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PROBLEM SET 5: Christmas Questions (extracurricular)

Here are two rather open-ended questions designed to keep you entertained over the
Christmas Vacation (sorry, Interterm Time). They may well have more than one solution:

5.1 certainly does, while what I think the solution is for 5.2 may well be incorrect (there is an
active discussion going on in the research world about that — this doesn’t mean it’s

mathematically complicated, just that new conceptual thoughts are being thought). These
questions will hopefully help you develop a deeper understanding of two extremely

fundamental (and fascinating) topics that we only just barely touched on: Brownian Motion
and Turbulence. This work is extracurricular, is unlikely to make any difference to your exam

performance, and you are under no obligation whatsoever (not even moral) to do anything
about it. If those of you who do do something about it want to discuss the fruit of their

labours, I am happy to meet some time in HT or TT-2014. You are absolutely encouraged to
discuss these questions between yourselves. Merry Interterm Time and Happy New Year!

Brownian Motion

5.1 Consider a large number of small but macroscopic (compared to the molecular size)
Brownian particles of diameter a and mass m moving around in a medium of viscosity
µ and temperature T . Assume that the motion of these particles can be modelled with
the usual Lagevin equation (frictional drag plus white-noise random forcing).

(a) Show that the concentration n(t, r) of these particles will satisfy the diffusion equation
and calculate the diffusion coefficient.

(b) How should this equation be modified if the ambient medium is flowing with veloc-
ity u(t, r)?

(c∗∗∗) If you are feeling adventurous and have an appetite for some considerable maths,
investigate how to deal with this equation if the velocity u itself is a random field
correlated in time as a white noise (assume incompressibility, ∇·u = 0). The interesting
question is then, e.g., how to find the equal-time spatial correlation function of the
concentration field 〈n(t, r)n(t, r′)〉 = C(r − r′) (this is called “random advection (or
random mixing) of a passive scalar field” and you’d have to identify and study the
relevant literature; if you need access to journals, you’ll get it if you VPN into your
Oxford account).

Rotating Turbulence

5.2 Consider homogeneous turbulence in an incompressible fluid system rotating with a
uniform angular velocity Ω (say, in the z direction). The equation for such a fluid is the
Navier-Stokes equation with a Coriolis force:

∂u

∂t
+ u · ∇u + 2Ωẑ× u = −∇p+ ν∆u,

where p is fixed by the requirement ∇ · u = 0.
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Suppose energy is injected into the system at some “outer” scale L and so turbulence is
stirred up with a typical outer-scale velocity of motions U . Consider the case of strong
rotation, viz., the Rossby number is

Ro =
U

LΩ
� 1,

while the Reynolds number is

Re =
UL

ν
� 1.

(Would rotation have mattered if I had stipulated Ro� 1 instead?)

(a) Such a turbulence has a tendency to be 2D, i.e., instead of 3D “eddies” you’ll see
2D “columns” (correlation length along z is infinity). So, consider such a 2D turbulence
and work out the scalings of two-point velocity differences δu(`) vs. point separation
(scale) `.1 Remember that in a purely 2D system, there will be two conserved quadratic
invariants, energy

∫
d3ru2/2 and enstrophy

∫
d3r|∇ × u|2/2; they can’t both cascade

to small scales (“Fjørtoft argument”), so one of them (enstrophy) will cascade to small
(`� L), the other (energy) to large (`� L) scales. So you’ll find two different scalings
in these two regimes, based on Kolmogorov-style constant-flux arguments.

(b) In fact, infinite correlations along z are impossible because information travels at fi-
nite speed. In this case, information is carried by “inertial waves.” Work out the relevant
speed after showing that the dispersion relation for waves in the above equation is

ω2 = Ω2k
2
z

k2
,

where k = |k|. If the “columns” get taller than the distance that an inertial wave can
travel in one turnover time, their opposite ends will decorrelate and the columns will
break up into long-aspect-ratio but 3D cigar-like eddies. Work out, therefore, how tall
the rotating box has to get in order for 2D turbulence to break down in this way.

(c) Now let the box be so tall that we have this 3D “cigar-eddy” turbulence. Enstrophy
is no longer conserved, but energy is (check both of these statements). Assuming the cas-
cade is again forward (to small scales), follow a Kolmogorov-scale dimensional argument
to work out δu(`⊥), where `⊥ is the “pependicular” (i.e., xy-plane) separation of points
(“perpendicular scale”). What is the scaling of the energy spectrum with perpendicular
wavenumber (k⊥ =

√
k2x + k2y)?

(d) Using the causality principle discussed above, work out the vertical size `‖ (parallel
decorrelation length) of the “cigar eddies” of perpendicular scale `⊥. What is the scaling
of δu(`‖) with `‖?

(e) At what scale `⊥,c (and what corresponding parallel scale `‖,c) does rotation become
irrelevant and the turbulence turns into the usual isotropic Kolmogorov cascade? [this
is called the Zeman scale] Does it make sense to you that this is what must happen?

1Note that we now assume that the forcing is also 2D, i.e., the outer scale L is in the xy-plane (the forcing
does not impose three-dimensionality).

3


