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INTRODUCTION

•The dynamo effect, namely the amplification of a weak magnetic seed field by the
motion of an electrically conducting fluid, is the most likely explanation for the
omnipresence of magnetic fields in the universe.

•A dynamo can take two forms, the large scale dynamo, which generates magnetic
fields with scales larger than that of the fluid motion.

•There also exists a small scale or fluctuationdynamo, where the largest scale of the
magnetic field is comparable to the largest scale of motion.

•Here we present preliminary results for a new technique to model the fluctuation
dynamo, using a ‘synthetic’ turbulent flow.

MOTIVATION

The normal procedure for modelling the small scale dynamo is to numerically solve
both the induction equation

∂B

∂t
= ∇× (u × B) + η∇2B, (1)

and the Navier-Stokes equation.

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p + j ×B + ν∇2u + F. (2)

Imposing both ∇ · B = 0, magnetic field is divergence free, and ∇ · u = 0, for
incompressability. For the purpose of this study we shall assume the strength of the
magnetic field is weak enough to ignore the effect of the Lorentz force, j × B. Much
progress has been, using this approach, in furthering our understanding of the
mechanisms present in the fluctuation dynamo. In particular in understanding the
kinematic phase in the high Prm limit. However, in rarefied plasma’s, such as the solar
corona and galactic halos, the magnetic field is believed to be concentrated in thin flux
ropes. Here diffusion only acts over short length-scales, through magnetic
reconnections, heuristically this can be thought of as seeking a solution to

∂B

∂t
= ∇× (u × B) + η∇nB, (3)

where n→ ∞. By representing thin flux tubes as discretised lines, frozen into the flow,
we introduce a new way to model the fluctuation dynamo numerically. Before
describing the algorithms of the model we introduce the velocity field

VELOCITY FIELD

Due to the limitations of DNS we have used a model of a turbulent flow, the Kinematic
Simulation (KS) model. The KS model prescribes the flow velocity at a position x and
time t through the summation of Fourier modes with randomly chosen parameters.
These modes are mutually independent, therefore the advection of small eddies by
large eddies is not included in the model. More precisely, the velocity field is
prescribed to be

u(x, t) =
N
∑

n=1

(An × kn cosψn + Bn × kn sinψn) , (4)

where ψn = kn · x + ωnt and N is the number of modes. The unit vectors k̂n are chosen
randomly, and kn = knk̂n where kn is the wavenumber of the nth mode. We choose An,
and Bn randomly, imposing orthogonality with k̂n, which gives the required spectrum as

|An × k̂n| = An, (5)

we proceed in the same fashion for Bn. We then choose

An = Bn =

√

2E(kn)∆kn
3

. (6)

This ensures
1

V

∫

V

1

2
|u|2dV =

∫ ∞

0
E(k) dk ∼

Nk
∑

n=1

E(kn)∆kn, (7)

As we can see one of the main advantages of using the KS model is that we have
complete control of the energy spectrum, E(kn), and in particular the slope of the
spectrum. We adopt a normalised energy spectrum of the KS flow E(k), which is a
modification of the von Kármán energy spectrum,

E(k) = k4(1 + k2)−(2+p/2)e−1/2(k/kN)2, (8)

which reduces to E(k) ∝ k−p in the inertial range 1 ≪ k ≪ kN , with k = 1 at the integral
scale; p = 5/3 produces the Kolmogorov spectrum.

Figure 1: Comparison of velocity fields from KS and DNS with comparable Reynolds
number. Despite the apparent differences, KS has been shown to be in good

agreement with DNS for Lagrangian statistics.

THE FLUX ROPE MODEL

Figure 2: (a) Algorithm for introducing new points, and accounting for stretching of flux
tube. (b) Reconnection algorithm commonly used in simulations of quantised vortices

in superfluid Helium.

•Magnetic flux tubes are represented by discretised loops (∇ · B) of fluid particles,
whose only information is their position, and flags for particles behind and in front.
We introduce a length scale d which acts as our resolution and introduce a new
particle if the distance between any two particles on the loop becomes larger than d.

•When introducing new particles we must also account for the stretching of the flux
tube, and effect on the strength of the magnetic field caused by reducing the width of
a flux tube. ψ =

∫

S B · dS ∼ BA = constant, and LA = constant. Hence, if we double
the length, the strength of the magnetic field doubles.

• If the separation between two particles, which are not neighbours, becomes very
close, they can reconnect. The distance which a reconnection can occur over is
denoted by d0 and is the diffusive length scale. We must also ensure that the
orientations of the flux tube are sufficient to allow a reconnection, and ensure that
parallel flux tubes with the same direction will not reconnect.

TESTING THE MODEL

As an initial test we consider a two dimensional shear flow with a Gaussian profile,
ux = u0e

−y2/2. For this simple flow we can solve the induction equation (with η = 0)
analytically, finding

|B| = B0

√

1 + u0y2e−y2t2. (9)

We then subject our model to the same flow, and test that the total line length grows
like

∫∞
−∞B0

√

1 + u0y2e−y2t2dy, and also that at each point on the flux tube |B| correctly
assigned.
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Figure 3: (a) t against L from flux rope model, two values of integral show good
agreement. (b) t against |B| at y = 1 from model, dashed line gives value predicted

from Eqn. 9

It is clear our model is doing a good job of approximating the true solution. The next
stages of the project will involve testing the flux rope dynamo in the KS model. In
particular we are interested in comparing this model with the induction equation and
comparing rate of energy release, field morphology and curvature of the flux tubes and
magnetic field strength.
Finally we note,

j × B = (∇× B) × B = (B · ∇)B −
1

2
∇B2 = |B|

∂B

∂ℓ
. (10)

Leading on nicely to a non-linear flux tube model ...


