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Velocity-scalar PDF

OOOOO



Reactive Navier-Stokes equations

o N

e Navier-Stokes equations for the velocity U, the density p,
and a turbulent reactive scalar ¢ :

0p 0

EWL%(PUJ):O

ot +U“78$j - pOx; A
1 .

%4_ ﬁ:——%+5

with P: pressure, v: cinematic diffusion coefficient,

—%27‘];: scalar diffusion term and S: chemical source terms.
e Low Mach number assumption:
N p=p(c)and S = S(c, p(c)) = S(c) |

ONERA
/’—\




Density weighted statistics
-

e For variable density flows, it is usual to work with
density-weighted statistics:

pue(U, ¢) = {0(c(z,t) — c)o(U(z,t) = U))

(p|U,c)
(P)

- plo) pue(U,c) (Low Mach assumption)

(P)

e Favre averages are noted Q :

fUc(UaC) — pUc(Uac)

-
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Modeled velocity-composition PDF equation

~» Modeled transport equation for the Favre PDF Fre: O

% (4p) fue) + a%j (4p) Ujfure) =
0

+ 0 (1) o) (=) Fe) — o () S(E) o) (1)

o With:
— First line: transport in physical space, treated exactly

— Second line: pressure fluctuations and molecular diffusion modelled
by the Generalized Langevin model. ¢ is the turbulent dissipation

— Third line: Scalar mixing is modeled by the IEM model. Chemistry is
treated exactly

L. Equation (1) is a Fokker-Planck equation J
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Solving PDF equation (1)
-

e PDF equation (1) has N; = N + 7 dimensions
where N is the number of scalars = large in practical applications

-

e Finite volume/element/difference methods:
— CPU cost increases exponentially with N; = Not suitable

e Monte Carlo methods:
— CPU cost increases linearly with N; = OK

— Two options:
= |agrangian (Particle) Monte Carlo (LMC) methods
= Eulerian Monte Carlo (EMC) methods
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Lagrangian Monte Carlo methods (1/2)

f. PDF is represented by a set of NV, stochastic particles T

— Each particle is a sample of the physical properties of the system
Np
FN, = Z w™§(c— c"NSU — U™z — ™) 5 (p) fue = (Fn,)
n=1
w™, ) U™ (") mass, concentration, velocity, position of particle (n)

e Particles evolve according to lto stochastics ODEs
(SODEs) (Pope, 1985):

de™ = — (w,) (c(n) — E) dt + S(c{™)dt (2)
qu™ = _ L OP) Gk (U™ = Uy)dt + /Co (eydW ™ (1) 3)
! (p) Oz; ¢

(n) _ 77(n)
da:j —Uj dt (4)

- |
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Lagrangian Monte Carlo methods (2/2)
B -

. Wj(”) are independent Gaussian white (Brownian) noises :

(aW MW ™) = Sumdiydt

e The absence of symbol in the stochastic product
(multiplicative noise) in eq. (3) denotes the Ito
interpretation (no-correlation property)

e Numerous publications document the convergence and
accuracy of LMC methods

— LMC used in many complex calculations (including LES)
— LMC implemented in commercial CFD codes

- |
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Eulerian Monte Carlo methods

o B

e Principle = PDF represented by stochastic Eulerian fields
— Each field is a sample of the physical properties of the system
— Each field evolves according to a stochastic PDE (SPDE)

e Development of EMC methods is useful and stimulating
— LMC/EMC competition could push both approaches forward

e EMC methods already designed for joint scalar PDFs
— Theoretical works : Valifio (98), Sabel'nikov & Soulard (05)

— Calculations : Naud et al (04), Sabel'nikov & Soulard (06), Mustata
et al. (06)

- |
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Derivation of SPDEs for solving
velocity-scalar PDFs

OOOOO



Objectives and Method

f. The question is : T

How can we derive SPDEs for
— a stochastic velocity field U

— a stochastic scalar field 9

so that their statistics yield the Favre PDF ?

e [0 answer this question :

we transpose existing LMC models to a Eulerian framework = 3 steps

1.

We introduce the stochastic density (necessary to convert
Lagrangian statistics into Eulerian ones)

. We use the notion of stochastic characteristics to convert

Lagrangian equations (SODESs) into Eulerian ones (SPDES)

. We show that Eulerian PDF (of & and 6) weighted by the stochastic

density is identical to Favre PDF fg..:



Stochastic density (1/2)

f. The following Ito SODEs are used in LMC methods (Pope (1985)) T
o = — (w.) (9 _ 5) dt + S(0)dt (5)
1 0(P) ~
dZ/fj = — <p> pyy dt — ij(l/lk — Uk)dt + v/ Co <€>de(t) (6)
J
dx; = U;dt (7)
Important:

e SODEs (5)-(7) not only define a stochastic velocity U4 and a stochastic
scalar 6, but also

a stochastic density, noted r

e In a Lagrangian framework, the continuity equation is given by :

: 0x;
r="C 1 j=Detlju],with jy =
J

8x0k

\— — j is the Jacobian and r( is the initial stochastic density J
— j defines the transformation from intial position x to current one x
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Stochastic density (2/2)

f e | The stochastic density r is different from the physical density p T

e The evolution of r is given by:
dr = —r div (U) dt (8)

e For instance, in the case of a constant density p = const, but r # const
because div(U) # 0:

d . auou; 1*(P)
E (dZU(Z/{)) - 8:1;7 8:13@ B ;8:13,&8:1;@
O e g — U o L [Co 9l 1
+ o7, (Gij(U; —{U3))) + 2\/ (& o, Wi (9)

e This property is a consequence of the closure assumption used in the
Langevin model, which only imposes a continuity constraint on the mean
\_ velocity field, but not on its instantaneous value J
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Lagrangian - Eulerian transposition

|7 e SODEs (5) - (8) are the stochastic characteristics of the following T
hyperbolic Ito SPDEs :

Or
ot

00

Or )
—+Uja—%——ra—%(uj) (10)
00 ~
+Uj— = —(w.) (0 —0)+ 5(0) (11)
8:13]'

ot

oU; oU; 1 O0(P ~ :
BT, —|—Z/[j = — < > — GU(Z/{j —Z/[j) + v/ Co <6>I/VZ (12)

e These hyperbolic equations can be rewritten also in conservative form:

Orj  (p) Ou;

L

Or 0

5 T o, (xl;) =0 (13)

2(9)+—a (ri;0) = —r >(9—§)+ S(0) 14

o r 8xj riib) = —r (We r (14)
P .

0 rZ/{z) + i (rZ/{]Z/{z) = — t a< > —|—er‘j (Z/{J — <U]>) + r+/Cy <€>Wj (15)

57

0z (p) Ox;
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Eulerian PDF

|7. The Eulerian PDF of 4 and @ is defined by : T
fue(U,@;iB,t) — <5(U—U(w,t))5(@ _H(wat)» (16)

e r varies = we introduce statistics weighted by the stochastic density r

(r|U,©)
(r)

e By standard techniques, one can show that weighted PDF is identical to
Favre PDF fg..

fU@:r(Ua @7 £, t) —

fL{@(U,@;CU,t) (17)

fZ/IH:r — fUc

provided that

- |
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o N

Implications for scalar PDF methods

OOOOO



Implications for scalar PDF methods (1/3)

f. EMC method has been devised for the full T
velocity-composition PDF

e How do the previous results apply to the computation of
the following scalar PDF equation ?

5 (0 F) + 5 (0 TF) = 5 <<p> rr §f>
+ 2 () (we) (= DF) - = (1) SOF.) (18
Oc Oc
— scalar turbulent advection is now directly modelled by a gradient
diffusion assumption
— T'p = C,k%/€is a turbulent diffusivity

- |
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Implications for scalar PDF methods (2/3)

e Previous work by Sabel'nikov & Soulard (PRE 72, 016301, |
2005):

— Velocity U is modeled by a gaussian decorrelated velocity

— An equation is sought for the stochastic scalar 6 so that its
unweighted statistics give immediately the Favre PDF: p; = f. (in

particular () = ¢), and thus the introduction of stochastic density is
not needed

e Sabel'nikov & Soulard obtained the following SPDE for the

scalar 9:
00 00
gt U0 gy =~ {we) (0= (0)) +5(6)
. — . — } = £/ 2T p 1

- |




Implications for scalar PDF methods (3/3)

h The symbol o denotes the Stratonovitch interpretation of the T
multiplicative noise - stochastic part of the convection term in (19). The
mean value of V; o 59793- is not zero and is equal to:

__ 0 0(6) 1 80 9(0)
e We remind that in Ito calculus this correlation is equal zero:
VgL) =0
< J Ox W

e Stochastic convection and SPDE (19) can be rewritten in Ito form:

00 900 0 90 19T 060
LY Y 9 ¢ 1
Vie 0x VJ@:I;] 0x ( T@xj) + 2 Ox; Ox;
0(p)0 . 9{p)U,0 Gl 0 o0
o = F . .
ot + oz, + (V] ox; Oz, {p) Té?a;] — {we) (0 — () + S(0)
e Eq (19) is in non conservative form J
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Zero-correlation time limit in (13)-(15)

=

e [he same reasonings can be applied to system (13)-(15): T

— But equivalence is between weighted statistics f;* = %'f) fc

e To facilitate our derivation, we consider the Simplified Langevm model.
The tensor G;; reduces to :

Trel Trel 2 4

1 1 1 3 €
Gz'j = 513, where = (— + —Co) i

o Welet .., — 0in (13)-(15) , but keep €72, finite :

rel
rold; — r (U;), +r\/Coer,,W; =0 (20)

e A solution to (20) is

L U U + 17 <,0> axz + 9 axz + V TW J
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Final system of SPDEs

f. The final system of hyperbolic SPDEs is : T
U; = [71 + I'r L <,0> + laFT + QPTWZ' (21)
(p) Ox; 2 Oz
Or 0
22
5 ax](roZ/{) 0 (22)
0 0
8]5 (r@)—l— 87((]_”(9)0[/{]) = —I (wc> ((9— <9>r)—|—rS (23)
J

e EQ. (21)-(23) are statistically equivalent to PDF equation (18)
This remains true even in the case when 7,..; Is not small

e These SPDEs are different from, but stochastically equivalent to those of
Sabel'nikov & Soulard (PR 72, 016301, 2005)

— They are in conservative form = may be easier to implement to CFD

codes
\_ — The fluctuating velocity has the property: U =0 J
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Simulation of a backward facing step
with a RANS/EMC solver

Work done in collaboration with M. Ourliac (PhD student)




Configuration

f. Stoichiometric premixed air/methane flame over a backward facing stepj

Air . CH4 AZ =
[=100 mm T=525K, il
(section carrée) U=55m/s

flamme turbulente

4

|1 » )&M;IC?/
h=35mm i @/zone de recirculation

! s
Inlet velocity U, 55 m/s
Inlet temperature T, 525 K
Pressure P 10° Pa
Equivalence ratio 1
Inlet t.k.e k. 40 m?/s?

L Inlet turb. dissip. ¢, | 800 m?/s> J
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f. RANS solver:

RANS & EMC solver (1/2)

Continuity a(§§> + 827, (<p> U;j) =0
Momentum c‘%g_ifh + o0 (<p> []j[]i) _ _832 n %Zj
Turbulent kinetic energy 24215 5o (<p> ﬁjk) = 50 (<p> L (%“j) + P, — dy,

.. . 9(p)e ~ v, c
Turbulent dissipation ole | B (<p> Uje) = a (<p> e A j) + P, —d.

e EMC solver:

Stoch. Vel. U; = ﬁz + PT% %g? + %%55 + QPTWZ'
Stoch. Density  5; + 52— (r o Uj)

Mass fraction % (rYy) + a%j ((£Yr) olU;) = —rwy (Yk — Yk) + rS(Y, hy)
Total enthalpy 2 (chy) + 7= ((rhy) olUy) = —xi;, (ht _ ﬂ;)
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RANS & EMC solver (2/2)
-

e Coupling between the solvers:

(p), I'r

~

RANS solver| (p), U, k, € Y., hy | EMC solver

(P) = (p)rT

EMC solver based on Stratonovitch calculus

- |
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Parameters

e Chemistry: CHy + 205 + N5 — CO, + 2H;0 + AN o
e Adiabatic walls

e Mesh (default value) : 100 x 40 cells

e Stochastic fields (default value): 50

e Evolution of the CPU time per iteration and per number of cells against
the number of stochastic fields

0.0025

0.002
0.0015

0.001

CPU / lteration / Pts

0.0005
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Analysis of the stochastic error (1/2)
| -

2200 |

2200
2ooof
1800; 2000
1eoo§ 1800 |
- 1600
1200: -
10002 1400 |
soof
- 1200 |
6001 » i ‘ » »
(a) (b)
Figure 1: Influence of the number of stochastic fields N on the mean
temperature vertical profiles, at z = 0.25 m (a) and =z = 0.46 m (b) J
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Analysis of the stochastic error (2/2)
| -

600 600

200 200

0 — .0..025‘ = 0£5 = ‘0.075‘ = ‘0.1 0 - 0.025‘ — 0£5 — ‘0.075‘ — ‘0.1
(a) (b)
Figure 2: Influence of the number of stochastic fields N on the RMS
temperature vertical profiles, at z = 0.25 m (a) and = = 0.46 m (b) J
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Results

e Mean and RMS temperature fields:

T: 550 720 890 1060 1230 1400 1570 1740 1910 2080 2250

02

Trms: 50 130 210 290 370 450 530 610 690 770 850

02 |

0.1




Experiments (Magre & Moreau 1988)
- |

e Mean and RMS temperature fields:

Temperature Moyenne 120
1200
1500
1400
130
“3I.l||
1000
a0
o

- 500
s00

T (K)

750
| 700
| 650

— &0l

BED

Fluctuation de temperature w0
o

00




Profiles (1/3)
-

e Comparison of mean and RMS temperature with experiment:

2200 - -
S ——— EMC solver I
1800 -
1600 - i
N (2]
|—A1400 = § 00 i
v N -
1200 |
1000 ; 200 !
800 | EMC solver| '
600 | A I - - -a- - . Experiment \
07 — ‘O.OIZS‘ — ‘0.:)5‘ — ‘0.0I75‘ — O0 — ‘O.OIZS‘ — ‘0.:)5‘ — ‘0.0I75‘ —
Mean Temperature at x=210 mm RMS Temperature at x=210 mm
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Profiles (2/3)

e Comparison of mean and RMS temperature with experiment:

EMC solver
- - - -a- - . Experiment
2200 |
2000 - i
- 600 |-
1800 |- i
1600 -
N 0
|—A14oo = £ 400}
v N -
1200 |
1000 B
: 200 EMC solver
800 - - -a- - . Experiment
600 - i
R N WA N N (NN NN WO NN RO N TN T N N NN N T o) IR L
0 0.025 0.05 0.075 0.025 0.05 0.075
Mean Temperature at x=250 mm RMS Temperature at x=250 mm
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Profiles (3/3)

e Comparison of mean and RMS temperature with experiment:

800 | ————— EMC solver -

2200 B .
- | |- - =- - Experiment ’

2000 |

1800 | 600

1600
- /) i
=1400 - ' E 100l
v - |
1200 |
1000 - i
: EMC solver 20T
80F |- - .a— - . Experiment
600 | i
R N N N A TR NN SR T NN SN N N M N S N 0 L
0 0.025 0.05 0.075 0
Mean Temperature at x=460 mm RMS Temperature at x=460 mm
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fo Comparison between computed and measured PDFs at x=210 mm

PDF (1/2)

-

EMC solver EMC solver
o —-—-=—-—- Experiment o —-—-=—-—- Experiment
- 0.008 | I
0.004 |- 'I 1
i : i 0.007 !
| !
[ 0.006 |;
0.003 _— ' E I
i [ 0.005 | |
I'QI' | ‘ I LL ::
-] . - .
0o.002}i " &'004 - |
il ™ C
il ! 0.003 F
if i
0.001 HI 0.002
| . 1
‘4 0.001 |
".
o L 0
500 500 1000 1500 2000 2500
T
z = Omm zZ = 8mm
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PDF (2/2)

e Comparison between computed and measured PDFs at x=250 mm

-

0.004

0.003 |1

0.001

EMC solver
—-—-=—-—-. Experiment

0.006

0.005 |

0.001 H

EMC solver
—-—-=—-—-. Experiment

1500 2000 2500

z = 8mm J



Conclusions for Part 1

o N

e Extension of EMC method for solving velocity-scalar PDF
has been proposed

— Appropriate numerical scheme must be designed
— The derived SPDEs need to be tested on simple 1D tests
— The overall method needs to be compared against LMC method

e Corresponding EMC method for solving scalar PDF has
also been proposed

e The EMC method for scalar PDF has been applied to the
computation of a turbulent premixed methane flame over a
backward facing step

- |
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Contents

-

@ Velocity-scalar PDF
e Modeled velocity-scalar PDF
e Lagrangian and Eulerian Monte Carlo methods

@ Scalar-velocity EMC method
@ Numerical scheme

@ Validation tests
e Riemann problem

e Return to Gaussianity
e Auto-ignition of a Methane-air mixture

® Conclusions and perspectives

-
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Turbulent reacting flow

o N

e We consider a turbulent reacting flow with density p, velocity U, total
enthalpy h;, and mass fractions Y, (a« =1, ---, Ny)

e For variable density flows, it is usual to work with Favre statistics:

Reynolds PDF f = (§(Y,(x,t) — Y, )0 (he(x,t) — h)d(U(x,t) — U))

Favre PDF f = /! Ugg‘“ht) 7

Reynolds and Favre averages are noted Q and Q : Q = %

e Low Mach number assumption: pressure fluctuations are neglected in
the thermodynamical equations

=- p and the chemical source terms are functions of the reactive scalars
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Modeled scalar-velocity PDF equation

f. Modeled transport equation in 1D for the Favre PDF f: T

7 (07) 3 (07) -

9, 10P T\ 1 ~ 5% f
0

ot (0[5 — ne (- 7%0] /)

—%( <>C¢w(Y Y) Sﬂ

— First line: transport in physical space, treated exactly

— Second line: pressure fluctuations and molecular diffusion modelled
by the simplified Langevin model

— Third and fourth lines: mixing modelled by the IEM model

P: pressure, S, : source term, k: turbulent kinetic energy,
w: turbulent frequency, C'x: constants J
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Solving PDF equation (24)
-

e PDF equation (24) has N; = N, + 7 dimensions
where N is the number of scalars = large in practical applications

-

e Finite volume/element/difference methods:
— CPU cost increases exponentially with N; = Not suitable

e Monte Carlo methods:
— CPU cost increases linearly with N; = OK

— Two options:
= |agrangian Monte Carlo (LMC) methods
= Eulerian Monte Carlo (EMC) methods
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Lagrangian Monte Carlo methods (1/2)

ﬁ PDF represented by a set of IV, stochastic particles T

— Each particle is a sample of the physical properties of the system

Np
Fry = 2 wo(U = UM)5(YVa = Ya)o(he = hi™)s(w = 2™) 5 () J = (Fw,)
n=1

wm, U™y B ) mass, velocity, concentration, enthalpy,
position of particle (n)

e Particles evolve according to SODEs (Pope, 1985):

g — _ L) b o (U U) dt + \/ CowkdW ™ (¢ (25)
J p Ox;

Ay ™M = —Cyw (YOE”) _ }7@) dt + S\ at (26)
(ny _ 10P (n) _

dhy" = - Spdt = Cre (Pf" — h) dt (27)




Lagrangian Monte Carlo methods (2/2)
B -

. Wj(”) are independent Brownian noises :

(aW MW ™) = Sumdiydt

e The absence of symbol in the stochastic product in eq. (26)
denotes the Ito interpretation

e Numerous publications document the convergence and
accuracy of LMC methods

— LMC used in many complex calculations (including LES)
— LMC implemented in commercial CFD codes

- |
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Eulerian Monte Carlo methods

o B

e Principle = PDF represented by stochastic Eulerian fields
— Each field is a sample of the physical properties of the system
— Each field evolves according to an SPDE

e Development of EMC methods is useful and stimulating
— LMC/EMC competition could push both approaches forward

e EMC methods already designed for joint scalar PDFs
— Theoretical works : Valifio (98), Sabel'nikov & Soulard (05)
— (Calculations : Naud et al (04), Sabel'nikov & Soulard (06)

- |
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Eulerian Monte Carlo methods

o B

e EMC methods also designed for joint scalar-velocity PDFs
— Theoretical derivation of SPDEs : Soulard & Sabel’nikov (05)
i But no validation nor application

= Purpose of this work
— to propose a numerical scheme for solving the SPDEs
— to assess its performances
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Scalar-velocity SPDEs

f. SPDEs stochastically equivalent to PDF equation (24) can be derived
from SODEs (25)-(28) by the notion of stochastic characteristic:

%(ruHa%(ruMF): (1—%)2—?—r01w(u—(7)+r\/mﬂf
(30)

%(rHH%(ruH):—w(H—Et) +%%—f (31)

o (V0 + o (tUVa) = —r (Yo~ Va) + 25, @2

e U is the stochastic velocity field, H is the stochastic total enthalpy and

)V, is the stochastic mass fraction. W is a standard Brownian noise and
W is its time derivative

L. r IS the stochastic density. r is different from the physical density p J
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Scalar-velocity SPDEs

f' We note (Q), the average over the stochastic fields, and (@).. the
average weighted by the density r: (Q) = &9

r (o),
e The corresponding PDFs are respectively denoted by f, and f..
The following equivalences exist:

f: fr: <r|ujy0“H>8 fs and 7:@]01‘: <r|u,ya,H>S fs
(p) p p
e Wwith consistency conditions: (r), = (p) and <%> =1

e Favre and Reynolds averages are given by:

@:<Q>r:<r<§>>8 and @=<5Q>8

e Mean pressure is given by:

ONERA
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Numerical scheme: spatial discretization

e We use a finite volume method
— we must define a monotone numerical flux

e Characteristic waves of SPDEs (29)-(32) are complex
— due to the presence of both mean and instantaneous quantities
= upwinding monotone fluxes (like Godunov method) are difficult to use

e We decide to use instead a centered monotone flux
— Only requires limited information on the characteristic wave system
— Many different centered scheme exist
— We retain the 'GFORCE’ flux (Toro and Titarev, 2006)

e To achieve 2nd order, we use the 'GFORCE’ flux in conjunction with a
2nd/3rd order WENO interpolation J
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Numerical scheme: temporal discretization

f. 3 requirements for the time discretization T
— it should be strong stability preserving (SSP): in order to maintain
monotonicity
— it should allow for the implicit treatment of stiff source terms

— it should be of weak order 2

¢ In the deterministic case, implicit-explicit (IMEX) Runge-Kutta (RK)
schemes with the SSP property exist (Pareschi and Russo, 2005)
— [IMEX schemes are an interesting alternative to splitting methods
— the stiff and non-stiff parts of the system are discretized together
— The stiff part is treated implicitly, and the non-stiff part explicitly

e \We extend these deterministic IMEX-RK schemes to the stochastic case
— We procede as in Tocino et al (2002)
\_ = We obtain a new class of Stochastic IMEX schemes (S-IMEX) J

ONERA
/’\




First test: Riemann problem (1/4)

e Calculations are performed on a L = 1 m domain T
At initial time, the domain is divided into a left and a right state:
f ~
U, =0m/s
W2 =50 m2/s>
forz < 0.5m < v /
(p);, =0.729 kg/m?
P =10° Pa
f ~
Ur =0m/s
W2y = 0m2/s?
forz > 0.5m < & /
(p)p = 0.456 kg/m?
Pr =5-10% Pa
\

e The turbulent frequency is taken equal to w = 200 s~*

L. N = 400 stochastic fields and N, = 320 cells are used J

ONERA
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First test: Riemann problem (2/4)
B . o

10 T - — T T - —
Stochastic velocity —— Stochastic velocity ——

120 | Solution to the Riemann problem
100 + S W
5 | ] ﬁ
80 :
Q Q
§, é 60 | J
= 0 = |
3 3
2 L at !
5t | 20 ]
0 L | VO
-10 -20

0 0.25 x?ﬁi? 0.75 1 (a) 0 0.25 Xo(.:sno) 0.75 1 (b)
First test: examples of stochastic velocity fields (a) at t=0 s
and (b)att=5-10"%s

- |
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First test: Riemann problem (3/4)

-

0.75

065}

o

£

2

< 06}

>

‘®

c

a
0.55 }
05}
0.45

Compu'ted mean den'sity

------------------- Sowgtion to the Riemann problem
0.7 |

0

0.25

(a)

Pressure (Pa)

110000

100000

90000 |

80000 |

70000 f

60000 |

50000 f

40000

' Computed mean presshre
Solution to the Riemann problem
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First test: Riemann problem (4/4)
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Second test: Return to Gaussiannity (1/3)

.

For this test only, we replace the Brownian coefficient by v2wo? insteadj

of Cowk
— ¢ is a constant and is taken equal to 1
— the velocity field PDF should tend to a Gaussian with variance o2

At the left boundary: Dirac distributions are imposed, with means:
U =10.4m/s , {p) = 0.146kg/m> , P = 10° Pa

At initial time, the stochastic fields are initialized with the left boundary
conditions

The domain has a length L = 0.04m and is discretized with V,, = 40 cells

The turbulent frequency is taken equal to w = 250051

|
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Second test: Return to Gaussiannity (2/3)
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Second test: Return to Gaussiannity (3/3)
B o
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Third test: Auto-ignition (1/4)

f. At inlet, a stoichiometric methane-air mixture is injected:
— temperature 7;,, = 1500 K
— pressure P;,, = 100000Pa

— Gaussian random velocity with U;,, = 10.4ms~! and variance

u’2;, = 1 m?s™2

e At outlet, zero gradients, except for the pressure which value is fixed at
P;

e The length of the 1D domainis L = 0.035 m

e The methane-air chemistry is dealt with a simple one step global
reaction (Westbrook, 1984)
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Third test: Auto-ignition (2/4)
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Third test: Auto-ignition (3/4)
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Third test: Auto-ignition (4/4)
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Third test: Auto-ignition
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Conclusions for Part 11

f. A numerical scheme for solving the SPDEs obtained in Soulard and T
Sabel’nikov has been proposed

— finite volume scheme based on a monotone centered second order
numerical flux

— new weak second order Runge-Kutta scheme, whith the SSP
property, and an implicit treatment of chemical source terms

(S-IMEX)
e 1D validation tests have been performed
— Monotonicity was verified on a Riemann problem
— Return to Gaussiannity was also checked

— An auto-ignition problem was studied

e Further developments of this work :
— extension of the numerical method to 2D problems
L — calculation of a practical cases J
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