Mean-Field Effects: from Passive Scalar to Magnetic Field and Convection

I. ROGACHEVSKII

Ben-Gurion University of the Negev Beer-Sheva, ISRAEL

Outline

- Examples of Mean-Field Effects
- Mean-Field Approach: Methods and Assumptions
- A New Mean-Field Effect in Turbulent Transport of Particles:
 - theory of the new phenomenon of turbulent thermal diffusion
 - experimental detection of turbulent thermal diffusion
 - atmospheric applications
- Conclusions

Velocity Fields

Cloud "streets" over Indian ocean

Cloud "streets" over the Amazon River

Closed cloud cells over the Atlantic Ocean

Open cloud cells over the Pacific Ocean

Solar Convection

FORMATION OF AEROSOL LAYERS

Smog cloud over Santiago

Mean-Field Approach

Induction equation for mean magnetic field:

$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times \left(\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \left\langle \mathbf{u} \times \mathbf{b} \right\rangle - \eta \nabla \times \overline{\mathbf{B}} \right)$

 $\mathbf{\varepsilon} \equiv \langle \mathbf{u} \times \mathbf{b} \rangle$

Electromotive force:

Mean field equations

$$\left(\frac{\partial}{\partial t} + \overline{\mathbf{U}} \cdot \nabla \right) \overline{U}_i = -\nabla_i \left(\frac{P}{\rho_0} \right) - \nabla_j \left\langle u_i \, u_j \right\rangle - g_i \,\overline{\Theta} + \nu \,\Delta \overline{U}_i$$
$$\left(\frac{\partial}{\partial t} + \overline{\mathbf{U}} \cdot \nabla \right) \overline{\Theta} = -\nabla_j \left\langle \theta \, u_j \right\rangle + \kappa \,\Delta \overline{\Theta}$$

 $\left\langle \theta \, \mathbf{u} \right\rangle \\ \left\langle u_i \, u_j \right\rangle$

is the heat flux

are the Reynolds stresses

Methods and Approximations

- Second-Order Correlation Approximation (SOCA) or First-Order Smothing Approximation (FOSA)
 (a) Re << 1 (b) Rm << 1
 H. K. Moffatt (1978); F. Krause and K. H. Raedler (1980)
- Path-Integral Approach (delta-correlated in time random velocity field or short yet finite correlation time)
 R. H. Kraichnan, Phys. Fluids 11, 945 (1968)
- Tau-approaches (spectral tau-approximation, minimal tau-approximation) third-order or high-order closure
 Re >> 1 and Rm >> 1
 A. Pouquet, U. Frisch, and J. Leorat, J. Fluid Mech. 77, 321 (1976)
- Renormalization Procedure (renormalization of viscosity, diffusion, heat conductivity and other turbulent transport coefficients) --- no separation of scales

H. K. Moffatt, Rep. Prog. Phys. 46, 621 (1983)

Tau Approach

Equations for the correlation functions for:> The velocity fluctuations $\left(M_{ij}^{(II)}(\mathbf{k})\right)_{u} = \left\langle u_{i} u_{j} \right\rangle$ > The magnetic fluctuations $\left(M_{ij}^{(II)}(\mathbf{k})\right)_{b} = \left\langle b_{i} b_{j} \right\rangle$ > The cross-helicity tensor $\left(M_{ij}^{(II)}(\mathbf{k})\right)_{u} = \left\langle b_{i} u_{j} \right\rangle$

The spectral τ -approximation (the third-order closure procedure) $\hat{D}M^{(III)}(\mathbf{k}) - \hat{D}M_0^{(III)}(\mathbf{k}) = -\frac{M^{(II)}(\mathbf{k}) - M_0^{(II)}(\mathbf{k})}{\tau_c(\mathbf{k})}$

 $\left(M_{ij}^{(II)}(\mathbf{k})\right)_{u} = -\left\langle u_{i}\left(\mathbf{u}\cdot\nabla\right)u_{j}\right\rangle - \left\langle u_{j}\left(\widehat{\mathbf{u}\cdot\nabla}\right)u_{i}\right\rangle$

Tau Approach

Equations for the correlation functions for: > The velocity fluctuations $\begin{pmatrix} M_{ij}^{(II)}(\mathbf{k}) \end{pmatrix}_{u} = \langle u_{i} u_{j} \rangle$ > The temperature fluctuations $\begin{pmatrix} M^{(II)}(\mathbf{k}) \end{pmatrix}_{\theta} = \langle \theta \theta \rangle$ > The heat flux $\begin{pmatrix} M_{i}^{(II)}(\mathbf{k}) \end{pmatrix}_{\Phi} = \langle \theta u_{i} \rangle$

The spectral τ -approximation (the third-order closure procedure) $\hat{D}M^{(III)}(\mathbf{k}) - \hat{D}M_0^{(III)}(\mathbf{k}) = -\frac{M^{(II)}(\mathbf{k}) - M_0^{(II)}(\mathbf{k})}{\tau_c(\mathbf{k})}$

$$\left(M_{ij}^{(II)}(\mathbf{k})\right)_{u} = -\left\langle u_{i}\left(\mathbf{u}\cdot\nabla\right)u_{j}\right\rangle - \left\langle u_{j}\left(\mathbf{u}\cdot\nabla\right)u_{i}\right\rangle$$

Methods and Approximations

- Second-Order Correlation Approximation (SOCA) or First-Order Smothing Approximation (FOSA)
 (a) Re << 1 (b) Rm << 1
 H. K. Moffatt (1978); F. Krause and K. H. Raedler (1980)
- Path-Integral Approach (delta-correlated in time random velocity field or short yet finite correlation time)
 R. H. Kraichnan, Phys. Fluids 11, 945 (1968)
- Tau-approaches (spectral tau-approximation, minimal tau-approximation) third-order or high-order closure
 Re >> 1 and Rm >> 1
 A. Pouquet, U. Frisch, and J. Leorat, J. Fluid Mech. 77, 321 (1976)
- Renormalization Procedure (renormalization of viscosity, diffusion, heat conductivity and other turbulent transport coefficients) --- no separation of scales

H. K. Moffatt, Rep. Prog. Phys. 46, 621 (1983)

Renormalization Procedure

- The first step is the averaging over the scale that is inside the inertial range of turbulence.
- The next stage of the renormalization procedure comprises a step-by-step increase of the scale of the averaging up to the maximum scale of turbulent motions.
- This procedure allows the derivation of equations for the turbulent transport coefficients: eddy viscosity, turbulent diffusion, turbulent heat conductivity, etc.
- To apply this procedure an equation invariant under the renormalization of the turbulent transport coefficients must be determined.

Passive scalar

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0 \tag{1}$$
$$\frac{\partial n}{\partial t} + \operatorname{div}(n \mathbf{u}) = D\Delta n \tag{2}$$

 $\frac{\partial N}{\partial t} + \operatorname{div}(\overline{N} \,\overline{\mathbf{V}}) = (D + D_T) \Delta \overline{N}$

Why does not turbulent diffusion arise in averaged equation (1) for the fluid density in a turbulent flow, while averaged equation (2) does contain the turbulent diffusion?

$$\frac{\partial \overline{\rho}}{\partial t} + \operatorname{div}(\overline{\rho} \, \overline{\mathbf{V}}) = 0$$

Turbulent Diffusion

Taylor (1921) $D_T \approx l \, u >> D$

$$\frac{\partial \overline{N}}{\partial t} + \operatorname{div}(\overline{N} \,\overline{\mathbf{V}}) = D_T \Delta \overline{N}$$

Turbulence results in a sharp increase of the diffusion coefficient (Taylor, 1921).

> Turbulence causes a decay of particle inhomogeneities.

However, the opposite process, the large-scale preferential concentration of particles in turbulent flows is still poorly understood.

Turbulent thermal diffusion of particles

$$\frac{\partial n}{\partial t} + \operatorname{div}(n \, \mathbf{v}_p) = D \,\Delta n$$

 $\overline{N} = \langle n \rangle$

 $\mathbf{v}_p = \overline{\mathbf{V}}_p + \mathbf{u}$

 $\overline{\mathbf{V}}_p = \langle \mathbf{v}_p \rangle$

Averaging over turbulent velocity field

$$\frac{\partial \overline{N}}{\partial t} + \operatorname{div}\left(\overline{N} \,\overline{\mathbf{V}}_{p} + \overline{N} \,\mathbf{V}_{eff}\right) = (D + D_{T}) \,\Delta \,\overline{N}$$

$$\overline{\mathbf{J}}_{T} = \overline{N} \, \mathbf{V}_{e\!f\!f} - D_{T} \nabla \overline{N}$$

$$\mathbf{V}_{eff} = -\tau \langle \mathbf{u} \operatorname{div} \mathbf{u} \rangle$$

Turbulent thermal diffusion of non-inertial particles

 $\mathbf{v}_p = \mathbf{u}$

 $\rho \operatorname{div} \mathbf{u} + (\mathbf{u} \cdot \nabla) \rho \approx 0$

div $\mathbf{u} \approx -\mathbf{u} \cdot \frac{\nabla \rho}{\rho}$

Equation of state for ideal gas yields:

 $\frac{\nabla \overline{\rho}}{\overline{\rho}} \approx -\frac{\nabla \overline{T}}{\overline{T}}$

$$\frac{\partial N}{\partial t} + \operatorname{div}\left(\overline{N}\,\overline{\mathbf{V}} + \overline{N}\,\mathbf{V}_{eff} - D_T\nabla\overline{N}\right) = 0$$

$$\mathbf{V}_{e\!f\!f} = -\tau \langle \, \mathbf{u} \, \mathrm{div} \, \mathbf{u}
angle$$

$$-\tau \langle u_i \operatorname{div} \mathbf{u} \rangle = \tau \langle u_i u_j \rangle \frac{\nabla_j \overline{\rho}}{\overline{\rho}} = D_T \frac{\nabla_i \overline{\rho}}{\overline{\rho}}$$

$$\mathbf{V}_{eff} = D_T \frac{\nabla \overline{\rho}}{\overline{\rho}} = -D_T \frac{\nabla \overline{T}}{\overline{T}}$$

Turbulent flux of particles $\frac{\partial n}{\partial t} + \operatorname{div}(n \mathbf{u}) = D \Delta n \qquad n = \overline{N} + n' \qquad \frac{\partial \overline{N}}{\partial t} + \operatorname{div}(\langle n' \mathbf{u} \rangle) = D \Delta \overline{N}$ fluctuations of particles number density $\frac{\partial n'}{\partial t} - D\Delta n' + \operatorname{div}(n'\mathbf{u} - \langle n'\mathbf{u} \rangle) = -\operatorname{div}(\overline{N}\mathbf{u})$ $n' \sim -\tau \,\overline{N} \operatorname{div} \mathbf{u} - \tau \,(\mathbf{u} \cdot \nabla) \overline{N}$ $\overline{\mathbf{J}}_{T} \equiv \langle \mathbf{u} \, n' \rangle \sim -\tau \, \overline{N} \langle \mathbf{u} \, \mathrm{div} \, \mathbf{u} \rangle - \tau \, \langle \mathbf{u} \, (\mathbf{u} \cdot \nabla) \rangle \overline{N}$ $D_T \equiv D_{ij} = \tau \langle u_i | u_j \rangle$ - turbulent diffusion tensor $\mathbf{V}_{eff} = -\tau \langle \mathbf{u} \operatorname{div} \mathbf{u} \rangle$ - effective velocity $\overline{\mathbf{J}}_{T} = \overline{N} \, \mathbf{V}_{eff} - D_{T} \nabla \overline{N}$ - turbulent flux of particles

Turbulent thermal diffusion of inertial particles

 $\mathbf{V}_{eff} = -D_T \alpha \frac{\nabla T}{\overline{T}}$

$$\mathbf{v}_p = \mathbf{u} - \tau_p \frac{d \mathbf{u}}{d t} + O(\tau_p^2)$$

div
$$\mathbf{v}_p = \operatorname{div} \mathbf{u} + \tau_p \frac{\Delta P}{\rho} + O(\tau_p^2)$$

$$\alpha \approx 1 + \left(\frac{m_p}{m_\mu}\right) \left(\frac{\overline{T}}{T_*}\right) \frac{\ln(\text{Re})}{\text{Pe}}$$

$$\overline{\mathbf{J}}_T = -D_T k_T \frac{\nabla \overline{T}}{\overline{T}} - D_T \nabla \overline{N} \quad \text{- turbulent flux of particles}$$

$$k_T = \alpha \overline{N} \quad \text{- turbulent thermal diffusion ratio}$$

Particle Inertia Effect

Turbulent Thermal Diffusion

Non-diffusive mean flux of particles is in the direction of the mean heat flux (i.e., in the direction of minimum fluid temperature).

Derivation of the effect of turbulent thermal diffusion

• Path integral approach (delta-correlated in time velocity field and finite correlation time)

The spectral tau approximation

T. Elperin, N. Kleeorin and I. Rogachevskii

- Physical Review Letters 76, 224 (1996)
- Physical Review E 55, 2713 (1997)
- Physical Review Letters **80**, 69 (1998)
- Intern. Journal of Multiphase Flow 24, 1163 (1998)
- Atmospheric Research 53, 117 (2000)

T. Elperin, N. Kleeorin, I. Rogachevskii and D. Sokoloff

- Physical Review E 61, 2617 (2000)
- Physical Review E 64, 026304 (2001)

R.V.R. Pandya and F. Mashayek, Physical Review Letters 88, 044501 (2002)

M.W. Reeks, Intern. Journal of Multiphase Flow 31, 93 (2005)

Paradox

Experimental Set-up

Experimental set - up: oscillating grids turbulence generator and particle image velocimetry system

Particle Image Velocimetry System

Raw image of the incense smoke tracer particles in oscillating grids turbulence

Particle Image Velocimetry Data Processing

Instantaneous Streamlines of the Flow and Velocity Map

()

Turbulent Energy Spectrum

Longitudinal Correlation Functions

Experimental Set-up for Temperature Measurements

Temperature and Particle Number Density Fields. Stable Stratification

 $\overline{T}(y,z)$

 $\overline{N}(y,z)$

Temperature and Particle Number Density Fields. Unstable Stratification, f = 10.5 Hz

 $\overline{T}(y,z)$

 $\overline{N}(y,z)$

Temperature and Particle Number Density Fields. Unstable Stratification, f = 4.4 Hz

N(y,z)

 $\overline{\overline{T}}(y,z)$

Temperature Field in Forced and Unforced Turbulent Convection

Forced turbulent convection (two oscillating grids)

Unforced convection

Temperature and Particle Spatial Distributions

 $\overline{T}(y,z)$

- stable stratification

- unstable stratification

N(y,z)

Turbulent Thermal Diffusion

$$\frac{\partial \overline{N}}{\partial t} + \operatorname{div} \left(\overline{N} \, \mathbf{V}_{eff} - D_T \nabla \overline{N} \right) = 0$$

$$\mathbf{V}_{eff} = -D_T \alpha \frac{\nabla \overline{T}}{\overline{T}}$$

 $\alpha = 1$ for non-inertial particles

Steady state:

$$\frac{\nabla \overline{N}}{\overline{N}} = -\alpha \frac{\nabla \overline{T}}{\overline{T}}$$

$$\frac{\overline{N} - \overline{N}_0}{\overline{N}_0} = -\alpha \frac{\overline{T} - \overline{T}_0}{\overline{T}_0}$$

Turbulent Thermal Diffusion

Normalized mean particle number density $N_r = \overline{N}/\overline{N}_0$ vs. normalized temperature gradient $T_r = (\overline{T} - \overline{T}_0)/\overline{T}_0$: - stable stratification, - unstable stratification.

Experimental set-up with ten fans

Instantaneous vector map and streamlines of flow in FTG

 $\overline{\mathbf{O}}$

Mean temperature distribution in FGT

Turbulent Thermal Diffusion

Normalized mean particle number density $N_r = \overline{N}/\overline{N_0}$ vs. normalized temperature gradient $T_r = (\overline{T} - \overline{T_0})/\overline{T_0}$ in FGT.

References (Experimental study)

- A. Eidelman, T. Elperin, N. Kleeorin, A. Krein, I. Rogachevskii, J. Buchholz and G. Grünefeld. Nonlinear Processes in Geophysics, **11**, 343-350, 2004.
- J. Buchholz, A. Eidelman, T. Elperin, G. Grünefeld, N. Kleeorin, A. Krein and I. Rogachevskii. *Experiments in Fluids*, 36, 879-887, 2004.
- A. Eidelman, T. Elperin, N. Kleeorin, I. Rogachevskii and I. Sapir-Katiraie. *Experiments in Fluids*, **40**, 744-752, 2006.
- A. Eidelman, T. Elperin, N. Kleeorin, A. Markovich, I. Rogachevskii. Nonlinear Processes in Geophysics, 13, 109-117, 2006.

Turbulent Thermal Diffusion

$$\mathbf{V}_{eff} = -D_T \left(1 + \left(\frac{m_p}{m_\mu}\right) \left(\frac{\overline{T}}{T_*}\right) \frac{\ln(\mathrm{Re})}{\mathrm{Pe}} \right) \frac{\nabla \overline{T}}{\overline{T}}$$

The ratio $|V_{eff}/W|$ for typical atmospheric parameters (different temperature gradients and different particle sizes)

a_*	1 K / 100 m	$1 { m K} / 200 { m m}$	1 K / 300 m
$1\mu{ m m}$	13	6.5	4.33
$5\mu{ m m}$	3.4	1.7	1.13
$10 - 20\mu\mathrm{m}$	3	1.5	1
$30\mu{ m m}$	2.7	1.35	0.9

The ratio $|V_{eff}/W|$ for typical atmospheric parameters (different temperature gradients and different particle sizes)

	1 K/100 m	1 K/200 m	1 K/300 m	1 K/1000 m
$a_* = 30 \ \mu m$	2.7	1.35	0.9	0.27
$a_* = 50 \ \mu m$	2.43	1.22	0.81	0.243
$a_* = 100 \ \mu m$	2.06	1.03	0.687	0.206
$a_* = 200 \ \mu m$	1.7	0.85	0.567	0.17
$a_* = 300 \ \mu m$	1.5	0.75	0.5	0.15
$a_* = 500 \mu\mathrm{m}$	1.2	0.6	0.4	0.12

T. Elperin, N. Keeorin, I. Rogachevskii, Atmospheric Research, 53, 117 (2000).

Time of Formation of Aerosol Layers

	1 K/100 m	1 K/200 m	
$a_* = 30 \ \mu m$	11 min	105 min	
$a_* = 100 \ \mu m$	1 min	120 min	

$$t_T \propto rac{L_T}{|\mathbf{V}_{eff} - \mathbf{W}|}$$

T. Elperin, N. Keeorin, I. Rogachevskii, Atmospheric Research, 53, 117 (2000).

Distribution of Number Density of Aerosols (black) and Mean Temperature Distribution (gray) (Satellite Gomos Data)

Distribution of Number Density of Aerosols (black) and Mean Temperature Distribution (grey) (Satellite GOMOS Data)

Conclusion

Mean-Field Effects

- A new phenomenon of turbulent thermal diffusion associated with turbulent transport of particles in the atmosphere and in laboratory experiments has been found.
- The essence of this phenomenon is the appearance of a non-diffusive mean flux of particles in the direction of the mean heat flux, which results in the formation of large-scale inhomogeneous structures in the spatial distribution of particles. Particles accumulate in regions of minimum mean temperature of the surrounding fluid.
- The effect of turbulent thermal diffusion has been detected experimentally: in oscillating grids turbulence generator and in a multifan turbulence generator in two directions of the imposed vertical mean temperature gradient (suble and unsighte significations).
- Turbulent thermal diffusion can explain the large-scale aerosol layers that form inside atmospheric temperature inversions.

THE END