Bifurcations and multistability in turbulence

VKS team

A. Chiffaudel L. Marié F. Ravelet

F.Daviaud CEA/Saclay, France O. Dauchot A. Prigent

Bifurcations in turbulent flows:

- 1. von Karman : bifurcation between mean flows
- 2. Couette flows: turbulent spiral and stripes
- 3. VKS: dynamo action
 - multistability

Turbulent von Karman flow

- Axisymmetry
- $R\pi$ symmetry / radial axis
- R_c=100 mm
- H=180 mm
- f=2-20 Hz
- Re= $2\pi R_c f^2 / v = 10^2 10^6$
- fluid: water and glycerol-water

Inertial stirring

Geometry Service First bifurcations and symmetry breaking

meridian plane: poloïdal recirculation

Re = 90 Stationary axisymmetric

Re = 185 m = 2 ; stationary *Re = 400 m = 2 ; periodic*

Tangent plane : shear layer

Time spectra as a function of Re

 v_{θ} en {r = 0.9; z = 0}

Time spectra as a function of Re

Central Turbulent Bifurcation: memory effect?

• $\theta = (f_2 - f_1) / (f_2 + f_1)$ • Re = $(f_1 + f_2)^{1/2}$

Stability of the symmetric state

CEC Stability of the symmetric state

Multiplicity of solutions

Couette flows

Plane Couette flow setup

Cylindrical Couette setup

 Ω_i

 $\leftrightarrow d$

$\eta = r_i / r_o$
$\Gamma_{\theta} = \pi (r_{\rm i} + r_{\rm o}) / d$
$\Gamma_z = L / d$
2 control parameters :

 $R_i = \frac{\Omega_i r_i d}{\upsilon}$ and $R_o = \frac{\Omega_o r_o d}{\upsilon}$

Setup	r_i (mm)	d (mm)	η	Γ_z	$\Gamma_{ heta}$
$TC_{\eta 1}$	49.09	0.87	0.983	431	358
TC _{η2}	48.11	1.85	0.963	203	167

Physical control parameter :

$$R_{TC} = \frac{\left| \eta R_o - R_i \right|}{2 \left(1 + \eta \right)}$$

CE Taylor-Couette flow visualization

CET Transition from laminar to turbulent flow

Transition from turbulent to laminar flow in plane Couette flow

Transition from turbulent to laminar flow in Taylor Couette flow

Spiral Turbulence in extended geometry

Cent Turbulent stripes in plane Couette flow

Comparison with Taylor-Couette flow when $W_i = -W_o$

TC flow: LDV measurements

From Turbulence to Spiral Turbulence

Couette flows: summary

- A discontinuous transition from laminar to turbulent flo (unstable finite amplitude solutions)
- A continuous transition from turbulent to laminar flow (Ginzburg-Landau equations + noise)