Mean-Field Electrodynamics
Measurements in a Sodium Experiment
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Do Mean-Field Currents Exist in Weakly
Magnetized, Turbulent MHD Flows?

¢ Not previously measured

¢ Essential component of the Standard Model
of the self-excited dynamo

¢ understand role of MFED on liquid metal
dynamo experiments

¢ |ong standing prediction:
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Standard Model of quasi-axisymmetric MHD
dynamo requires helical turbulence

The “Q effect” The "X effect”




Mean Field Electrodynamics

B=(B)+b, V=(V)+7%
() =0 ((B) + (V) x (B) + (¥ x b))
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v(t) -V xv(t+ 7)dr and g = %/\7(15) - vV(t+T1)dT




This simplest possible self-exciting flow:
a two vortex flow with Rmcit~50

Vpol

Magnitude of V

Dudley and James, Time-dependent kinematic dynamos with
stationary flows, Proc. Roy. Soc. Lond. A. 425 407 (1989).




Dynamo is of the stretch-twist-fold type: field
line stretching and reinforcement leads to dynamo




The saturated magnetic eigenmode (from a full 3D,
non-linear MHD computation) is an equatorial diplole

Bayliss, Nornberg, Terry and Forest, Numerical simulations of current generation and dynamo
excitation in a mechanically-forced, turbulent flow, Phys. Rev. E, (20006)




For liquid metals, Re>>Rm

+ Direct Numerical
Simulations of
MHD equations
with mechanical
forcing

Re=2200;
turbulence for
Re>450

Magnitude of V
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Fy(p, z) = p* sin(mpb)

F.(p, z) = —esin(mpc)

0.25a < |z| < 0.55a, p < 0.3a




Turbulence, in the two-vortex dynamo, increases
Rmerit by factor of 5

turbulent dynamo

initially turbulent, relaminarized dynamo
laminar dynamo
no dynamo
stability curve

- dynamo
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Recent, fully resolved MHD simulations (no hyperviscosity, no LES)
extended to Re~5000

proper boundary conditions and mechanical forcing term




The Madison Dynamo
Experiment




Dimensionally identical water experiment was
used to demonstrate feasibility

= |aser Doppler velocimetry is
used to measure vector velocity

field

" Measured flows are used as
input fo MHD calculation

= Full scale, half power

Sodium Water
Temperature  110°C 50°C

viscosity 0.65%107° m?sec™'0.65x 1070 m?sec™
mass density  0.925 em cm™ 0.988 gm cm ™

resistivity 107" Qm
HoaV

=4dra(m)V(m/s)




LDV measurements provide data for a reconstruction
of the mean velocity field
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Velocity fields can be generated in water which
lead to dynamo action

: meésured. : I rﬁag'netic R'eyr;old's
E velocity number
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Magnetic field is measured both internally and externally;
external magnetic fields can be applied to probe experiment

= B, < 100 gauss
® Measure

¢ surface probes
+ B(a,0,9)
+ Yim for 1<6, Iml<4
¢ Internal Probes
+ By(r,0;), 6 arrays
+ B,(r,0=m/2)




Experiment: apply axisymmetric poloidal seed field
to sphere and measure induced magnetic fields
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Predicted fotal magnetic fields
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Large scale (mean) and small scale (tfurbulent) magnetic
fields are generated by liquid sodium flows

Field [G]




Spectra are turbulent: the turublent magnetic
energy is much smaller than the kinetic energy

Velom’ry
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Nornberg, Spence, Bayliss, Kendrick, and Forest, Measurements of the magnetic
field induced by a turbulent flow of liquid metal, Phys. Plasmas 13 055901 (2006).




Internal magnetic fluctuations are consistent with
passive advection of B by Kolmogorov turbulence

Wavenumber Spectrum

= Limited inertial range exists

= Inertial range scales with
Rm: Kg o< Rm ko

| K, ik, Wy

90 100 1000
k[m'1]

Nornberg, Spence, Bayliss, Kendrick, and Forest, Measurements of the magnetic
field induced by a turbulent flow of liquid metal, Phys. Plasmas 13 055901 (2006).




The time-averaged, axisymmetric part of the magnetic
field shows poloidal flux expulsion and a strong Q effect

_— Magnetic Flux ¥
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Magnetic field is reconstructed from magnetic field
measurements at discrefe positions
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The mean induced magnetic field has a dipole moment

componen’rs of Yim

Impossible to reconstruct
with axisymmetric flows!

Spence, Nornberg, Jacobson, Kendrick, and Forest, Observation of a turbulence-
induced large-scale magnetic field, Phys. Rev. Lett. 96 055002 (2006).




Theorem: For a stationary, axisymmetric flow and magnetic
field, no dipole moment can exist for the current distribution
inside the experiment (even with externally applied fields)

Use cylindrical coordinates (s, Z, ¢) and stream functions for velocity and mag-
netic fields:

= VO x Vo + 150
= VU X V¢ + Byo

The dipole moment u, = [ sJyd>z is generated by toroidal currents:

J¢ — ngg-gg
VO x VU
o
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Switching to flux coordinates (¥, ¢) where d°z = the dipole becomes




Proof continued

Integrating ® along open poloidal flux contours gives

b
0P

a

since vessel boundary had ® = const. Closed poloidal
flux contours give

0P
—dl =
T, (=0

Therefore, u, = 0 for axisymmetric flows. QED

= Conclusion: symmetry breaking fluctuations must
be responsible for observed dipole

¢ consistent with an x-effect and the self-
generated toroidal field: Jp=00B




Question: Does a simple Ohms law make sense?

Measured in Sodium
Experiment

DUCEO D)

Measured by LDV  Fluctuation Drive
Currents

()= 5= [0 27 dodl




<V>x<B> does not account for measured field:
turbulence must be generating current

B due to (V) x (B)
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Field can be separated into mean-flow, mean-field
driven currents and fluctuation generated currents

B due to <f¢7 ><5>

B due to (V) x (B)

50 00 50 50 00 50 100
B/B,y, B/B,y,

Spence, Nornberg, Jacobson, Parada, Kendrick, and Forest, Turbulent
Diamagnetism in Flowing Liquid Sodium, Phys. Rev. Lett. 98 164503 (2007).




Comparisons between Simulation and Experiment
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Measured B, [G]
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Scalings of Mean-Field Currents
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Turbulent resistivity can be large
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Autocorrelation functions of LDV velocity measurements
for Rmtip = 100. The locations are (a) in the bulk flow
above and behind the impeller (r = 45 cm,theta = 0.596)
(b) deep in the flow at the equator (r = 26 cm, theta=
1.50) (c) near the wall (r =53 cm, theta = 0.596) and (d)
near an impeller (r = 34 cm, theta= 0.596).




