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Velocity-scalar PDF
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Reactive Navier-Stokes equations
• Navier-Stokes equations for the velocity U , the density ρ,

and a turbulent reactive scalar c :
∂ρ

∂t
+

∂

∂xj
(ρUj) = 0

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν∇2Ui

∂c

∂t
+ Uj

∂c

∂xj
= −1

ρ

∂Jj

∂xj
+ S

with P : pressure, ν: cinematic diffusion coefficient,
− 1

ρ

∂Jj

∂xj
: scalar diffusion term and S: chemical source terms.

• Low Mach number assumption:
ρ = ρ(c) and S = S(c, ρ(c)) = S(c)
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Density weighted statistics
• For variable density flows, it is usual to work with

density-weighted statistics:

pUc(U , c) = 〈δ(c(x, t) − c)δ(U(x, t) − U )〉

f̃Uc(U , c) =
〈ρ|U , c〉

〈ρ〉 pUc(U , c)

=
ρ(c)

〈ρ〉 pUc(U , c) (Low Mach assumption)

• Favre averages are noted Q̃ :

Q̃ =
〈ρQ〉
〈ρ〉
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Modeled velocity-composition PDF equation
• Modeled transport equation for the Favre PDF f̃Uc:

∂

∂t

(
〈ρ〉 f̃Uc

)
+

∂

∂xj

(
〈ρ〉Uj f̃Uc

)
=

− ∂

∂Uj

(
〈ρ〉
[
− 1

〈ρ〉
∂ 〈P 〉
∂xj

− Gjk(Uk − Ũk)

]
f̃Uc

)
+

1

2
〈ρ〉C0 〈ε〉

∂2f̃Uc

∂Uj∂Uj

+
∂

∂c

(
〈ρ〉 〈ωc〉 (c − c̃) f̃Uc

)
− ∂

∂c

(
〈ρ〉S(c)f̃Uc

)
(1)

• with:
Þ First line: transport in physical space, treated exactly
Þ Second line: pressure fluctuations and molecular diffusion modelled

by the Generalized Langevin model. ε is the turbulent dissipation
Þ Third line: Scalar mixing is modeled by the IEM model. Chemistry is

treated exactly

• Equation (1) is a Fokker-Planck equation
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Solving PDF equation (1)

• PDF equation (1) has Nd = N + 7 dimensions
where N is the number of scalars = large in practical applications

• Finite volume/element/difference methods:
Þ CPU cost increases exponentially with Nd ⇒ Not suitable

• Monte Carlo methods:
Þ CPU cost increases linearly with Nd ⇒ OK
Þ Two options:

+ Lagrangian (Particle) Monte Carlo (LMC) methods
+ Eulerian Monte Carlo (EMC) methods
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Lagrangian Monte Carlo methods (1/2)
• PDF is represented by a set of Np stochastic particles

Þ Each particle is a sample of the physical properties of the system

FNp
=

NpX

n=1

w(n)δ(c − c(n))δ(U − U
(n))δ(x − x(n)) ; 〈ρ〉 efUc =

˙
FNp

¸

w(n), c(n), U
(n), x(n): mass, concentration, velocity, position of particle (n)

• Particles evolve according to Ito stochastics ODEs
(SODEs) (Pope, 1985):

dc(n) = −〈ωc〉
“
c(n) − ec

”
dt + S(c(n))dt (2)

dU
(n)
j = −

1

〈ρ〉

∂ 〈P 〉

∂xj

dt − Gjk(U
(n)
k

− eUk)dt +
p

C0 〈ε〉dW
(n)
j (t) (3)

dx
(n)
j = U

(n)
j dt (4)
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Lagrangian Monte Carlo methods (2/2)

• W
(n)
j are independent Gaussian white (Brownian) noises :〈
dW

(n)
j dW

(m)
k

〉
= δnmδijdt

• The absence of symbol in the stochastic product
(multiplicative noise) in eq. (3) denotes the Ito
interpretation (no-correlation property)

• Numerous publications document the convergence and
accuracy of LMC methods
Þ LMC used in many complex calculations (including LES)
Þ LMC implemented in commercial CFD codes
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Eulerian Monte Carlo methods

• Principle Þ PDF represented by stochastic Eulerian fields
Þ Each field is a sample of the physical properties of the system
Þ Each field evolves according to a stochastic PDE (SPDE)

• Development of EMC methods is useful and stimulating
Þ LMC/EMC competition could push both approaches forward

• EMC methods already designed for joint scalar PDFs
Þ Theoretical works : Valiño (98), Sabel’nikov & Soulard (05)
Þ Calculations : Naud et al (04), Sabel’nikov & Soulard (06), Mustata

et al. (06)
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Derivation of SPDEs for solving
velocity-scalar PDFs
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Objectives and Method
• The question is :

How can we derive SPDEs for
Þ a stochastic velocity field U

Þ a stochastic scalar field θ

so that their statistics yield the Favre PDF ?

• To answer this question :
we transpose existing LMC models to a Eulerian framework ⇒ 3 steps

1. We introduce the stochastic density (necessary to convert
Lagrangian statistics into Eulerian ones)

2. We use the notion of stochastic characteristics to convert
Lagrangian equations (SODEs) into Eulerian ones (SPDEs)

3. We show that Eulerian PDF (of U and θ) weighted by the stochastic
density is identical to Favre PDF f̃Uc:
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Stochastic density (1/2)
• The following Ito SODEs are used in LMC methods (Pope (1985))

dθ = −〈ωc〉
(
θ − θ̃

)
dt + S(θ)dt (5)

dUj = − 1

〈ρ〉
∂ 〈P 〉
∂xj

dt − Gjk(Uk − Ũk)dt +
√

C0 〈ε〉dWj(t) (6)

dxj = Ujdt (7)

Important:
• SODEs (5)-(7) not only define a stochastic velocity U and a stochastic

scalar θ, but also a stochastic density, noted r

• In a Lagrangian framework, the continuity equation is given by :

r =
r0

j
; j = Det [jik] , with jik =

∂xi

∂x0k

Þ j is the Jacobian and r0 is the initial stochastic density
Þ j defines the transformation from intial position x0 to current one x
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Stochastic density (2/2)
• The stochastic density r is different from the physical density ρ

• The evolution of r is given by:

dr = −r div (U) dt (8)

• For instance, in the case of a constant density ρ = const, but r 6= const

because div(U) 6= 0:

d

dt
(div(U)) = − ∂Ui

∂xj

∂Uj

∂xi

− 1

ρ

∂2 〈P 〉
∂xi∂xi

+
∂

∂xi

(Gij(Uj − 〈U j〉)) +
1

2

√
C0

〈ε〉
∂ 〈ε〉
∂xi

Ẇi (9)

• This property is a consequence of the closure assumption used in the
Langevin model, which only imposes a continuity constraint on the mean
velocity field, but not on its instantaneous value
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Lagrangian - Eulerian transposition
• SODEs (5) - (8) are the stochastic characteristics of the following

hyperbolic Ito SPDEs :
∂r
∂t

+ Uj

∂r
∂xj

= −r ∂

∂xj

(Uj) (10)

∂θ

∂t
+ Uj

∂θ

∂xj

= −〈ωc〉 (θ − θ̃) + S(θ) (11)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= − 1

〈ρ〉
∂ 〈P 〉
∂xi

− Gij(Uj − Ũj) +
√

C0 〈ε〉Ẇi (12)

• These hyperbolic equations can be rewritten also in conservative form:

∂r
∂t

+
∂

∂xj

(rUj) = 0 (13)

∂

∂t
(rθ) +

∂

∂xj

(rUjθ) = −r 〈ωc〉 (θ − θ̃) + rS(θ) (14)

∂

∂t
(rUi) +

∂

∂xj

(rUjUi) = − r
〈ρ〉

∂ 〈P 〉
∂xi

+ rGij (Uj − 〈Uj〉) + r
√

C0 〈ε〉Ẇj (15)
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Eulerian PDF
• The Eulerian PDF of U and θ is defined by :

fUθ(U , Θ; x, t) = 〈δ(U − U(x, t))δ(Θ − θ(x, t))〉 (16)

• r varies ⇒ we introduce statistics weighted by the stochastic density r

fUθ:r(U , Θ; x, t) =
〈r|U , Θ〉

〈r〉 fUΘ(U , Θ; x, t) (17)

• By standard techniques, one can show that weighted PDF is identical to
Favre PDF f̃Uc:

fUθ:r = f̃Uc

provided that
〈r〉 = 〈ρ〉
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Implications for scalar PDF methods
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Implications for scalar PDF methods (1/3)
• EMC method has been devised for the full

velocity-composition PDF
• How do the previous results apply to the computation of

the following scalar PDF equation ?

∂

∂t

(
〈ρ〉 f̃c

)
+

∂

∂xj

(
〈ρ〉 Ũj f̃c

)
=

∂

∂xj

(
〈ρ〉ΓT

∂f̃c

∂xj

)

+
∂

∂c

(
〈ρ〉 〈ωc〉 (c − c̃)f̃c

)
− ∂

∂c

(
〈ρ〉S(c)f̃c

)
(18)

Þ scalar turbulent advection is now directly modelled by a gradient
diffusion assumption

Þ ΓT = Cµk̃2/ε̃ is a turbulent diffusivity
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Implications for scalar PDF methods (2/3)
• Previous work by Sabel’nikov & Soulard (PRE 72, 016301,

2005):
Þ Velocity U is modeled by a gaussian decorrelated velocity
Þ An equation is sought for the stochastic scalar θ so that its

unweighted statistics give immediately the Favre PDF: p∗
θ = f̃c (in

particular 〈θ〉 = c̃), and thus the introduction of stochastic density is
not needed

• Sabel’nikov & Soulard obtained the following SPDE for the
scalar θ:

∂θ

∂t
+ Uj ◦

∂θ

∂xj

= −〈ωc〉 (θ − 〈θ〉) + S(θ)

Ui = Ũi − ΓT

1

〈ρ〉
∂ 〈ρ〉
∂xi

− 1

2

∂ΓT

∂xi

+ Vi , Vi =
√

2ΓT Ẇi (19)
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Implications for scalar PDF methods (3/3)
• The symbol ◦ denotes the Stratonovitch interpretation of the

multiplicative noise - stochastic part of the convection term in (19). The
mean value of Vj ◦ ∂θ

∂xj
is not zero and is equal to:〈

Vj ◦ ∂θ
∂xj

〉
W

= − ∂
∂xj

(
ΓT

∂〈θ〉
∂xj

)
+ 1

2
∂ΓT

∂xj

∂〈θ〉
∂xj

• We remind that in Ito calculus this correlation is equal zero:〈
Vj

∂θ
∂xj

〉
W

= 0

• Stochastic convection and SPDE (19) can be rewritten in Ito form:

Vj ◦
∂θ

∂xj

= Vj

∂θ

∂xj

− ∂

∂xj

(
ΓT

∂θ

∂xj

)
+

1

2

∂ΓT

∂xj

∂θ

∂xj

∂ 〈ρ〉 θ

∂t
+

∂ 〈ρ〉 Ũjθ

∂xj

+ 〈ρ〉Vj

∂θ

∂xj

=
∂

∂xj

(
〈ρ〉ΓT

∂θ

∂xj

)
− 〈ωc〉 (θ − 〈θ〉) + S(θ)

• Eq (19) is in non conservative form
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Zero-correlation time limit in (13)-(15)

• The same reasonings can be applied to system (13)-(15):
Þ But equivalence is between weighted statistics f̃ ∗

θ = 〈 r|θ〉∗

〈r〉∗ p∗θ = f̃c

• To facilitate our derivation, we consider the Simplified Langevin model.
The tensor Gij reduces to :

Gij =
1

τrel

δij , where 1

τrel

=

(
1

2
+

3

4
C0

)
ε̃

k̃

• We let τrel → 0 in (13)-(15) , but keep ε̃τ2
rel finite :

r ◦ Uj − r 〈Uj〉r + r
√

C0ε̃τ2
relẆj = 0 (20)

• A solution to (20) is

Ui = Ũi + ΓT

1

〈ρ〉
∂ 〈ρ〉
∂xi

+
1

2

∂ΓT

∂xi

+
√

2ΓT Ẇi
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Final system of SPDEs
• The final system of hyperbolic SPDEs is :

Ui = Ũi + ΓT

1

〈ρ〉
∂ 〈ρ〉
∂xi

+
1

2

∂ΓT

∂xi

+
√

2ΓT Ẇi (21)

∂r
∂t

+
∂

∂xj

(r ◦ Uj) = 0 (22)

∂

∂t
(rθ) +

∂

∂xj

((rθ) ◦ Uj) = −r 〈ωc〉 (θ − 〈θ〉r) + rS (23)

• Eq. (21)-(23) are statistically equivalent to PDF equation (18)
This remains true even in the case when τrel is not small

• These SPDEs are different from, but stochastically equivalent to those of
Sabel’nikov & Soulard (PR 72, 016301, 2005)
Þ They are in conservative form ⇒ may be easier to implement to CFD

codes
Þ The fluctuating velocity has the property: Ũ ′′ = 0
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Simulation of a backward facing step
with a RANS/EMC solver

Work done in collaboration with M. Ourliac (PhD student)
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Configuration
• Stoichiometric premixed air/methane flame over a backward facing step:

Inlet velocity Ue 55 m/s

Inlet temperature Te 525 K

Pressure P 105 Pa

Equivalence ratio 1

Inlet t.k.e ke 40 m2/s2

Inlet turb. dissip. εe 800 m2/s3
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RANS & EMC solver (1/2)
• RANS solver:

Continuity ∂〈ρ〉
∂t

+ ∂
∂xj

(
〈ρ〉 Ũj

)
= 0

Momentum ∂〈ρ〉Ũi

∂t
+ ∂

∂xj

(
〈ρ〉 ŨjŨi

)
= −∂〈P 〉

∂xj
+

∂σij

∂xj

Turbulent kinetic energy ∂〈ρ〉k
∂t

+ ∂
∂xj

(
〈ρ〉 Ũjk

)
= ∂

∂xj

(
〈ρ〉 νt

Prk

∂k
∂xj

)
+ Pk − dk

Turbulent dissipation ∂〈ρ〉ε
∂t

+ ∂
∂xj

(
〈ρ〉 Ũjε

)
= ∂

∂xj

(
〈ρ〉 νt

Prε

∂ε
∂xj

)
+ Pε − dε

• EMC solver:

Stoch. Vel. Ui = Ũi + ΓT
1
〈ρ〉

∂〈ρ〉
∂xi

+ 1
2

∂ΓT

∂xi
+
√

2ΓT Ẇi

Stoch. Density ∂r
∂t

+ ∂
∂xj

(r ◦ Uj) = 0

Mass fraction ∂
∂t

(rYk) + ∂
∂xj

((rYk) ◦ Uj) = −rω̃k

(
Yk − Ỹk

)
+ rS(Y, ht)

Total enthalpy ∂
∂t

(rht) + ∂
∂xj

((rht) ◦ Uj) = −rω̃h

(
ht − h̃t

)
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RANS & EMC solver (2/2)
• Coupling between the solvers:

RANS solver 〈ρ〉, Ũ , k, ε Yk, ht EMC solver

〈ρ〉, ΓT

〈P 〉 = 〈ρ〉 rT̃

EMC solver based on Stratonovitch calculus
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Parameters
• Chemistry: CH4 + 2O2 + βN2 → CO2 + 2H2O + βN2

• Adiabatic walls
• Mesh (default value) : 100 x 40 cells
• Stochastic fields (default value): 50
• Evolution of the CPU time per iteration and per number of cells against

the number of stochastic fields
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Analysis of the stochastic error (1/2)
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Figure 1: Influence of the number of stochastic fields N on the mean
temperature vertical profiles, at x = 0.25 m (a) and x = 0.46 m (b)

Workshop and Minicourse ”Conceptual Aspects of Turbulence”, 11-15 February 2008 – p. 28/63



Analysis of the stochastic error (2/2)
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Figure 2: Influence of the number of stochastic fields N on the RMS
temperature vertical profiles, at x = 0.25 m (a) and x = 0.46 m (b)
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Results
• Mean and RMS temperature fields:

x

y

0 0.25 0.5 0.75

0.05

0.1

0.15

0.2

0.25

T: 550 720 890 1060 1230 1400 1570 1740 1910 2080 2250

x

y

0 0.25 0.5 0.75

0.1

0.2

Trms: 50 130 210 290 370 450 530 610 690 770 850
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Experiments (Magre & Moreau 1988)
• Mean and RMS temperature fields:
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Profiles (1/3)
• Comparison of mean and RMS temperature with experiment:
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Profiles (2/3)
• Comparison of mean and RMS temperature with experiment:
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Profiles (3/3)
• Comparison of mean and RMS temperature with experiment:
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PDF (1/2)
• Comparison between computed and measured PDFs at x=210 mm
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PDF (2/2)
• Comparison between computed and measured PDFs at x=250 mm
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Conclusions for Part I
• Extension of EMC method for solving velocity-scalar PDF

has been proposed
Þ Appropriate numerical scheme must be designed
Þ The derived SPDEs need to be tested on simple 1D tests
Þ The overall method needs to be compared against LMC method

• Corresponding EMC method for solving scalar PDF has
also been proposed

• The EMC method for scalar PDF has been applied to the
computation of a turbulent premixed methane flame over a
backward facing step
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Part II
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Contents
¬ Velocity-scalar PDF

• Modeled velocity-scalar PDF
• Lagrangian and Eulerian Monte Carlo methods

 Scalar-velocity EMC method
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Turbulent reacting flow
• We consider a turbulent reacting flow with density ρ, velocity U , total

enthalpy ht, and mass fractions Yα (α = 1, · · · , Ns)

• For variable density flows, it is usual to work with Favre statistics:

Reynolds PDF f = 〈δ(Yα(x, t) − Yα)δ(ht(x, t) − ht)δ(U(x, t) − U)〉

Favre PDF f̃ =
(ρ|U , Yα, ht)

〈ρ〉 f

Reynolds and Favre averages are noted Q and Q̃ : Q̃ = 〈ρQ〉
〈ρ〉

• Low Mach number assumption: pressure fluctuations are neglected in
the thermodynamical equations
⇒ ρ and the chemical source terms are functions of the reactive scalars
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Modeled scalar-velocity PDF equation
• Modeled transport equation in 1D for the Favre PDF f̃:

∂

∂t

(
〈ρ〉 f̃

)
+

∂

∂x

(
〈ρ〉Uf̃

)
= (24)

− ∂

∂U

(
〈ρ〉
[
−1

ρ

∂P

∂x
− C1ω

(
U − Ũ

)]
f̃

)
+

1

2
C0 〈ρ〉ωk̃

∂2f̃

∂U2

− ∂

∂ht

(
〈ρ〉
[
1

ρ

∂P

∂t
− Chω

(
ht − h̃t

)]
f̃

)

− ∂

∂Yα

(
−〈ρ〉Cφω

(
Yα − Ỹα

)
f̃ + 〈ρ〉Sαf̃

)

Þ First line: transport in physical space, treated exactly
Þ Second line: pressure fluctuations and molecular diffusion modelled

by the simplified Langevin model
Þ Third and fourth lines: mixing modelled by the IEM model

P : pressure, Sα: source term, k̃: turbulent kinetic energy,
ω: turbulent frequency, C#: constants
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Solving PDF equation (24)

• PDF equation (24) has Nd = Ns + 7 dimensions
where N is the number of scalars = large in practical applications

• Finite volume/element/difference methods:
Þ CPU cost increases exponentially with Nd ⇒ Not suitable

• Monte Carlo methods:
Þ CPU cost increases linearly with Nd ⇒ OK
Þ Two options:

+ Lagrangian Monte Carlo (LMC) methods
+ Eulerian Monte Carlo (EMC) methods
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Lagrangian Monte Carlo methods (1/2)
• PDF represented by a set of Np stochastic particles

Þ Each particle is a sample of the physical properties of the system

FNp
=

NpX

n=1

w(n)δ(U − U
(n))δ(Yα − Y

(n)
α )δ(ht − h

(n)
t )δ(x − x(n)) ; 〈ρ〉 ef =

˙
FNp

¸

w(n), U
(n), Y

(n)
α , h

(n)
t , x(n): mass, velocity, concentration, enthalpy,

position of particle (n)

• Particles evolve according to SODEs (Pope, 1985):

dU
(n)
j = −

1

ρ

∂ 〈P 〉

∂xj

dt − C1ω
“
U − eU

”
dt +

q
C0ωekdW

(n)
j (t) (25)

dY
(n)
α = −Cφω

“
Y

(n)
α − fYα

”
dt + S

(n)
α dt (26)

dh
(n)
t =

1

ρ

∂P

∂t
dt − Chω

“
h
(n)
t − eht

”
dt (27)

dx
(n)
j = U

(n)
j dt (28)

Workshop and Minicourse ”Conceptual Aspects of Turbulence”, 11-15 February 2008 – p. 43/63



Lagrangian Monte Carlo methods (2/2)

• W
(n)
j are independent Brownian noises :〈
dW

(n)
j dW

(m)
k

〉
= δnmδijdt

• The absence of symbol in the stochastic product in eq. (26)
denotes the Ito interpretation

• Numerous publications document the convergence and
accuracy of LMC methods
Þ LMC used in many complex calculations (including LES)
Þ LMC implemented in commercial CFD codes
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Eulerian Monte Carlo methods

• Principle Þ PDF represented by stochastic Eulerian fields
Þ Each field is a sample of the physical properties of the system
Þ Each field evolves according to an SPDE

• Development of EMC methods is useful and stimulating
Þ LMC/EMC competition could push both approaches forward

• EMC methods already designed for joint scalar PDFs
Þ Theoretical works : Valiño (98), Sabel’nikov & Soulard (05)
Þ Calculations : Naud et al (04), Sabel’nikov & Soulard (06)
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Eulerian Monte Carlo methods

• EMC methods also designed for joint scalar-velocity PDFs
Þ Theoretical derivation of SPDEs : Soulard & Sabel’nikov (05)

+ But no validation nor application

⇒ Purpose of this work
Þ to propose a numerical scheme for solving the SPDEs
Þ to assess its performances
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Scalar-velocity SPDEs
• SPDEs stochastically equivalent to PDF equation (24) can be derived

from SODEs (25)-(28) by the notion of stochastic characteristic:

∂r
∂t

+
∂

∂x
(rU) = 0 (29)

∂

∂t
(rU) +

∂

∂x

(
rU2 + P

)
=

(
1 − r

ρ

)
∂P

∂x
− rC1ω

(
U − Ũ

)
+ r

√
C0ωk̃Ẇ

(30)

∂

∂t
(rH) +

∂

∂x
(rUH) = −rω

(
H− h̃t

)
+
r
ρ

∂P

∂t
(31)

∂

∂t
(rYα) +

∂

∂x
(rUYα) = −rω

(
Yα − Ỹα

)
+ rSα (32)

• U is the stochastic velocity field, H is the stochastic total enthalpy and
Yα is the stochastic mass fraction. W is a standard Brownian noise and
Ẇ is its time derivative

• r is the stochastic density. r is different from the physical density ρ
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Scalar-velocity SPDEs
•• We note 〈Q〉s the average over the stochastic fields, and 〈Q〉r the

average weighted by the density r: 〈Q〉r =
〈rQ〉

s

〈r〉
s

• The corresponding PDFs are respectively denoted by fs and fr.
The following equivalences exist:

f̃ = fr =
〈r| U ,Yα,H〉s

〈ρ〉 fs and f =
〈ρ〉
ρ

fr =
〈r| U ,Yα,H〉s

ρ
fs

• with consistency conditions: 〈r〉s = 〈ρ〉 and
〈
r
ρ

〉
s

= 1

• Favre and Reynolds averages are given by:

Q̃ = 〈Q〉r =
〈rQ〉s
〈ρ〉 and Q =

〈
r
ρ

Q

〉

s

• Mean pressure is given by:

P = ρrgT = 〈rrgT 〉
s
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Numerical scheme: spatial discretization
• We use a finite volume method

Þ we must define a monotone numerical flux

• Characteristic waves of SPDEs (29)-(32) are complex
Þ due to the presence of both mean and instantaneous quantities
⇒ upwinding monotone fluxes (like Godunov method) are difficult to use

• We decide to use instead a centered monotone flux
Þ Only requires limited information on the characteristic wave system
Þ Many different centered scheme exist
Þ We retain the ’GFORCE’ flux (Toro and Titarev, 2006)

• To achieve 2nd order, we use the ’GFORCE’ flux in conjunction with a
2nd/3rd order WENO interpolation
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Numerical scheme: temporal discretization
• 3 requirements for the time discretization

Þ it should be strong stability preserving (SSP): in order to maintain
monotonicity

Þ it should allow for the implicit treatment of stiff source terms
Þ it should be of weak order 2

• In the deterministic case, implicit-explicit (IMEX) Runge-Kutta (RK)
schemes with the SSP property exist (Pareschi and Russo, 2005)
Þ IMEX schemes are an interesting alternative to splitting methods
Þ the stiff and non-stiff parts of the system are discretized together
Þ The stiff part is treated implicitly, and the non-stiff part explicitly

• We extend these deterministic IMEX-RK schemes to the stochastic case
Þ We procede as in Tocino et al (2002)
⇒ We obtain a new class of Stochastic IMEX schemes (S-IMEX)
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First test: Riemann problem (1/4)
• Calculations are performed on a L = 1 m domain

At initial time, the domain is divided into a left and a right state:

for x < 0.5m





ŨL = 0 m/s

ũ′′2
L = 50 m2/s2

〈ρ〉L = 0.729 kg/m3

PL = 105 Pa

for x > 0.5m





ŨR = 0 m/s

ũ′′2
R = 0 m2/s2

〈ρ〉R = 0.456 kg/m3

PR = 5 · 104 Pa

• The turbulent frequency is taken equal to ω = 200 s−1

• N = 400 stochastic fields and Nx = 320 cells are used
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First test: Riemann problem (2/4)
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First test: Riemann problem (3/4)
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First test: Riemann problem (4/4)
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Second test: Return to Gaussiannity (1/3)
• For this test only, we replace the Brownian coefficient by

√
2ωσ2 instead

of
√

C0ωk̃

Þ σ2 is a constant and is taken equal to 1

Þ the velocity field PDF should tend to a Gaussian with variance σ2

• At the left boundary: Dirac distributions are imposed, with means:

Ũ = 10.4m/s , 〈ρ〉 = 0.146kg/m3 , P = 105Pa

• At initial time, the stochastic fields are initialized with the left boundary
conditions

• The domain has a length L = 0.04m and is discretized with Nx = 40 cells

• The turbulent frequency is taken equal to ω = 2500s−1
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Second test: Return to Gaussiannity (2/3)
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Second test: Return to Gaussiannity (3/3)
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Third test: Auto-ignition (1/4)
• At inlet, a stoichiometric methane-air mixture is injected:

Þ temperature Tin = 1500K

Þ pressure Pin = 100000Pa

Þ Gaussian random velocity with Ũin = 10.4ms−1 and variance
ũ”2

in = 1 m2s−2

• At outlet, zero gradients, except for the pressure which value is fixed at
Pin

• The length of the 1D domain is L = 0.035 m

• The methane-air chemistry is dealt with a simple one step global
reaction (Westbrook, 1984)
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Third test: Auto-ignition (2/4)
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Third test: Auto-ignition (3/4)
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Third test: Auto-ignition (4/4)
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Third test: Auto-ignition
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Conclusions for Part II
• A numerical scheme for solving the SPDEs obtained in Soulard and

Sabel’nikov has been proposed
Þ finite volume scheme based on a monotone centered second order

numerical flux
Þ new weak second order Runge-Kutta scheme, whith the SSP

property, and an implicit treatment of chemical source terms
(S-IMEX)

• 1D validation tests have been performed
Þ Monotonicity was verified on a Riemann problem
Þ Return to Gaussiannity was also checked
Þ An auto-ignition problem was studied

• Further developments of this work :
Þ extension of the numerical method to 2D problems
Þ calculation of a practical cases
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