TURBULENCE IN STRATIFIED ROTATING FLUIDS

Joel Sommeria, Coriolis-LEGI Grenoble

Collaborations: Olivier Praud, Toulouse P.H Chavanis, Toulouse F. Bouchet, INLN Nice A. Venaille, PhD student LEGI

OVERVIEW

- 1) Laboratory study of stratified rotating turbulence
- 2) Statistical mechanics and the emergence of organised vortices
- 3) Competition between advection and straining

Antagonistic effects

Quasi-geostrophic model

Charney (1971)

Fr << 1</th>Non-divergent horizontal flow at each z,Ro << 1</th> $PV=-\Delta_h\psi$ - $(N/f)^2\partial^2\psi/\partial z^2$

Jupiter atmosphere

Coriolis rotating platform

Grid turbulence

Experimental parameters (no rotation)

Influence of rotation

f = 0

Re_M=4500 Fr_M=0.09

Strong rotation f / N =1.2

Vertical correlation

Vertical correlation function

- The vertical scale increases with f/N
- Geostrophic adjustment of the vortices

Aspect ratio

Inhibition of the energy decay

Kinetic energy decay

- Inhibition of the kinetic energy decay with rotation
- Conservation for Ro < 0.2
- Little influence of stratification

Energy spectra

Horizontal energy spectra

- k_h^{-3} energy spectra in agreement with Charney's predictions
- The flow dynamics is quasigeostrophic

Horizontal length scale

Horizontal integral scale L_h

• Very little influence of rotation and stratification on the horizontal length scale

Emergence of vortices

t=377 s

t=915 s

Intermittency

- Strong intermittency for Ro < 0.2
- Quasi Gaussian distribution in absence of rotation

Intermittency and symmetry

- \bullet Intermittency and symmetry for $Ro_M\,{<}\,0.2$
- Domination of cyclones for $Ro_M > 0.2$
- Anticyclones limited by Ro=1

Conclusions

- Stratified turbulence without rotation has a 3D dynamics (strong decay)
- Stratified turbulence submitted to strong rotation (Ro < 0.2) has a quasi-geostrophic dynamics:
 - Energy conservation
 - Energy spectra in k-3
 - Formation of coherent vortices (with symmetry cycloneanticyclone)

(similar to 2D turbulence, but with a z dependency)

- For moderate rotation (Ro close to 1): departure from quasi-geostrophic model:
 - Suppression of anticyclonic vortices such that $\omega/f < -1$

-Other possible ageostrophic effects: front formation, wave generation?

Statistical mechanics of vorticity

Miller(1989), Robert and Sommeria (1990)

Properties of the 2D Euler equations:

- -Conservation of vorticity $\omega(x,y)$ for fluid elements
- -Long range interactions: $-\Delta \psi = \omega$, energy $E = \int \psi \omega \, dx \, dy$ Mean field statistical equilibrium:
- $-\Delta \psi = f(\psi)$, selects a steady solution
- The function f depends on the global pdf of vorticity (given by the initial condition):

sinh for intense vortices tanh for wide patches Z. Yin, D.C. Montgomery, and H.J.H. Clercx

"Alternative statistical-mechanical descriptions of decaying twodimensional turbulence in terms of 'patches' and 'points'" Physics of Fluids **15**, 1937-1953 (2003).

Not only the final states are predicted by the theories, but also the $\omega - \psi$ plots of the late time correspond to the sinh- and tanhpoission results, respectively.

Two numerical simulations of decaying turbulence are carried out with a 2D pseudospectral code which solves the Navier-Stokes equation. For both runs (the left column and the right column): Re = 5000; Resolution - 512^2 ; $\Delta t = 0.0005$.

Cetto m to equation

Application to the quasi-geostrophic model (Great Red Spot)

Relaxation toward statisitical equilibrium

- R. Robert and J. Sommeria (1991).
- F. Bouchet and T.Dumont (2004): QG model for a shallow layer over a deep imposed shear flow

0, 0.05, 0.1

0 0.05 0.1

PHYSICAL REVIEW E, VOLUME 65, 026302

Statistical mechanics of the shallow water system

P. H. Chavanis¹ and J. Sommeria²

$$\frac{\partial h}{\partial t} + \boldsymbol{\nabla} \cdot (h \mathbf{u}) = 0, \qquad (1)$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\boldsymbol{\omega} + 2\boldsymbol{\Omega}) \times \mathbf{u} = -\boldsymbol{\nabla}B.$$
(2)
$$B = gh + \frac{\mathbf{u}^2}{2},$$

Statistical equilibrium, with the assumption *h* smooth:

 $B=B(\psi)$

 $q \equiv (\omega + 2\Omega)/h = -dB/d\psi$

Steady solution of the shallow water equations

Fundamental question: excitation of waves 'thermodynamically' possible

Competition with vorticity straining

Scale $l \sim L_0 \exp(-st)$, *s* rate of strain viscous time $l^2/\nu = (L_0^2/\nu) \exp(-2st)$,

viscous effect ~ advection time ω^{-1}

for $t = \ln(L_0^2 v/\omega)/(2 s) \sim \ln (\text{Re})$

Navier-Stokes converges to Euler very slowly with increasing Re

Effect of strain on a scalar

Equation for the coarse-grained scalar pdf

-n self-convolutions: transformed in a product by Laplace transform

 $\widehat{\rho_l}(n\kappa,t+\Delta t_{1/n}) = [\widehat{\rho_l}(\kappa,t)]^n.$

-infinitesimal limit n =1+ ε : $\partial_t \hat{\rho}_l = s(t) [\hat{\rho}_l \ln \hat{\rho}_l - \kappa \partial_\kappa \hat{\rho}_l]$

relaxation toward a Gaussian with decreasing variance (symmetric case), or through gamma pdf.

Is turbulent mixing a self-convolution process ?

Antoine Venaille^{*} and Joel Sommeria Coriolis-LEGI 21 rue des martyrs 38000 Grenoble France (Dated: November 29, 2007)

FIG. 1: Experimental set up

Self-convolution model vs experiment

FIG. 2: The experimental PDF at x = 36cm and variances at x = 42cm and x = 77cm are used for the prediction of the selfconvolution model. The fit with Gamma-distribution requires only the variance value.

3

FIG. 4: Evolution of the first cumulants at increasing distance from the injector. The dashed and dot-dashed line are prediction of the self-convolution model, by supposing $f \sim x^{\alpha}$, where $\alpha = 2.6$ is obtained from the experimental variance decay

SOME 'CONCEPTUAL' QUESTIONS

- Is the statistical equilibrium the true asymptotic limit of the 2D Euler equations?
- How the theory extends to balanced states beyond the quasi-geostrophic model ?
- Can we derive a kinetic model combining all the requested fundamental properties?
 (relaxation to statistical equilibrium, galilean invariance...)