
Mean-Field Electrodynamics 
Measurements in a Sodium Experiment

Cary Forest

Workshop and Minicourse
“Conceptual Aspects of 

Turbulence:  Mean Fields 
vs Fluctuations”

Pauli Institute
Vienna, Austria

11th -15th February 2008



 Not previously measured
 Essential component of the Standard Model 

of the self-excited dynamo
 understand role of MFED on liquid metal 

dynamo experiments
 long standing prediction:

Do Mean-Field Currents Exist in Weakly 
Magnetized, Turbulent MHD Flows?

E =
〈
ṽ × b̃

〉
= αB + β∇×B with

α =
1
3

∫
ṽ(t) ·∇× ṽ(t + τ)dτ and β =

1
3

∫
ṽ(t) · ṽ(t + τ)dτ



Standard Model of quasi-axisymmetric MHD 
dynamo requires helical turbulence

The “Ω  effect” The “α  effect” 



Mean Field Electrodynamics

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)
B = 〈B〉 + b̃, V = 〈V 〉 + ṽ

E =
〈
ṽ × b̃

〉
= αB + β∇×B with

α =
1
3

∫
ṽ(t) ·∇× ṽ(t + τ)dτ and β =

1
3

∫
ṽ(t) · ṽ(t + τ)dτ



This simplest possible self-exciting flow:
a two vortex flow with Rmcrit~50
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 Dudley and James, Time-dependent kinematic dynamos with 
stationary flows, Proc. Roy. Soc. Lond. A.  425 407 (1989).



Dynamo is of the stretch-twist-fold type:  field 
line stretching and reinforcement leads to dynamo



The saturated magnetic eigenmode (from a full 3D, 
non-linear MHD computation) is an equatorial diplole

Bayliss, Nornberg, Terry and Forest, Numerical simulations of current generation and dynamo 
excitation in a mechanically-forced, turbulent flow, Phys. Rev. E, (2006)



✦ Direct Numerical 
Simulations of 
MHD equations 
with mechanical 
forcing

✦ Re=2200; 
turbulence for 
Re>450

For liquid metals, Re>>Rm



Turbulence, in the two-vortex dynamo, increases 
Rmcrit by factor of 5
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 Recent, fully resolved MHD simulations (no hyperviscosity, no LES) 
extended to Re~5000

 proper boundary conditions and mechanical forcing term



The Madison Dynamo 
Experiment

300 gallons sodium

vessel heating and cooling 1 m



Dimensionally identical water experiment was 
used to demonstrate feasibility 

 Laser Doppler velocimetry is 
used to measure vector velocity 
field

 Measured flows are used as 
input to MHD calculation

 Full scale, half power 



LDV measurements provide data for a reconstruction 
of the mean velocity field
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Velocity fields can be generated in water which 
lead to dynamo action

a=0.5 m, σ=107 mhos 



 Bz ≤ 100 gauss
 Measure 

 surface probes 
 Br(a,θ,ϕ)
 Ylm for l≤6, |m|≤4

 Internal Probes
 Bϕ(r,θp), 6 arrays
 Bz(r,θ=π/2)

Magnetic field is measured both internally and externally;  
external magnetic fields can be applied to probe experiment



Experiment: apply axisymmetric poloidal seed field 
to sphere and measure induced magnetic fields 
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Large scale (mean) and small scale (turbulent) magnetic 
fields are generated by liquid sodium flows

Br(a,θ)
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Spectra are turbulent:  the turublent magnetic 
energy is much smaller than the kinetic energy
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Nornberg, Spence, Bayliss, Kendrick, and Forest,  Measurements of the magnetic 
field induced by a turbulent flow of liquid metal, Phys. Plasmas 13 055901 (2006).
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Internal magnetic fluctuations are consistent with 
passive advection of B by Kolmogorov turbulence

Wavenumber Spectrum
 Limited inertial range exists
 Inertial range scales with 

Rm:  kσ ∝ Rm k0 

Nornberg, Spence, Bayliss, Kendrick, and Forest,  Measurements of the magnetic 
field induced by a turbulent flow of liquid metal, Phys. Plasmas 13 055901 (2006).



The time-averaged, axisymmetric part of the magnetic 
field shows poloidal flux expulsion and a strong Ω effect

Magnetic Flux Ψ   
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〈...〉 ≡ 1
2πT

∫ T ∫ 2π
0 ... dφdt



Magnetic field is reconstructed from magnetic field 
measurements at discrete positions

Bpol
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The mean induced magnetic field has a dipole moment

components of Ylm

Impossible to reconstruct 
with axisymmetric flows!

Bpol

Spence, Nornberg, Jacobson, Kendrick, and Forest,  Observation of a turbulence-
induced large-scale magnetic field, Phys. Rev. Lett.  96 055002 (2006).



Theorem:  For a stationary, axisymmetric flow and magnetic 
field, no dipole moment can exist for the current distribution 
inside the experiment (even with externally applied fields) 

Use cylindrical coordinates (s, Z,φ) and stream functions for velocity and mag-
netic fields:

"v = ∇Φ×∇φ + vφφ̂ (1)
"B = ∇Ψ×∇φ + Bφφ̂ (2)

The dipole moment µz =
∫

sJφd3x is generated by toroidal currents:

Jφ = σ"v × "B · φ̂ (3)

= σ
|∇Φ×∇Ψ|

s2
(4)

Switching to flux coordinates (Ψ, $) where d3x = d"dΨ
Bp

, the dipole becomes

µz = σ

∫ ∫
|∇Φ×∇Ψ| d$dΨ

sBp
(5)

= σ

∫
dΨ

∫
∂Φ
∂$

d$ ≡ 0 (6)



Proof continued

 Conclusion:  symmetry breaking fluctuations must 
be responsible for observed dipole
  consistent with an α-effect and the self-

generated toroidal field:  Jφ=σαBφ  

Integrating Φ along open poloidal flux contours gives
∫ b

a

∂Φ
∂"

d" = Φ(b)− Φ(a) = 0

since vessel boundary had Φ = const. Closed poloidal
flux contours give ∮

∂Φ
∂"

d" ≡ 0

Therefore, µz = 0 for axisymmetric flows. QED

Ψ   

Φ   



Question: Does a simple Ohm’s law make sense?

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)

Measured in Sodium 
Experiment

Measured by LDV Fluctuation Driven
Currents

〈...〉 ≡ 1
2πT

∫ T ∫ 2π
0 ... dφdt



<V>x<B>  does not account for measured field:  
turbulence must be generating current

B due to 〈V 〉 × 〈B〉

Bpol
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Bpol
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Field can be separated into mean-flow, mean-field 
driven currents and fluctuation generated currents

B due to 〈V 〉 × 〈B〉
B due to

〈
ṽ × b̃

〉

Spence, Nornberg, Jacobson, Parada, Kendrick, and Forest, Turbulent 
Diamagnetism in Flowing Liquid Sodium, Phys. Rev. Lett.  98 164503 (2007).



Comparisons between Simulation and Experiment
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Scalings of Mean-Field Currents
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Turbulent resistivity can be large
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 Autocorrelation functions of LDV velocity measurements 
for Rmtip = 100. The locations are (a) in the bulk flow 
above and behind the impeller (r = 45 cm,theta  = 0.596) 
(b) deep in the flow at the equator (r = 26 cm, theta= 
1.50) (c) near the wall (r = 53 cm,   theta = 0.596) and (d) 
near an impeller (r = 34 cm,   theta= 0.596).


