simply setting a = 0 which is good for the
purpose of getting at least qualitaively correct estimate. However, it is

obvious, that a = O cannot be perfectly true (this has far more
serious consequences in a number of conceptual issues (see below)

than usually appreciated (can one imagine that
the equation like ou/ot+ (w-V)u =0? or V;

he flow is governed by
h+vV2u=07?)

It is noteworthy that the above assumption was

ormulated for the

turbulent fluctuations (which are local pointwise in space and time)
mstead of for statistical measures of these quantities.




The second assumption made by Tennekes is of statistical nature,
namely, that £fe microstructure is statistically independent of the energy
containing eddies. This assumption appears also too strong and should be
replaced by a more Limited interpretation of this hypothesis in the sense
that the microstructure is statistically decorrelated from the energy
containing eddies as there is a growing body of experimental evidence

(see refs in Tsinober 2001) showing that large and small scales are not
statistically independent though weakly correlated (see the lecture on
nonlocality). In this connection it is important to stress that the RTH is
frequently misinterpreted (following the original Taylor hypothesis of
frozenness) in the sense that the small scales are just swept as a kind of
passive objects and in the dynamical context (at best) are just a passive
sink of energy.




In the above issues one already encounters the grand and multi-faceted
problem (as we will see below itis the problem) of the relationship

between the Eulerian and Lagrangian settings (see also next slide).
Indeed the Lagrangian acceleration a is represented via its Eulerian
components a,= ou/ctand a_= (u-V)u as a = a, + a_ Joif the
RTH holds the two vectors have to be strongly anti-aligned (i.e. the
angle O between the two should ~ 7t) resulting in strong mutual
cancellation.

a |, |a | >>|a|

This was really observed both in DNS and laboratory (field)

experiments.




LAGRANGIAN ACCELERATION AND
ITS EULER ‘COMPONENTS'

a=a ra,=a +a rtag=4a, +4a,

a, —a_u. a =(u-V)u; a, =mxu;

ot

— 9 — . 1
aj_ a a” ° aB :_vu2;

A\ A 2
q = (a-a)i;

u=u/u o
Fluid particle trajectory




RANDOM TAYLOR HYPOTHESIS




.,-’/
A TH T | ﬂ”f
90 120

e(ﬂL:aC]

~ PDFs of 6#(a; ,a.) for R, 38 and 240 (lines A and B, 165[)6‘(?—
tively). The inset shows the same PDFs on a logarithmic scale.

1976 Phys. Fluids, Vol. 13, No. 7, July 2001 DNS




PDFS oF THE COSINE
OF THE ANGLE
BETWEEN

Re;L 3¢ 38 90 9

Gauss NSE Gauss NSE

Tsinober, A. Yeung, P.K. and P. Vedula, P. (2001)
Random Taylor hypothesis and the behavior of !rﬂ
and convective accelerations in isotropic turbulence
Plysies of Fluids, 13, 1974-1984. |

Note the strong effect of purely kinematic nature
in a Gaussian field, see also next slide

]

Redupto 135

| Field experimenjt Reﬁ 6-80-0—
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MORE GENERALLY

For any quantity (scalar, vector, tensor)

bR Q |
Dt == ot |’ (o V)Q‘

DR_R - (u-V)

Dt ot ?

The Lagrangian derivative DQ/Dt=0Q/¢ot + u . 0Q/0x,
is much smaller than its Eulerian components.




EXAMPLES
FOR OTHER

QUANTITIES : |
from DNS of NSE L
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Temperature gradient G

Relative frequency

Magnetic field B~ | Vorticity w
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A& SMALL EXCERCISE

Express the local convective accelerations in a frame moving with

mean velocity U in terms of their values a & = 0¥ and

= (u : V)u i the frame with U =0.

ot

AND A QUESTION

The question is whether the smallness of DQ/Dt = 0Q/0t +
w, 0Q/0x, as compared to both Q/ St and 1,060/ Ox, can be
seen as an indication of the existence of a small parameter in turhulence
theory.




"KOLMOGOROV 4/5 LAW,
NONLOCALITY AND SWEEPING

DECORRELATION HYPOTHESIS
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FIG. 1. Kfar Glikson measurement station, Israel, the probe on the mast (a). Airborne
experiment, Germany, the probe in the flight (b). Sils-Maria experiment, Switzerland, the
probe on the lifting machine (c).

Experiment 102, SNMI12 SNMI11 Falcon Jet

'Sﬁd—SMfzeﬂaftd—Alfbﬁm
Rey - 1073 10.7 5.9 3.4 1.6 0.05

The Taylor micro-scale Reynolds numbers, Re,. for the experiments.




Experiment 102, SNM12 SNMI11 Falcon Jet
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& Conventional Kolmogorov b Equwalent Hosokawa’s
475 law 1941h relation 20017
((Aw,)*) = -4/5er (u?,u_) = &r/30
2u, =u(x +r) +u(x), 2u =u(x +r) —u(x)
u,(x) is the longitudinal velocity component

Kolmogorov 4/5 law, non-locality and sweeping decorrelation hypothesis,

M. Kholmyansky, and A. Tsinober (2007) submitted




Experiment 102, SNMI12 SNMI11 Falcon Jet
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' . ogoroy b Equwalent Hosokawa’s
475 law | Qai‘f relation 2001
((Au,)®) = -4/5er (u?,u_) = &r/30
2u, =y (x+r)+tu(x),2u =u(x+r)—u(x)
u,(x) 1s the longitudinal velocity component
Kolmogorov 4/5 law, non-locality and sweeping decorrelation hypothesis,

M. Kholmyansky, and A. Tsinober (2007) submitted




For more on the experiments see

G. Gulitskii, M., Kholmyansky, W. Kinzlebach, B. Liithi, A. Tsinober and S. Yorish
(2007) Velocity and temperature derivatives in high Reynolds number turbulent
flows in the atmospheric surface layer. Part L. Facilities, methods and some
general results, J Flund Mech 589, 57—38].

G. Gulitskii, M., Kholmyansky, W. Kinzlebach, B. Liithi, A. Tsinober and S. Yorish
(2007) Velocity and temperature derivatives in high Reynolds number turbulent

flows in the atmospheric surface layer. Part II. Accelerarations andrelated
matters, J Flud Mech. 589, 83—102.

G. Gulitskii, M., Kholmyansky, W. Kinzlebach, B. Liithi, A. Tsinober and S. Yorish
(2007) Velocity and temperature derivatives in high Reynolds number turbulent
flows in the atmospheric surface layer. Part lll. Temperature and jointstatistics of
temperature and velocity derivatives, J Flud Mech, 589, 103- 123.

and references therein




Following KR AICHNAN 1964 there are two main ingredients in
the (Eulerian) decorrelation; the mentioned sweeping of
microstucture by the large scale motions (and associated kinematic
nonlocality) and the local straining (which is roughly pure
Lagrangian). It appears that this kind of “decomposition” 1s
insufficient as it is missing an essential dynamical aspect - the

interaction between the two as it is clearly demonstrated by the
Hosokawa’s version of the Kolmogorov 4/5 law. As we have seen
the random Taylor hypothesis (and, of course, the conventional
Taylor hypothesis) lack/discard this aspect at the outset (this does
not mean that these hypotheses are useless): both are ‘too
kinematic’, while acceleration is a dynamic quantity in the first place




Relation between Lagrangian
and Eulerian statistical
properties of fturbulent flow

This is a long-standing and most difficult problem posed by Corrsin in
1957. The general reason is because the Lagrangian field is an extremely

complicated non-linear functional of the Eulerian field and vice versa (there
is also a problem of invertibility). The complexity of this relation can be
seen in the example of Lagrangian turbulence (chaotic advection) with a
priori prescribed and not random Eulerian velocity field (E-laminar) among
others. In this extreme example the Lagrangian statistics has no Eulerian

counterpart. In other words, generally, it may be meaningless to
look for such a relation.




Given the marker digpergion the proGlem is to determine the
source(s) of agitation. In general, owing to chaotic advection,
this invergse pro6lem is impossiGle to solve. XREF 1984,

... the posgsession of such relationship would imply that one
had (in some sense) solved the general turbulence problem.
ThAus it scems argualble that such an aim, although natural,
may Ge somewbhiat iClusory. Neverthielegs attempts to realize tis
aim can teach us about the subject... MCCOMB, 1990

Jt is clear that some aspects of the [Cuid motion are eagier to
understand in in the Eulerian frameworf while others are eagier

to describe in the Lagrangian framewor. FRIEDLANDER & LIPTON-
LIFSCHITZ 2003

Whaat one sees is real. The proGlem is interpretation




LAGRANGIAN CORRELATION AND SOME DIFFICULTIES
IN TURBULENT DIFFUSION EXPERIMENTS

Advances in Geaplysics, 6, 441-448 1959; ATMOSPHERIC DIFFUSION AND AIR POLLUTION, Proceedings of a Symposium held at Oxford, August 24-29 ,1958

S. Corrsin
See also Corrsin 1957, Review of Surveys in Mechanics: G. I. Taylor 70th Anniversary Volume, edited by G. K. BATCHELOR & R. M. DAVIES, J Muid Mechanics, 2, 616-612;

Mechanical £ngineering Department, Johns Hopkins University, Baltimora, Maryland, U.S. A,

1. Tue PrOBLEM OF RELATING LAGRANGIAN AND ILULERIAN
CORRELATION

For turbulent diffusion we are interested in the statistics of at least single
“fluid particle” displacement ; sometimes we need the joint statistics of
two or more. Since particle displacement 18 an integral function of its
(Lagrangian) turbulent velocity v,(a,?), i.e.

(1) Xat) = a+ [ofat)de,

it follows that even the simple probability density function of displace-
ment depends upon the full functional probability of »;. ais the “initial
position of the fluid particle, e.g. a, = X,(a,0).




Evidently
(2) via,t] = ulX(a,t),t]

and an integral equation for displacement results from substitution of
(2) into (1): |

i
X(a,1) = o+ | u[X(a,t), 6144,

0

We are, of course, concerned with only the statistical properties of
these random variables.

sSince Taylor’s demonstration of the connection between mean square
particle displacement [e.g. X2(a,t)] and time auto-correlation of Lag-
rangian velocity [v,(a,f)v(a,t+7)], the problem of expressing this cor-
relation in terms of the Kulerian properties has become a very important
practical one.}

The Lagrangian two-point correlation tensor is

(43 i = Y PPN T B T ey ; X(ast)s‘t]a [ {a'%'g,i—}_'}'),t—'—'r],

where the averace is over a suitable ensemble of realizations. For sta-
tionary, homogeneous fields this depends on (e, 7) only. The correlation
introduced by Taylor is L,{0,7).




The Fulerian two-point correlation (in space-time) for a homogeneous,
stationary field is

(5) ._ E'J(Ea T) = uj(xst) ué(x"l'grﬁ"l" T)

2

and, in general, there is no reason to expect that L, and E, will be

uniquelv related.

Kquation (4) shows explicitly that 7, is the average over an ensemble
of random trajectories X{(a,?) in the ensemble of random Kulerian fields
u(x,t). Little mathematical work appears to have been done on the
properties of such statistical funections, even in the degenerate case in
which the trajectories are statistically independent of the fields.f The
immense complexity of our problem is finally brought out by the
realization that each trajectory in the ensemble is related to the field it

traverses [ Kquation (3)].

4
0




INDEPENDENCE APPROXIMATION
AND MANY OTHER

At the same meeting in 1958 Corrsin proposed (see next slide) the so
called independence approximation to relate the Lagrangian and Eulerian
velocity correlations assuming that at large times the probability
distributions of 1) particle displacemenets and of the Eulerian velocity

field become statistically independent. Generally this hypothesis (as a
host of others) is not correct as is shown , e.g.in recent experiments
by Ott and Mann (Aew Journal of PlysicsT (2005) 142). Corrsin also
proposed simple estimates for the relations between characteristic scales
of tirbulent flows in 1963, an important estimate was given by
Tennekes mn 1975 Later references on request.




Corrsin, S. (1959) Progress Report on some turbulent diffusion reearch, Advances in Geaplysics, 6, 161-
164 ATMOSPHERIC DIFFUSION AND AIR POLLUTION, Proceedings of a Symposium held at Oxford, August 24-29 ,1958.

8. Conjecture on. an Asymptotic Connection between Lagrangien and
Eulerian Correlations

In terms of an ensemble of Rulerian fields, the Lagrangian tirne correla-
tion for the velocity of a single fluid particle is an average in which the
sample gap is different for each member of the ensemble:

(4) L, (0,7) = wla,0]u[X{a, ), 7]

where u,(x,?) is the Eulerian field, assumed homogeneous in space-time.
X(a,t) is the fluid particle displacement.

For very large time intervals, it may be possible to neglect the indi-
vidual identities of displacements on the ensemble, using only an average
weighted with the probabilitv densitv of disnlacement, y(A). Then

(5) o Za(0m) > [ [ [v8) B8, 7 aA

B, (E,7) is the Eulerian (space-time) correlation function.




MORE ON DIFFICULTIES

Lumley 1962 (at te Meeting in Marseiles in 1961) pointed to the
seneral mathematical nature of the difficulties in relating the

the two formulations. Roughly, there is a general relationship in
terms of path (Feynman, functional) integrals, but is does not

help much (if at all).

Apart of this ‘formalistic’ issue (as mentioned) there is one more
important aspect associated with the ‘more chaotic’ nature of the
Lagrangian setting. This can be seen as an indication that the pure
Lagrangian dynamical equations (so far intractable for viscous
flows) are more rich than their Navier Stokes counterpart as
explamed below.




SAME FLOW -NOT THE SAME PATTERN
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Ficure 1. Circular-cylinder wake at Ke = 90; amoke wire at (a) z/d = 4, (b) 50, (¢) 100 and
d) 150.

Cimbala, J.M., Nagib, H. M and Roshko, A. (1988) Large structures in the far
wakes of two-dimensional bluff bodies, J. Fluid Mech., 190, 265--298.
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J. M. Cimbala, H. M. Nagib and A. Roshko

Locally introduced streaklines no longer
mark Karmadn vortex street

Spectral peak at Kdrmadn-vortex-street

frequency no longer present
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Figurk 7. Exponential decay of Kdrmdn vortex street; circular-cylinder wake at Re = 140 (Q)
and 150 {A).




Dye visualization of two

@ 8 simple corotating

vortices merging into one
vortex with simple velocity
8 field, but not that simple
filed of the passive
scalar(s)

8 LEWEKE 2000




Hinematies versus Dynamics
E-Laminar but L-turbulent

L-turbulent mecessardy L-turbulent




Since the equations describing the evolution of passive objects are linear, it
may seem that there is no place for chaotic behaviour of passive objects if the
velocity field is not random and is regular and fully laminar, because the
chaotic behaviour appears/shows up in nonlinear systems. There is,
however, no real contradiction or paradox. This apparent contradiction is
resolved via looking at the the fluid flow in the Lagrangian setting in which
the observation is made following the flwid particles wherever they move.

Here the dependent variable is the position of a fluid particle, X(a t), as a
function of the particle label, a, (usually it's initial position, 1.e. a = X(0))
and time, t. The relation between the two ways of description is given by the
following equation

oX(a,t))/ot = u[X(a,t); t] (E-L)
1.¢. the Lagrangian velocity field, v(a,t) = 0X(a,t))/ 0%, is related to the
Eulerian velocity field, u(x,t), as V(a,t) = u [X(at):1].




dX(a,t))/ot = u[X(a,t); t] {E-L}
1.e. the Lagrangian velocity field, v(a,t) = 0X(a,t))/ %, is related to the
Eulerian velocity field, u(x;t), as V(a,t) = u [X(a,t):t]. Though the
Eulerian velocity field, u(x:t) is not chaotic and is regular and laminar, the
Lagrangian velocity field v(a,t) = u[X(a,t):t] is chaotic because X(a t) is
chaotic: the equation (E-L) is not integrable even for simplest laminar

Euler fields with the exception of very simple flows such as unidirectional

ones. It has to be reminded that this chaotic
behaviour is of purely kinematic nature resulting
solely from the equation {E-L} (and various
equations for passive objects - reminding again -
linear in Euler setting) and has nothing to do with
dynamics, 1.e. genuine (as NSE) turbulence.




MIXING IN PMM, Re ~ 1 (1)

KUSH & OTTINO (1992)

RELEVANT TO MICROFLUIDICS with Re ~ 0 (¥);

Linked twist maps (LTMs), Bernoulli mixing...

The complexity and problematic aspects
of the relation between the Lagrangian

and Eulerian fields is seen in the example

of Lagrangian (kinematic) chaos or

Lagrangian turbulence (chaotic

=1 ¢} advection) with a priori prescribed and
18 not random Eulerian velocity field (E-
*|§ laminar). This is why Lagrangian
|6 description - being physically more

transparent - is much more difficult than
the Eulerian description. In such E-
laminar but L-turbulent flows the
Lagrangian statistics has no Eulerian
counterpart, as in the flow shown at the
left




FiGcure 8. Mixing in the PPM as the mixing strength is increased. The mixing strength parameter and
Reynolds numbers are (a) =0, Reppm:axia=0.6, and Reppm.cs=0; (&) S=4+0.1, Reppm-axiai=0.5, and
RFPPM:..-N =1.3; (c) ﬁ=1ﬂi0‘1, RfPPM:axlal =0,6, and REPPM:¢5=3,5; (if) ﬁ=15 i{lz, REPPM:axial ='D.5, and
R‘?PFM:cs=4-1; fﬁj ﬁ=201‘[}35 RgPPM:a:ial ={]5, and REPPM:ES=5-5; m JB=25 i[lii, RePPM:uEaL=D—5: and
REPPM:;;,I; —_-?3, (gj ﬁ=30¢0,6, REP'PM_'axiaI=Da3, and REPPM;.C;=5-9;. and {(hj ﬂ=4ﬂiﬂg, REPPM:axia]=U.3, and
Reppy.c, =7.5. KUSH & OTTINO (1992)




Mixer withia twist

A'. Schematic representation-of a cintiel fype

Ottino and Wiggins, 2004 micromixer, Streamline patterns are shown at the

A 3 ends oithe mixing element, The:defails of the

shape and infernal structure of fhe channel, the
motion of boundaries; and the manner-of driving
are not shown; they.can be anything that
produces the desired cross’sectional flow (WHich
defines the family of designs).

B. Two blobs;Shown In the Superposition of the
outer streamlines in the cross section at the end
01 each mixing.element for a case where the flow
ieatures underlying the LTM.theorems provide
900d mixing properties.The integer ndenotes the
number o mixing segments (whexe a mixing
segment is two concatenated mixing elements).
The flow appears well:mixed aiter 10 lelllg
clements.

' \W))| (. The same blobs as in By hut ior a case where

the flow ieatures underlying the LTM theorems
fail to provide good mixing.




MICROMIXING

HJ Kim and A Beskok
2007 Quantification of chaotic
strength and mixing in a micro fluidic
system, J Micromech. Microeng. 17 ,

2197-2210.

Snapshots of spread of passive tracer
particles for cases B&C at period 7= 6
(2) and A&D at period 7= 6 ().

A total of 40 000 passive particles are
tracked in time. Snapshots show the
dispersing state at respective times.
Figure (2) shows flow domain filled with
passive tracer particles, and these
particles are distributed uniformly at /=
102. Figure (4) shows presence of two
small void regions that remain near the
vertical centerline of the domain at /=
102. The insets show the geometric
structure of the void region.




MIXING IN APERIODIC
CHAOTIC FLOWS

LIU M, MUZZIO F], PESKIN RL 1994
(uantification of mixing in aperiodic chaotic flows,
Chaos, Solitons & Fractals, 4 (6), 869-893 .1994
(a) Initial location of particles in the cavity flow.
(b) Pasitions of the particles after 8 periods of the

periodic flow with 7= 7.0. The red particles are
located inside the chaotic regions and undergo rapid
mixing. The blue particles are inside an island of
regular motion and hardly mix at all.

(c) Mixing is greatly enhanced by using the SB
aperiodic flow After the same 8 periods, particles of
both colors are thoroughly mixed throughout the flow

domain




Tip for mixing
of two

components
of epoxy at
Re~0




MULTISCALE AND/OR RANDOM
A&ND /OR E-LAMINAR BUT -NOT

E-GEINUINE -




The above qualification includes all artificial velocity fields
both random and/or multiscale or not. The field of particle
trajectories is (can be seen) as a passive object: it is a
Lagrangian signature of the underlying (and prescibed) velocity
field of any nature be it genuinely turbulent, or Lagrangian

chaotic such as E-Laminar, synthetic random or not, restricted
Euler, kinematic simulations of Lagrangian chaotic evolution,
turbulent-like multiscale fields, including real E-laminar flows
at Re=0 from linear Stokes equations with random forcing,
flows in porous media, microdevices, to name some.




We stress that the E-turbulence is a dynamical
phenomenon whereas this is not necessarily the case

with the L-turbulence which may be a purely
kinematic one . In other words the flow can be

purely L-turbulent (i.e. E-laminar) as in the above
examples with artificial velocity fields or real flows at

very lo Reynold numbe




However, if the flow is E-turbulent (i.e. Re >> 1) itis
L-turbulent as well. An important consequence is

that the structure and evolution of passive objects in
genuine turbulent flows arises from two (essentially

and unfortunately inseparable) contributions: one
tue to the Lagrangian chaos and the other due to the
random nature of the (Eulerian) velocity field itself




Hence, one can expect adequate kinematic simulation or simulation
in random and/or multiscale real E-laminar flows of those

properties (Lagrangian) which are insensitive (or weakly sensitive)
to the differences between the genuine turbulent velocity fields and
those used for the purposes of modeling (quite a non-trivial issue).
An important counterexample is the difference between backwards

and forwards relative dispersion (with the mean square separation
following particle pairs backwards in time being twice as large as
forwards) in genuine turbulence. Another one is the qualitative
difference in alignment properties of a passive vector in genuine

(NSE) and Gaussian velocity field




Forwards and Backwards Relatrve Dispersion

We find that, in general, backwards relative dispersion proceeds at a
much faster rate than relative dispersion forwards in time, and the
difference hetween the two is sensitive to the nature of the flow field.
The difference vanishes for Ganssian flows and for white-noise in time
flows for which relative dispersion can be described by a diffusion
equation, suggesting that theories such as two-point closure and

kinematic simulation do not differentiate between backwards and
forwards dispersion. Backwards relative dispersion is very sensitive to
the details of the tails of the probability density function for the Eulerian
velocity difference between two points

B. L. Sawford, P. K. Yeung, and M. S. Borgas, 2005 Comparison of backwards and forwards relative
dispersion in turbulence, Phys. Fuids 17, 095109.

J. Berg, B. Liithi, J. Mann, and S. Ott, An experimental investigation: backwards and forwards relative

dispersion in turbulent flow, Phys Rev. E 74, 016304




Alignment of passive vector (B) with the
elgentrarme of the rafe of strain tensor in
genuime (WSE)  and  gawssian
velocity fields
DB/Dt = (B-V)u + nAB

[ Gaussian




A COUNTEREXAMPLE
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FIG. 1. (a) Flow pattern with «a/B8=(/5-1)/2;
(b) divergence of passage time for streamlines near the cylin-
der. Crosses: numerical values; straight line: power law
~|x — xo| 712,

FIG. 3. Cloud of passive tracers carried by the flow. (a) 1 = 0:
(b)t=0.5:(c)t=2:(d)t=35; (e) t =20; (f) t = 100.

Laks, M.A. and Straube,
A.Y. (2002) Steady
Stokes flow with long-

range correlations,
fractal Fourier spectrum
and anomalous transport,

Plys. Rev, Lett, 89,
244101--1-4.




- CONCLUDING




Visualizations E- versus L-

Flow visualizations used for studying the structure of dynamical
fields (velocity, vorticity, etc.) of turbulent flows may be quite

misleading, making the question "what do we see?" extremely
nontrivial.
Seeing is not necegsarily believing.




E- versus L-structure(s),

i.e. structure(s) in E- versus L-settings.
Passive objects have lots of structure(s) in Gaussian
velocity fields™ which by definition is “structureless”.

“nd other artifioal, random ond not random.




Eulerian and Lagrangian settings are different

conceptually not just/only technically. Eulerian
setting is revealing the pure dynamical chaotic
aspects of genuine turbulence as contrasted to

“mixing” of kinematical with the dynamical ones
in the Lagrangian setting, i.e. in genuine
turbulence the latter contains hoth which seem to
be essentially inseparable.




On the mathematical side there is an important aspect
associated with the ‘more chaotic’ nature of the Lagrangian
setting. Namely, one is tempted to conmjecture that the pure
Lagrangian dynamical equations (so far intractable for

viscous flows)
82Xi/82t — {Xj? Xk? p} Jri/anj Xn_|_1? [an Xn_|_1’ 8X@/8ﬂ.

D(X;)/D(a;) = [ X1, Xo X3] =1
are more rich than their Navier Stokes counterpart
Du;/Dt = U, /dt + U U, |dxr— —p/dz; + N2,
oU;/0x; = 0
The former being equivalent to the latter plus the equation
0X(a,t)
Ot

= U|X(a,t); 1]




Some Imporiant consequences




First, Enler setting seems (?!) to he preferable for
studying genuine dynamical aspects of (e.g. NSE)

genuine turbulence due to impossibility to separate
the Lagrangian (kinematic) chaos from the genuinly
dynamical (Eulerian/intinsic) stochasticity. Second,

generally, simple relations (and even not so simple)
cannot he expected hetween Eulerian and Lagrangian
statistics. For example, there exist no such a relation for
a host of Lagrangian chaotic flows having no Enlerian
counterpart at all. So one has to resort to an ad hoc
approach for different cases/classes of flows.




Third, studying Lagrangian statistics of a variety of
artificial and/or purely E-laminar flows may not
provide adequate information of the L-statistics of
genuine turbulence as not containing the pure
dynamical stochasticity of genuine turbulence.

HAll the above brings us to the questions posed at the
beginning: Is it true that dynamical issues per se can
and should he treated satisfactory in Eulerian setting
only? Is there any need to use for this purpose the
Lagrangian setting too? Hre there problems which
require such an approach?




H plausible answer is that there are important
problems/ questions of dynamical nature for which
Lagrangian information is of utmost importance (as well),
1.2 one has to employ hoth settings. The first example is
given by the class of flows where turbulence memory
and/or sensitivity to the inflow conditions plays an
essential role (e.g. jets, mixing layes, wakes and flows
past grids too — the recent example of flows past fractal
grids provides especially strong evidence for this).

It has to be mentioned that the issues concerning the Taylor and the
Random Taylor hypotheses and a number of questions on
accelerations belong to this sort of problems too.




Most of flows mentioned above belong to the kind of the
50 called partly turbulent flows. The main special
features of these flows are the coexistence of regions
with laminar and turbulent states of flow and continuous
transition of fluid particles (purely Lagrangian objects!)

from laminar state into turbulent one via the
entrainment process through the boundary between the
two. Hence the necessity of Lagrangian approach in
studying of this transition process in the proximity of
the laminar-turhulent interface. This issue will be
atldressed in a separate lecture
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Flows with polymer solutions provide another important
example where Lagrangian approach is unavoidable at
least for two additional reasons 1) since the material
elements (again purely Lagrangian objects!) in such flows
are not passive and 2) there are no equations (as NSE
for Newtonian fluids) reliably describing flows of

polymer solutions. So one needs Lagrangian
experimentation with such turbulent flows in the
first place.

B similar statement is true of flows with any other
active additives.




DILUTE-POLYMER SOLUTIONS

~ http:/lautaro bionik tt n.de
Y = BLOD ELOW 77




Finally, there is a more general consideration. The
Lagrangian description of fluid flows is physically
more natural than the Evlerian one, since it is related
most directly to the motion of fluid elements.
Further insight into the basic physics of

turbulent flows requires information on time

evolution and associated Lagrangian statistics of
such quantities like vorticity, strain,
accelerations, etc. as relating the spatial
strocture (the most popular time snapshots) and
the time dimension.




BIT OF HISTORY. -




H LAMB-1932 /15/09‘005/173111105 Cambridge-Univ. Press; pp 2-3

3. The equatmns of motion of a fluid have been obtained in two different j
forms, corresponding to the two ways in which the problem of determining
‘the motion of a fluid mass, acted on by given forces and subject to given
“conditions, may be viewed. We may either regard as the object of our
investigations a knowledge of the velocity, the pressure, and the density,
‘at all points of space occupied by the fluid, for all instants; or we may seek
to determine the history of every particle. The equations obtained on these |

\
two plans are conveniently designated, as by 'German mathematicians, the

“Eulerian’ and the ‘Lagrangian’ forms of the hydrokinetic equations, although

‘both forms are in reality due to Eulert.

+ ¢ Principes généraux du mouvement des fluides,”’ Hist. de I’Acad. de Berlin, 1759.
¢ De principiis motus fluidorum,”’ Novi Commr. Acad. Petrop. xiv. 1 (1759).

P. FRANK 1985, Die differential- und integral Gleichungen der Mechanik und Physi, 2 ed., Part 2 Vieweg;
L.D.LANDAU AND E.M.LIFSHITS (1959) Huid Mechanics, Pergamon and many others.

A detailed account on the ‘misnomer’ by which the Lagrangian’ equations are ascribed to Lagrange is foundin C
TRUESDELL 1954, [he Kinematics of Vorticity, Indiana University Press, pp. 30-31 and references therein
(see two next slides)




Note that these equations (given in Lamb) are equivalent to those quoted above with v=0.
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2In this work we eschew the general misnomer by which X, Y, Z are called
“Lagrangian’ co-ordinates, while z, y, z are ealled “Lulerian” co-ordinates. The
origin of this incorrect usage is as follows.

By the middle nineteenth century the history of fluid dynamies in the eighteenth
century had apparently sunk into obscurity. Luler’s papers were not often read, of
his results which were not forgotten several were attributed to more recent authors
who had appropriated them without acknowledgement or discovered them afresh,
and indeed his supreme achievements in mathematies, mechanies, and mathematieal
physics were undervalued then, though not so much as now. The erroneous termi-
nology still current was introduced in the posthumous memoir of Dirichlet {1860,
1, Introd.], edited by Dedckind, where [1757, 2] was quoted as the source of the
“Fulerian” method, while it was stated that Lagrange in the AMéchanique Analitique
[1788, 1, Part II, Scct. II, 994-7] had introduced the “Lagrangian” method, but
had immediately converted the resulting equations to “Eulerian™ form. Although in
the next vear Hankel [1861, 1, §1] stated that his teacher Riemann had told him that
Euler had introduced the “Lagrangian’ method in [1770, 1], one year’s priority has
been sufficient to perpetuate the error.




Riemann’s atiribution is correct, but the references quoted are not the earliest,
either for Fuler or for Lagrange. Subsequent writers on hydrodynamies have followed
Hankel in adopting the printer’s error on the title page by which [1770, 1] is dated
1759, while the correct date is 1769; Lagrange’s first exposition of the “Lagrangian”
description is not in the Méchanique Analitique but actually in [1762, 3, Chs. XI,,
XLIV, XLVIII, LIIJ. The whole matter is easily clarified, however. In a letter
[1862, 2], written to Lagrange under the date 27 October 1759, Euler after expressing

his admiration for Lagrange’s first memoir on the propagation of sound stated that
onc had reason to doubt that propagation in two or three dimensions would follow
the same law as in the one dimenstonal ease, since he had already found the funda-
mental equations to be of different form. The equations he gives are the linearized
equations of plane flow of a perfect fluid expressed in terms of the variables X, Y.
(That the date of Fuler’s discovery of the material description is 1759 or earlier is
shown also by [1766, 1, §§4-13, 31-40], 2 memoir dated 1739, In [1767, 1], written
in 1750-1751, Fuler for plane motions had used a deseription partly spatial and
partly material.)




