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1. — Simple ideas and misconceptions about turbulence.

Viscous incompressible 3-D flow can become turbulent when the Reynolds
number R is sufficiently large. The latter is expressible, in terms of a typical
scale L of the flow, a typical velocity V and the kinematic viscosity », as the
ratio of the viscous diffusion time L2/» to the circulation (turn-over) time L/V.
Information about turbulent flows comes from experiments, observations of
nature and, increasingly, from computer simulations (c¢f. other lectures in
thig volume).

We now list and discuss some outstanding features of turbulent flows.
In each case we begin with naive widely accepted statements and show that
they can lead to misconceptions. We shall assume that the reader is at least
moderately familiar with dynamical-system concepts (cf. the lectures by Lie-
CHABER, LORENZ and RUELLE in this volume and ref. [1-3]).

I'l. Sharp transitions can occur when the Reynolds number is varied. —
Transitions from laminar to turbulent flows are discussed elsewhere in this
volume. Very carefully controlled experiments on, e.g., Rayleigh-Bénard
convection have revealed a great variety of scenarios for the transition. In
such experiments, when the flow becomes turbulent, it is often chaotic only
in time and highly organized in space. In shear flows the transition may lead
to much stronger chaos in both time and space via the 3-D destabilization
of 2-D coherent structures (cf. the computer experiments by ORSzZAG, PATERA
and BRACHET reported in ref. [4] and [5] and the lectures by ORSZAG).

1'2. The flow is unstable and unpredictable. — A very weak perturbation
introduced at some time ¢, may rapidly result in a complete distortion of the
detailed flow pattern. Thus the flow may not be predictable in deterministic
terms for more than a short time. It is conceivable, however, that statistical
properties (involving, e.g., time averages) are stable and can be predicted
(cf. the difference between predicting weather and climate).
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What do we understand by a «very weak perturbation »? The simplest
way is to take an infinitesimal perturbation; such a perturbation is governed
by the linearized dynamical equations. The growth of infinitesimal perturba-
tions is controlled by the maximal Liyapounov characteristic exponent (LCE)
J (vef.[6, 7] and the lectures of Ruelle). Loosely stated, the fastest growing
perturbation goes for very large times like exp [4, t], where A 0. Chaotic
(or intringically stochastic) dynamical systems have 4, > 0. In practice this
does not necessarily mean complete lack of predictability. Indeed, i) small
but finite perturbations may at first grow exponentially but eventually saturate
at rather low levels, ii) the positive LCEs correspond to those directions in
which the separation of neighbouring trajectories grows exponentially. There
are algo negative LCEs corresponding to shrinking separations and hence to
no lack of predictability. In fact, it is known that chaotic dynamical systems
can have strongly predictable features; one example is the ¢noisy periodicity »
discussed by LORENZ [8]. Dissipative dynamical systems (e.g. viscous Navier-
Stokes flow) may have a set that attracts trajectories for ¢t — co. The phase
space can be infinite-dimensional (it usually is if the flow is governed by a partial
differential equation), still the attractor can be finite-dimensional. If the
dimension is small, the flow has in a sense only a finite number of unpredictable
features. There is experimental evidence that many turbulent flows have
strongly coherent quite predictable structures (cf. other lectures in this volume
and vef. [9]). Tt is of interest to try to measure the dimension of their attrac-
tors.

Dynamical-system theory is also telling us that a turbulent flow with
prescribed geometry and Reynolds number need not have unique statistical
properties. Just like a body resting on a table may have several positions of
stable equilibrium, a dynamical system can have several attractors with distinet
bagins. For example, in transition experiments of the Rayleigh-Bénard type
the statistical regime that is obftained may depend on the way the system is
prepared (cf. the lectures by LIBCHABER).

1'3. Trajectories of marked particles are unstable and unpredictable. — We
now consider not the flow in some abstract phase space but the trajectories
of individual marked particles following the fluid motion in (2-D or 3-D)
physical space. Letus denote by v(t, r) the velocity field in Eulerian co-ordinates.
Particle trajectories are determined by the following dynamical system

(1.1) dr(t, a)/dt = v(i, r(t,a)), r(0,a)=a.

If the flow is incompressible, V-v = 0 and the dynamical system is conservative,
i.6. the mapping e +— r(t, @) conserves the Lebesgue meagure.

The interesting observation is that the dynamical system (1.1) may be
chaotic without the velocity field being so. One gimple known example is
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the spatially periodic steady Arnold-Beltrami-Childress flow (4, B, O real)

(1.2) V= Aginx,+ C cosw,,
(1.3) V,= B sinw, -+ 4 coswy,
(1.4) Vo= C sinx, + B coszy,

introduced by ARNOLD [10] and CuILDRESS [11] and studied by HiNow [12]. 1t
is easily checked that v curlv = 0. Hence this flow is an exact solution of
the 3-D Ruler equations. This solution being steady hardly qualifies as
«turbulent». Still the numerical evidence is that streamlines (here identical
with the trajectories of marked particles) are chaotic when ABC = 0. We thus
have a sort of «Lagrangian turbulence»: drops of dye introduced into the
flow will develop extremely intrincate structures. Lagrangian turbulence of
this sort can also take place in two dimensions provided that the velocity
field becomes time-dependent (periodic is enough). A very simple example
is given by ArEr[13]: in a circular shallow tank the fluid is agitated 7-period-
ically by a strrer (assumed to act like a point vortex); during a time interval
T2 the stirrer is placed at some point M and then for another half-period
at the diametrically opposite point M’. This simple device can give very efficient
mixing.

The above observations about Lagrangian turbulence may be relevant
to atmospheric predictability: the motion of an advected long-lived small-
seale structure (say a radioactive cloud) in a large-scale 2-D flow can be un-
predictable as soon as the large-scale flow is not steady.

1'4. Turbuleni flow enhances transport. — In. a nonturbulent fluid the trans-
port of heat, momentum, ete. is caused by molecular motion and collisions:
at scales much larger than the mean free path 2, a molecular-diffusion process
takes place with a diffusion coefficient &, ~ 2v,,, where v, is the r.m.s. thermal
velocity. In a 3-D turbulent fluid with integral scale I, and r.m.s. turbulent
velocity v, one can similarly construct a turbulent diffusion coefficient k,,, ~
~1,v, usually > % . The enhancement of transport by turbulence is some-
times the only evidence that a flow is turbulent (e.g. in the interiors of stars).

Steady 3-D flow with chaotic streamlines (such as the flow discussed above)
will not usually produce turbulent diffusion. The reason is that the dynamical
system defined by the streamlines will have Kolmogorov-Arnold-Moser (KAM)
invariant surfaces within which marked particles remain trapped. Introducing
some molecular diffusion amounts to letting the marked particles perform an
additional Brownian motion by which they can escape from the KAM sur-
faces. Diffusive behaviour is then recovered at large scales.

We also stress that turbulent-transpoert coefficients are appropriate only
for phenomena on scales much larger than l,. This restriction is frequently
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ignored in empirical modelling of turbulent flows. One example is the use
of eddy viscosities in subgrid scale modelling in connection with computer
simulations when it is not practical to resolve all the relevant scales. Such
procedures may yield reasonable results when used in a dimensionally consistent
way. They may also badly fail. The most obvious pitfall is that by increasing
the viscosity the flow can be made laminar. The opposite can also happen:
in Taylor-Couette flow and mixing layers transitions can occur such that,
when P is increased, the large-scale flow becomes more coherent, while the small
scales remain chaotic.

This may be somewhat similar to the existence of laminar windows for
the control parameter within the chaotic domain observed, e.g., in iterated
maps [14]. In such a situation subgrid scale calculations may be unable to
predict the coherence of the flow.

There are circumstances in which turbulence on a scale I, acts to enhance
rather than to diffusively damp the amplitude of the quantity being trans-
porfed on a scale >>-1;. In 2-D incompressible flow negative eddy viscosities
can be used to explain that the energy cascade proceeds from small to large
scales (cf. ref. [15,16] and the lectures by SADOURNY and TENNEKES). In
a 3-D flow with nonvanishing helicity (= integral over space of v-curlv)
large-scale magnetic fields are amplified due to the « a-effect » (ef. ref. [17]
and the lectures by CHILDRESS).

1'5. High-Reynolds-number turbulence has a wide range of scales. — Fourier
analysis of velocity signals from a probe in high-Reynolds-number flow (e.g.
a turbulent jet) reveals the kind of spectrum shown in fig. 1. The energy
spectrum follows a power law oc k=™ (m = 5/3) over a range of scales (i.e.
inverse wave numbers) extending from the integral scale I, to the dissipation

inertial range

energy spectrum

wave number

-1
Ly
\ dissipation range

Fig. 1. ~ Energy spectrum of high-Reynolds-number turbulence. Double logarithmic
co-ordinates. 1, is the integral scale and I, is the dissipation scale.
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secale I,,. The ratio [,/ increases with R like R* (n ~ 3/4) and the small-scale
motion is approximately isotropic. All this was predicted by KoLMOGOROV
in 1941 [18]. Simple phenomenological interpretations can be given [19, 20].
The range of scales I~1, is called the energy-carrying or production range,
because that is where most of the turbulent energy is produced (usually by
some instability mechanism). The range I, 1> 1, is theinertial range, because
the dynamics are here dominated by the inertial terms in the Navier-Stokes
equations (direct production and dissipation are negligible). The range <1,
is called the dissipation range because both inertial and dissipation terms are
relevant. A frequent misconeeption is that only dissipation is relevant (cf.
ref. [21]). The increasing range of scales as R is increased does not itself imply
that the number of basic degrees of freedom (those governing the attractor
of the flow) is increasing. As stressed, for example, in Tennekes® lectures,

Fig. 2. — Intermittent velocity signal. The plot shows high-pass filtered output of a
hot-wire probe measuring the velocity in grid-generated turbulent flow (Y. GAGNE,
Institut de Mécanique de Grenoble).

turbulent flows are full of coherent structures. Presumably a chaotic process
(that may have an attractor of relatively low dimengion) controls the formation of
such structures. Itis conceivable that the formation of small scales by subsequent
flattening of the structures into, e.g., ribbons or sheets is governed by a predie-
table deterministic process. This picture is consistent with a low-dimensional
attactor at high Reynolds numbers. Alternatively, and more likely, there
may be addifional small-seale instabilities (inviscid or viscous) leading to
increasing chaos.

High-pass filtering of turbulent signals reveals that the small-seale activity
is intermittent; it comes in bursts, as shown in fig. 2. This is already conspicuous
in the inertial range and even more so in the dissipation range. Intermittency
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was digscovered by BATCHELOR and TOWNSEND [22]. Inertial-range intermit-
tency has not yet received any systematic explanation; it is not consistent
with the original 1941 Kolmogorov theory (often referred to as K 41) and has
led to various modified theories [20, 23-256]; we shall come back to this in
seet., 2 and the appendix. Dissipation range intermittency is much better
understocd and can be related to singularities of the solutions of the Navier-
Stokes equations at complex times (cf. vef.[21,26]); an interesting ecarly
interpretation of this intermittency may be found in vef. [27]. The essence
of the explanation is that high-pass filtering of an analytic function with
complex-time singularities produces bursts centred at the real part of the
gingularities and with an overall amplitude proportional to exp[— £Q[|],
where 2 is the filter frequency and 7 the imaginary parv of the singularity.
The (rare) singularities closest to the veal axis are strongly favoured for
large Q.

2. — Fully developed turbulence: intermittency as a broken symmetry.

By fully developed turbulence (FDT) we understand the asymptotic regime
that is obtained by letting the Reynolds number tend to infinity., We shall
here consider only the 3-D case; for the quite different 2-1 case, sce the lec-
tures by SADOURNY and TeENNEKES and ref. [15, 16]. In geophysical flows
inertial ranges of three decades and more are not uncommon [28]. Laboratory
experiments can display substantial inertial ranges [29]. Computer simulations
of the full Navier-Stokes on a grid of 256° points have now reached the point
where features of fully developed turbulence begin to be conspicuous [30, 31].

Attempts to construct a theory of FDT go back more than 40 years: a
long history of frustrated attempts which we shall not review here [32, 33].

One central difficulty of FDT appears to be a broken symmetry. This has
already been discussed in ref. [26]. The argument will here be just summarized.
Consider the Navier-Stokes equations

o+ v Vo=—Vp +1Wo,

(2.1)
Vv = 0 -+ boundary and initial conditions .

In the infinite-Reynolds-number limit (v — 0) the Navier-Stokes equations
are formally invariant under all the groups of scaling transformations 2,

2.2) r-—Jr v —> Mo i A A0
’ ? b )

with arbitrary similarity exponent k. Since the production of turbulence
singles out the scale Iy, the flow cannot be globally invariant under &, (neither
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in a deterministic nor in a statistical sense). Still, the invariance may hold
asymptotically at scales I < l,. This is precisely one of the postulates of the
K 41 theory [18], the other one being the assumption that there is a finite
rate of energy dissipation per unit mass; it then follows that the flow is statis-
tically self-similar with exponent h = 1/3. This has important consequences
for the (longitudinal) structure funetions. The latter are defined by '

(2.3) {Boyy =L (vr + 1) =),

i.e. the p-th—order moment of the velocity increments over a distance I (the
velocity component being measured parallel to I). For homogeneous isotropic
turbulence the r.h.s. of (2.3) is a function only of I = |I] and of p. (Asymptotic)
self-similarity with A = 1/3 implies that

(2.4) (So()Py o v L=p/3, L,>1>1,.

For p = 2 this is just another way of writing the celebrated k=52 law. The
trouble is that eq. (2.4) is only marginally supported by experiment for small p’s
and not at all for large p’s. Power law behaviour appears to hold, but not
with ¢, = p/3. Fairly accurate measurements of the £, for p up to about 10
have been reported recently in ref. [29]. The experimental values of {, for
three flows are given in table I (taken from ref. [29]). R, is the Reynolds
number based on the Taylor microscale. Clearly the results indicate that
self-similarity is broken. In ref.[26] we show that, since scale invariance
corresponds to a noncompact group, it is more likely to be broken than, say,
isotropy, which corresponds to the compact group of rotations.

Tasre I. — Exponents of structure functions (taken from ref. [29]).

P 2 3 4 5 6 7 8
R; =515 0.71 1 1.33 — 1.8 —_ 2.27
(duct)

R, = 536 071 1 1.33 1.54 1.8 2.06 2.28
(jet)

Ly = 852 0.71 1 1.33 1.65 1.8 2.12 2.22
(jet)

P 9 10 12 14 16 18

Ey =515 e 2.64 2.94 3.32 — —

(duct)

R = 536 2.41 2.60 2.74 e - ——

(jet)

R; = 852 2.52 2.59 2.84 3.28 3.49 3.71

(jet)
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A weaker assumption that may be consistent with the data (but not neces-
sarily with the Navier-Stokes equations) is conditional self-similarity: one
assumes, for example, a hierarchical embedding of bursts within bursts as
one proceeds to ever smaller scales (cf. ref.[20,23]). A number of such
hierarchical intermittent models has been constructed with probabilistic
elements introduced in an ad hoc way; according to such models, in FDT the
energy dissipation is concentrated in a fractal set [34]. The fractal dimension D
of this set can be inferred from the sixth-order structure function [20]. Accord-
ing to the recent data reported in ref. [29] D ~ 2.8; this would indicate that
dissipative structures are so extremely convoluted that they are nearly space
filling (D = 3). In the appendix, written with PARIs1, we show that the data
are consistent with a picture of intermittency involving more than one fractal
set.

Explaining the broken self-similarity by the intermittency is just displacing
the problem. There are recent indications that the broken-symmetry—inter-
mittency problem of FDT has to do with chaotic dynamical systems. This
is Dbased on results obtained with the «two-component shell model» of
ref. [35, 36]. Earlier shell models have been introduced in ref. [37] and studied
in ref. [38-40]. The general idea is as follows. Let us start with 3-D Navier-
Stokes turbulence. Fourier space for the space variable is divided into
octave shells comprised between successive wave numbers &, defined dy

2.5) ky=0, k,=1", Fk=2"k (n=1).
0 0 n 0

The total velocity field (¢, r) can be decomposed into contributions v,(¢, r)
each of which involves O(%}) Fourier components. In shell models it is assumed
that each shell has only a small number of degrees of freedom which does
not inerease with n. The models are chosen to have many struectural properties
in common with the Navier-Stokes equations: form of linear and nonlinear
terms, conservation of energy for v = 0, conservation of volume in phase space
for v = 0, etc. Interactions are only between neighbouring shells (motivated
by the observation that in 3-D FDT energy transfer involves mostly interac-
tions between comparable secales). The two-component shell model reads
(ref. [36])

(26) a ’U/ - ol(l”n n—1 kn-\-l un un-}—l kn b;i*l n+1 bn bn+1) +
+ ﬁ 7”7; N~ 1 knll n+1 kn bn 1 n P‘ 7"71 Flbn+1) ’an un+ (Sln7

(27) atbn: OC]Cn(%le bﬂm n n!»l + ﬁl‘/ n n—— - u’n-—l bn> 2)knbn ?
(2.8) n=1,2,8,.., hy="0,= 0.

o and f are real parameters. The Kronecker d,, provides a driving force for
the first shell; higher-order shells are excited by nonlinear interactions. The
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following properties are easily checked: 1) the nonlinear interactions conserve
the total energy

M

(2.9) B=1%2 (u;+b);

n=1

ii) when » = 0 and only a finite number N of shells are kept (with w,,, =
= by, = 0), the flow in the 2N-dimensional space defined by eqs. (2.6), (2.7)
is conservative, i.e.

r(0 ) .
(2.10) > (éun (8 u,) + . (th”)) =0 (Liouville theorem).

1

Similar properties hold for the Navier-Stokes equations (ref.[32,33]). The
two-component shell model was introduced by GRrRAPPIN, LEORAT and Pou-
QUET [35] as a generalization to MHD (conducting flow with magnetic field)
of the model of Desnyansky and Novikov [37], to which it reduces when
b, =0. It is also possible to consider the two-component shell model as a
model of the Navier-Stokes equations that retains two rather than one mode
per shell. It is noteworthy that the Liouville theorem (eq. (2.10)) does not
hold for the Desnyansky-Novikov model.

The main results obtained for the two-component shell model (ref. [36])
in the FDT limit (v — 0) are as follows:

a) If all the b,’s are set equal to zero and if 2V3 ¢ — > 0, the solutions
of eqs. (2.6), (2.7) tend for t — oo to a « K 41 fixed point ».

b) For nonvanishing b,’s intermittent chaotic solutiong have been ob-
tained (so far in a limited number of numerical experiments).

The precise meaning of statement a) is

(2.11) lim lim }1_)rg Upga U, == 27113,
and similarly for the b,’s. It is easily checked that all nonlinear terms in
eqs. (2.6), (2.7) vanish when u,  ju, = b, /b, = 273, Stability of this X 41
solution is demonstrated by a linear stability analysis and by computer ex-
periments. For nonvanishing b,’s at high Reynolds numbers chaotic solutions
(with positive maximum LCE) are observed, the high-shell «,’s and b,’s being
conspicuously intermittent in time. Time averages of the quantities < (u,(1))"),
analogous to structure functions, show power law dependence (in k,) with
significant deviations from K 41 scaling (rvef.[36]). Note that intermittent
behaviour has been previously observed in shell models in which the energy
dissipation is not through a linear term but through a nonlinear eddy viscos-
ity [40, 417. '

To understand how the intermittent chaotic behaviour comes about in
shell models, there are at least two strategies. One can truncate the model
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and study bifurcations controlled by the Reynolds number. This has already
been done for the cases of two and three shells [36]. Alternatively one can
work directly with infinitely many shells and infinite Reynolds number. Indeed,
it is possible to construct a one-parameter family of meodels which in some
ranges have K 41 solutions and in other ranges chaotic intermittent solutions.
As the parameter is varied, bifurcations are expected which lead to symmetry
breaking and chaos.

3. — Turbulence with a spectral gap and predictability (based in part onref. [42]).

In the atmosphere of the Earth there is a number of instability mechanisms
acting on very different scales: for example, the large-scale baroclinic instability
and the small-scale convective instability. Under what conditions can the
resulting turbulent flows coexist and be separated by a spectral gap (¢.e. be
spectrally segregated as depicted in fig. 3)? Many atmospheric scientists believe
that there is such a gap in the atmosphere and it has been argued by LorENz ([43]
and this volume) that this can result in inereased predictability of the weather.

mk‘.‘)/a

Tfl &

K Ko

Tig. 3. — 3-D turbulence with a spectral gap.

The simplest model on which the possibility of a spectral gap can be ex-
amined is homogeneous isotropic turbulence with two distinet production
mechanisms acting at scales I, = k" and I, = k;* <I,. To make the problem
(somewhat) tractable it is esgential to assume a wide separation of scales.

Before putting the two turbulences together, let us recall some additional
facts about the spectrum of high-Reynolds-number homogeneous isotropic
turbulence driven at a single scale, as shown in fig. 4. Subtleties such as inter-
mittency corrections to K 41 will be mostly ignored, since they are probably
not very relevant for what will fellow. We denote by &, the rate at which
energy is injected per unit mass into the turbulent flow. Stationarity is assumed;
hence g, is equal to the rate at which energy cascades to smaller scales and
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E (k)

Iig. 4. — Inertial and equilibrium ranges of 3-D turbulence.

also equal to the rate of dissipation. The latter is 2v0;, where v is the viscosity
and 2, the enstrophy (mean square vorticity). The former can be estimated
in terms of I, and the r.m.s. turbulent velocity »,: the amount of energy in
scales ~ 1, is ~ o}; the characteristic time for transferring this to smaller scales
is the eddy turn-over time ¢, ~ 1 /v, ; hence e, ~ vi/t, ~ v3/l,. The energy spec-
trum follows the Kolmogorov law

(3.1) B(k) ~ g3 f;-/3
in the inertial range
(3.2) ky= 1<k < kpy~ T, RY4,

where I~ 1,0, /v. At small wave numbers, k < k,, there is an «equilibrium
range » in which

(3.3) B(k) o k2.

In this range there is an equipartition of kinetic energy between all Fourier
modes (there are ~ k* dk modes with wave number between % and % -+ dk).
The equilibrium range is fed by beating-type interactions between two eddies
in the energy-containing range, this being balanced by an eddy viscosity also
coming mostly from the energy range [44]. In field-theoretic jargon the equi-
librium range has «asymptotic infra-red freedom » (this is a school of physies!)
as can be demonstrated using renormalization group methods [45, 46].

We are now in a position to understand the interactions of two turbulent
motions separated by a gap (fig. 3). Let us denote by g, ~ 03I, the energy
production rates and by %k, = 17" the energy-carrying wave number for the
large-scale flow (¢ = 1) and the small-scale flow (i = 2). The main effect fo

6 - Rendiconti S.I.F, - LXXXVIIT
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the small scales on the large ones is to replace the molecular viscosity » by
an eddy viscosity v,~ v, (cf. subsect. 1'4). Thus the large-scale Reynolds
number is reduced to an effective R'~1 v,/l,v,, We denote by FK,(k) the
energy spectrum that would be established with only small-scale production
and by FE,(k) the spectrum that would be established with only large-scale
production but with v, used instead of ». The viscous cut-off for E(k) is at
iy~ E, (R4, A necessary condition for spectral segregation is that k,, <k,.
This is easily seen to be equivalent to

(3.4) e, Le, or VL0l

We have assumed up to this point that the small-scale turbulence is mostly
unaffected by the presence of the large-scale turbulence. This requires that
the turn-over time ¢, be small compared to the characteristic time for distor-
tion by large-scale shears, namely ~ Q7% Ttis easily checked that the second
condition gives the same relation eq. (3.4) as before. Finally we shall require
that the large-scale turbulence should have a large effective Reynolds number
B> 1. Putting everything together, we get the conditions for spectral
segregation of two fully developed 3-D turbulent flows

(3.5) (T /1)1 << 0,0, < (Lyyla) Y3

If the left inequality becomes violated, the large-scale flow can become laminar
(by the action of the small-scale turbulence!). A somewhat more quantitative
study of this problem can be done using closure theory [42].

When intermittency is included in the above analysis (in the sense of
ref. [20]), it is found that the exponent 1/3 in the r.h.s. of eq. (3.5) is lowered
to (D —2)/3, where D is the fractal dimension of dissipation.

MCLAUGHLIN, PAPANTCOLAOU and PIRONNEAU [47] have studied by asymp-
totic methods a variant of the spectral-gap problem in which the large- and
small-scale flows are not driven and decay. So does the eddy viscosity and,
eventually, molecular viscosity dominates. This may, however, take a very
long time if the initial small-scale Reynolds number is large.

The above 3-D analysis is also easily extended to the coexistence of large-
scale 2-D turbulence with small-scale 3-D turbulence. For this we must, of
course, assume that there is a mechanism that keeps the large-scale flow 2-D.
The situation is as shown in fig. 5. B, is the rate of enstrophy production
B, ~ (V1) /(1,/v,) ~ ©2/2. The enstrophy inertial range extends from ~ %, = I"
to ~ ky,~ K, (R)2, where R; is defined as before. By going through the
same kind of analysis as before, we find the following conditions for spectral
segregation of the two fully developed 2-D and 3-D flows

(3.6) (1) << 0,)0, < L fly ©
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R

Fig. 5. — Spectral gap between large-scale 2-D turbulence and small-scale 3-D tur-
bulence.

We now show that a spectral gap between small-scale 3-D turbulence and
large-scale 2-D turbulence may lead to increased predictability of the large-scale
motion (as suggested by LorexNz ([43] and this Volume)). We assume that
the flow can be resolved deterministically (D) up to a wave number in the
spectral gap (indicated by a vertical dashed line in fig. 5) and that beyond
the flow is only known statistically (S). According to ref.[48, 49] errors
migrate from larger to smaller wave numbers. In a range where nonlinear
inferactions are mostly local (e.g. an inertial range), the characteristic time
for error migration over, say, one cctave of wave numbers is the local eddy
turn-over time (what else could it be?). Across the spectral gap, however,
interactions are highly nonlocal. The mechanism for error genceration at wave
numbers & < k,, due to the small-scale 3-D turbulence, is basically the same
as for the generation of the equilibrium range: errors are generated by beating
interactions between wave numbers ~ k&, and are damped by eddy viscosity.
We can, therefore, estimate the error spectrum (in the absence of large-scale
motion) to be

(3.7) B (k) ~ (e T,)? B(k,) ~ (k/k,)? 1,02 .

Errors generated by the small-scale turbulence will be enhanced by the in-
stability of the large-scale flow, and most efficiently at wave numbers of the
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order of the dissipation wave number k. The relative error is
(3.8) 7~ Bk ) E(ky,,) ~ Fp o[,

We now assume exponential amplification of the error with a characteristic
time equal to the turn-over time [,/v, in the enstrophy inertial range (roughly
wave number independent); we find that the relative error has become of order
unity after a time ~t, log (1/r) ~t,log (k,/k,,). To this we must add the time
for errors to migrate along the enstrophy inertial range from k,, to k; which
is ~t,log (k,,/k,). Hence the total predictability time is ~t,log (k,/k,). In
other words, thanks to the spectral gap, the predictability is the same as if
we had a 2-D flow with full resolution of all scales down to the integral scale
of the 3-D turbulence. The increased predictability can be rather important
(days?) if a speetral gap exists at scales ~ 100 km. This, of course, is debatable.
It could be that the gap in the energy spectrum is filled by rare but violent
meteorological events and does not exist in the mean; some increase in the
predictability is then nevertheless expected.

Finally, we observe that coherent structures may play an important part
in the dynamics of atmospheric turbulence. If thisis o, predictability estimates
based on turbulence phenomenology (¢ la Kolmogorov) may be very misleading.

We have greatly benefitted from discussions with C. GLOAGUEN (two-
component shell model) and with J. C. AxprE, M. LESIEUR and O. THUAL
(spectral gap and atmospheric predictability).

APPENDIX

On the singularity structure of fully developed turbulence.

with

G. PARISI

Dipartimento di Fisica, Universita di Roma I « Tor Vergata» - Roma, Tialia

A simple way of explaining power law structure function is to invoke sin-
gularities of the Euler equations considered as limit of the Navier-Stokes
equations as the viscosity tends to zero. For Burgers’ equation we know that
such singularities exist (shocks) and that they provide the required explanation
of scaling. TFor the 2-D Euler equations we know that singularities do not exist
(see, e.g., ref.[26] and references therein). For the 3-D Kuler equations



FULLY DEVELOPED TURBULENCE AND INTERMITTENCY 85

the numerical evidence is inconclusive [26,31]. MANDELBROT [24, 25] and
others [20] have considered models with singularities concentrated on a set
C R? having noninteger (fractal) Hausdorff dimension. We shall here show
that the data suggest the existence of a hierarchy of such sets (a « multifractal »).

Since the Navier-Stokes equations (in the zero-viscosity limit) are invariant
under the group of scaling transformations (defined in eq. (2.2)) for any value
of h, singularities of arbitrary exponents (and mixtures thereof) are consistent
with the equations. Specifically, we start with a definition, the velocity field
at a given time v(z) is said to have a singularity of order 2 > 0 at the point @ if

(A1) Iim. o(x) — v(y) /e — y[" 0.
For negative & eq. (A.1l) is modified by not subtracting v»(y).

We call S(h) the set of points for which the velocity field has a singularity
of order h. It is obvious that

(A.2) S(h') 2 8(h) it B> h,

Roughly speaking, S(#) is the region where the velocity field is not an Holder
function of order . We denote by d(h) the Hausdorff dimension of S(h) (see
ref. [34] and [50] for definitions). It follows from eq. (A.2) that d'(h)> 0;
we also make the concavity assumption d'(h) < 0.

If such singularities exist, then, in the fully developed turbulence regime,
d(h) has a nontrivial dependence on h: different kind of singularities are asso-
ciated with sets having different Hausdorff dimensions. Note that the opposite
phenomenon happens for the solutions of stochastic differential equations
with white noige (like those studied in Jona-Lasinio’s contribution to this
volume): there the one-dimensional trajectories are (with probability one)
Holder functions of order 4, so that

(A.3) d{h) = 0(h — %) (0 = step function) .

Tt is useful to connect the function d(h) with the exponents £, introduced in
eq. (2.4) which control the asymptotic behavicur of the longitudinal structure
funetions. We can try to rephrase the previous statements on the Hausdorft
dimensions of S(k) by saying that the probability of having |v(x) — v(y)| of
order |x — y|" goes to zero like |x — y|*"“™ when |x — y| — 0. We thus arrive
to the following integral representation for the moments:

(A.4) By ~ [ autmyue-ao,

where du(h) is a measure concentrated on the region where d(h) > 0.
In the K 41 [18] picture and in the S-model [20], we have, respectively,

Lo=1[3
(A.5) o= 253, )
o= Alp—3)+1 (A<,
Jonsequently we have, respectively,
a(n) = 30(h — %), K41,
(A.6) d(h) = (2 + 34)0(h — 4), f-model.
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In more sophisticated models, and also in actual turbulence, according to
ref. [29], £, is a nonlinear function of p. Evaluating the integral (A.4) using
the saddle point method, we easily find

(A.T) £,= min, [ph 4+ 3 —d(h)].

‘We have thus found that ¢, is the Legendre transform (see ref. [51], sect. 14)
of the codimension (¢(k) = 3 — d(h)) of the set S(k). This is assuring that the
convexity properties of £, are automatically preserved by eq. (A.7).

Tf eqs. (A.4) and (A.7) are correct, the dimensions d(h) are experimentally
well-defined quantities: they can be extracted from the £,’s by using the inverse
Legendre transform

(A.8) d(h) = 3 —min, (£, — ph) .

We shall not try to do this using the data displayed in tableI, although this
is clearly possible, at least in the range of  for which the value of »p minimizing
eq. (8) falls in the experimentally observed interval: it is, however, likely
that d(k) will not be a step funetion because £, appears to significantly devi-
ate from a linear funection of p. The function d(h) is thus nontrivial and sin-
gularities of different kinds, if they exist, are concentrated on sets having
different Hausdorff dimensions.

The function d(k) (or, equivalently, {,) has a clear dynamical meaning
because it contains most of the relevant information on the sgealing laws for
fully developed turbulence. It would be rather important to measure ac-
curately d(h) and to find good evidence for its universality, .e. its independence
on the initial conditions and on all the other parameters which should become
irrelevant in the fully developed turbulence regime.

If the multifractal model is basically correct, accurate measurements of
the £,’s may be quite difficult. Indeed, the structure functions are a mixture
of power laws (eq. (A.4)), so that very small seales (i.e. very high Reynolds
numbers) may be needed before the contribution with the smallest exponent
clearly dominates; where exactly this happens depends on the distribution dgu(h).

Note that consistency of the multifractal model with the data is by no
means evidence for real singularities of the Tuler equations. There is certainly
more than one way to obtain sealing, otherwise scaling would not be observed
in two dimensions, where gingularities are ruled out [26].

We note two interesting consequences of the invergion formula (A.8). First,
if £, vanishes for p — 0, then the weakest singularities, which has the expo-
nent £y, are space filling (4 = 3). 1t is elearly of interest to measure £, for small
noninteger p’s. Second, the multifractal model is not completely consistent
with Kolmogorov’s [23] lognormal model for which &,= p/3 -+ up(3 —p)/18
(@, if it exists, is somewhere between 0.2 and 0.5; see ref. [29]). Indeed, with
this choice of £, we find from eq. (A.8) that beyond p,..= 9(2 /3‘&)%‘ a negative
dimension is obtained. Accurate measurements of very-high-order structure
funetions are required to test for a possible incongistency of the multi-
fractal model.

Finally, one may wonder how the above ¢« multifractal » model relates to
the models of ref.[20,25,34,52]. In Mandelbrot’s [25, 34, 52] probabilistic
models for the dissipation a random weighting factor W appears at each stage
of the cascade. The case when W hag a binomial distribution (« absolute
curdling ») corresponds to a single fractal in our approach (it is also equivalent
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to the f-model). For more general W-distributions (« weighted curdling ») one
obtains exponents ¢, that depend nonlinearly on p like in the multifractal
model. There is a single fractal for the energy dissipation, but it is conceivable
that other fractals will be uncovered by investigating all possible singularities
of the dissipation. Still the multifractal model appears to be somewhat more
restrictive than Mandelbrot’s weighted-curdling model which does include the
lognormal ease.
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