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Thermodynamics Problem sets

Andrew Steane

October 1, 2022

Many (not all) of the exercises are taken from Steane, Thermodynamics (OUP); the num-
bers in brackets state which they are. Most questions test a single concept and are brief.
If you are spending a lot of time on such a question, it suggests you may have missed the
concept. Longer question are indicated by an (L) after the question number. This signals
merely that a larger amount of work is needed to solve the problem.

No problem set is easy, but set 1 here is easier than the others. This is to allow students
to get started on the problems before they have had many lectures.

1 Problem set 1. Basic concepts

state, equilibrium, response function, temperature, function of state, reciprocity theorem,
introduction to fundamental relation. (chapter 2, 3, 4, 5, 6)

1.1 Section A. Terminology and some concepts

(Exercises 3.1–3.7)

1. The relaxation time of an ideal of given density and temperature, in a container with
all dimensions approximately equal, scales with volume as V 2/3. Given that a litre
of gas at STP has a relaxation time of about 10 seconds, find the relaxation time of a
cubic region of diameter 10 microns in such a gas. (Such a region has approximately
2⇥ 1010 molecules in it; we will see later that this implies concepts such as pressure
and temperature can be defined to a fractional precision of order 10�5.)

2. Define the terms reversible and quasistatic (as they are used in thermodynamics).
Among the many processes going on inside the body of a living animal such as a cat,
there are: breathing, circulation of blood, digestion, mietosis (cell division), osmosis.
Briefly discuss which aspects, if any, of these processes are quasistatic to reasonable
approximation.
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3. Let the letters Q,R,I,T denote the terms quasistatic, reversible, irreversible and
isothermal, respectively. State which of Q,R,I,T apply to each of the following pro-
cesses (in each case list all appropriate terms):
(a) a gas slowly expanding in a thermally isolated cylinder fitted with a frictionless
piston
(b) a volcanic eruption
(c) a steel nail oxidising (rusting) while immersed in a bucket of water
(d) ice forming over a pool of water on a still winter evening
(e) a force pushes ordinary book across an ordinary table.

4. (i) Which has the higher bulk modulus, a gas or a solid?
(ii) Show that, in the limit V � Nb, the isothermal compressibility of a van der
Waals gas is (p�N

2
a/V

2)�1.

5. Function of state. Water can enter a lake by two routes: either by flowing down
a river into the lake, or by falling as rain. It can leave by evaporation, or by flowing
out into the outlet stream. Assume there is no di↵erence between rain water and
river water (e.g. both are pure).
Let the physical system under discussion be the lake of water. Which of the following
quantities are functions of state?:

(a) The depth of the water,

(b) The total amount of water in the lake,

(c) The mass of river water in the lake,

(d) The temperature of the water,

(e) The mass of water that has left the lake by evaporation,

(f) The volume of rain water in the lake,

(g) The rate of evaporation.

6. Suppose that the lake in the previous question empties completely during a dry spell,
and then later fills up with water from the river during a period in which there is no
rainfall. Does this change the answers to any parts of the previous question?

7. One mole of a certain gas at low pressure obeys the equation of state

✓
p+

a

V 2
+

d

V 3

◆✓
V � b+

f

V

◆
= RT

where a, b, d, f are constants. Find the equation of state for n moles of this gas.
[Hint: it is easy enough if you reason precisely; do not guess!]
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1.2 Section B. Partial math

(Exercises 5.1–5.4)

1. (i) Consider the following small quantity: y
2
dx + xydy. Find the integral of this

quantity from (x, y) = (0, 0) to (x, y) = (1, 1), first along the path consisting of two
straight line portions (0,0) to (0,1) to (1,1), and then along the diagonal line x = y.
Comment.
(ii) Now consider the small quantity y

2
dx+ 2xydy. Find (by trial and error or any

other method) a function f of which this is the total di↵erential.

2. A certain small quantity is given by

CV dT +
RT

V
dV

where CV and R are constants and T and V are functions of state. (i) Show that
this small quantity is an improper di↵erential. (ii) Let dQ = CV dT + RT

V
dV . Show

that dQ/T is a proper di↵erential.

3. Derive the reciprocity theorem.

4. If x, y are functions of state, give an argument to prove that

dQ(p)

dx
=

dQ(p)

dy

@y

@x

����
(p)

(1)

where the subscript (p) indicates the path along which the changes are evaluated.

5. If f(x, y, z) is a function of the variables x, y, z, under what circumstances, in general,
is (@f/@x)y,z equal to f/x?

6. A and B are both functions of two variables x and y, and A/B = C. Show that

@x

@y

����
C

=

@lnB

@y

���
x

� @lnA

@y

���
x

@lnA

@x

��
y
� @lnB

@x

��
y

[Hint: develop the left hand side, and don’t forget that for any function f , (d/dx)(ln f) =
(1/f)df/dx].

1.3 Section C. Temperature

(Exercises 6.1–6.5)

1. A constant volume gas thermometer contains a gas whose equation of state is the van
der Waals equation. Another contains an ideal gas. Each thermometer is calibrated
at the ice and steam points (the melting and boiling point of water at standard
pressure), and thereafter the pressure is used as a linear indicator of temperature.
Show that with such calibration the temperature measurements provided by these
two thermometers will agree at all temperatures, with no requirement to extrapolate
to zero pressure.
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2. The equation of state of a certain solid is well approximated by

V = V0(1 + ↵T � p).

where V0, ↵ and  are constants. Sketch the isotherms on a pV diagram. Explain
briefly whether you expect the slopes of these isotherms to be large or small compared
to those of a gas.

3. Prove from the Zeroth Law that two di↵erent isotherms cannot intersect.
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2 Problem set 2. First and second law; associated reasoning

empirical temperature and equation of state; work and internal energy; heat engine, Carnot
and Clausius theorems, entropy; di↵usion equation (chapter 7, 8, 9, 10)

2.1 Section A. Energy

(7.1–7.5, 7.11, 7.19, 7.20)

1. (L) A mole of ideal gas is taken from a state p1, V1 to a state p2, V2 along a path
forming a straight line on an indicator diagram. Find an expression for the work W

done on the gas. Assuming the constant-volume heat capacity CV is independent of
temperature, find also the internal energy change �U and the heat Q entering the
system. Apply your results to find �U , W and Q when the initial state is at volume
21⇥ 10�3m3 and temperature 290K, and the final state is at 22⇥ 10�3m3, 330K,
for a gas with � = 1.4.
[Ans. W = �120 J; �U = 831 J; Q = 951 J.]

2. (i) Prove that in an adiabatic expansion of an ideal gas with constant heat capacities,
pV

� is constant, where � = Cp/CV is the ratio of the heat capacities (also called
adiabatic index). (ii) Show that in such an expansion TV

��1 and T
�
p
1�� are also

constant.

3. An ideal gas at initial pressure p1 undergoes an adiabatic expansion from volume
V1 to volume V2. Assuming � is constant, find the final pressure and show that the
work done is

W =
p1V1

� � 1

 ✓
V1

V2

◆
��1

� 1

!
.

4. An ideal gas is taken between the same initial and final states as in question 1, by
an adiabatic expansion followed by heating at constant volume. Calculate the work
done and heat absorbed.
[Ans. W = �111 J; Q = 943 J.]

5. An ideal elastic rod of length L and tension f has the equation of state

f = KT

✓
L

L0
� L

2
0

L2

◆

where K, L0 are constants. Show that the isothermal Young’s modulus E (defined
as the ratio of stress to strain: E = (�f/A)/(�L/L0) where A is a cross-sectional
area) is given by

E =
KT

A

✓
1 + 2

L
3
0

L3

◆

Calculate the work required to stretch the substance isothermally from L = L0 to
L = 2L0.
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6. (L) A thermally insulated chamber contains some hot gas and a lump of metal. Ini-
tially the gas and the lump at the same temperature Ti. The volume of the chamber
can be changed by moving a frictionless piston. Assuming the heat capacities of the
gas and the metal lump are comparable, sketch on one diagram the pressure-volume
relation for the system
(a) if the pressure is reduced to atmospheric pressure p0 slowly enough for the tem-
perature of the metal lump to be equal to that of the gas at all stages.
(b) if the pressure is reduced to p0 fast enough for the metal lump not to cool at
first (but the process is still quasistatic for the gas) after which the piston is further
moved so as to maintain the pressure at p0 until the metal lump and the gas attain
the same temperature.
Use the first law to explain whether or not the final volume will be the same in
these two processes. Explain which process finishes at the lower temperature. [Hint:
consider the work done and use the fact that internal energy is a function of state
for any given system.]

7. (L) A thermally insulated and evacuated chamber is placed in a room where the
pressure and temperature T0 are maintained constant. Gas leaks slowly into the
chamber through a small hole. Show that when the pressures are equalised, the
temperature of the air in the chamber is �T0, where � = Cp/Cv and you may
assume the heat capacities are independent of temperature. [Hint: imagine placing
a bag around the chamber, just large enough to enclose the chamber and all the gas
that finally ends up inside the chamber, and calculate the work done by the rest of
the atmosphere as this bag collapses.] Consider the case of argon gas (� = 5/3) at
50�C leaking into a flask made of tin. What happens to the flask?

2.2 Section B. Second law and entropy

(8.1, 8.2, 9.3–9.5, 9.9, 9.10)

1. Starting in some given state, a certain physical system absorbs some heat Q1 and
emits some heat Q2. The di↵erence between these two energies, Q = Q1 � Q2 is
used to perform some work W while the system returns to its starting state. Is it
physically possible to have W = Q, or is this ruled out by Kelvin’s statement of the
Second Law of thermodynamics? If this is not ruled out, then what, precisely, is
ruled out?

2. By the use of heat engine diagrams, or otherwise, prove that the Clausius statement
of the 2nd law is true if and only if the Kelvin statement is true.

3. A building is maintained at a temperature T by means of an ideal heat pump which
uses a river at temperature T0 as a source of heat. The heat pump consumes power
W , and the building loses heat to its surroundings at a rate ↵(T � T0). Show that
T is given by

T = T0 +
W

2↵

⇣
1 +

p
1 + 4↵T0/W

⌘
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4. A possible ideal-gas cycle operates as follows.
(i) from an initial state (p1, V1) the gas is cooled at constant pressure to (p1, V2).
(ii) the gas is heated at constant volume to (p2, V2).
(iii) the gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the thermal e�ciency is

1� �
(V1/V2)� 1

(p2/p1)� 1

5. A mug of tea has been left to cool from 90�C to 18�C. If there is 0.2 kg of tea in the
mug, and the tea has specific heat capacity 4200 J K�1 kg�1, show that the entropy
of the tea has decreased by 185.6 J K�1. Comment on the sign of this result.

6. Consider the inequality

dS � dQ

T
.

Is it possible for dS and dQ to have opposite signs? If it is, then give an example.

7. (L) Calculate the changes in entropy of the universe as a result of the following
processes:
(a) A copper block of mass 400 g and heat capacity 150 J K�1 at 100�C is placed
in a lake at 10�C
(b) The same block, now at 10�C, is dropped from a height 100 m into the lake.
(c) Two similar blocks at 100�C and 10�C are joined together. [Hint: first find the
final temperature, then reuse previous calculations]
(d) A capacitor of capacitance 1 µF is connected to a battery of e.m.f. 100 V at 0�C.
[To answer this you must think carefully about what happens when a capacitor is
charged from a battery.]
(e) The same capacitor after being charged to 100 V is discharged through a resistor
at 0�C.
(f) One mole of gas at 0�C is expanded reversibly and isothermally to twice its initial
volume.
(g) One mole of gas at 0�C is expanded reversibly and adiabatically to twice its
initial volume.

8. A system consists of two di↵erent volumes of ideal gas, either side of a fixed thermally
insulating partition. On one side there are 2 moles of gas at temperature T1i = 500K.
On the other side there are 4 moles of gas at temperature T2i = 200K. The molar
capacity at constant volume is CV,m = (3/2)R. (i) If the partition is made thermally
conducting, find the final temperature throughout the system when equilibrium is
attained, and find the net change in entropy of the complete system. (ii) Now return
to the initial conditions, and suppose the partition is made thermally conducting
again, but only for a short time, so that some heat transfer takes place, but not
enough to reach equilibrium, after which the thermal insulation is reinstated. Show
that the final temperatures on the two sides are related by

T1f + 2T2f = 900 kelvin

and find an expression for the net change in entropy �S as a function of T1f . Plot
�S on a graph as a function of T1f , and find where it reaches a maximum.
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3 Problem set 3. Thermodynamic potentials and methods

thermodynamic potentials, natural variables, Maxwell equations, chemical potential, fun-
damental relation, magnetism, surface tension (chapter 11, 12, 13, 14)

3.1 Section A. More practice

1. 1 kg of water is warmed from 20�C to 100�C (a) by placing it in contact with a
reservoir at 100�C, (b) by placing it first in contact with a reservoir at 50�C until it
reaches that temperature, and then in contact with the reservoir at 100�C, and (c)
by operating a reversible heat engine between it and the reservoir at 100�C. In each
case, what are the entropy changes of (i) the water, (ii) the reservoirs, and (iii) the
universe? (Assume the heat capacity of water is independent of temperature).

2. Two identical bodies of constant heat capacity Cp at temperatures T1 and T2 re-
spectively are used as reservoirs for a heat engine. If the bodies remain at constant
pressure, show that the amount of work obtainable is

W = Cp (T1 + T2 � 2Tf )

where Tf is the final temperature attained by both bodies. Show that if the most
e�cient engine is used, then T

2
f
= T1T2.

3. The temperature inside the engine of a crane is 2000� C, the temperature of the
exhaust gases is 900� C. The heat of combustion of petrol is 47 MJ/kg, and the
density of petrol is 0.8 g/cm3. What is the maximum height through which the
crane can raise a 10000 kg load by burning 0.1 litre of petrol? [Ans. 18.6 metres.]

4. The operation of a diesel engine can be modelled approximately by the following
cycle: (i) adiabatic compression from (p1, V1) to (p2, V2), (ii) heating at constant
pressure to (p2, V3), (iii) adiabatic expansion to (p4, V1), (iv) cooling at constant
volume back to (p1, V1). Sketch the cycle on a pV diagram. Find the e�ciency in
terms of the two compression ratios V1/V2 and V3/V2.

3.2 Section B. Potentials and Maxwell relations

(12.1, 13.2–13.5, 13.15)

1. In the absence of external fields, the chemical potential per particle in an ideal gas
can be written

µ = µ0(T ) + kBT ln
p

p0

where p0 is a constant and µ0(T ) is the value of µ at pressure p0 and temperature
T . In an ‘atom trap’ such a gas can be contained in a harmonic potential well
V (r) = ↵r

2, where ↵ is a constant and r is the distance from the centre of the well.
Using the chemical potential, or otherwise, show that under isothermal conditions
the number density profile is n = n0 exp(�↵r

2
/kBT ).
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2. A closed simple compressible system has work W done on it in a reversible process
without heat exchange. (i) By how much does the internal energy change? (ii) Is it
possible to tell, from the given information, the change in the Helmholtz function,
enthalpy, and Gibbs function? (iii) Suppose the work were done in conditions of
constant temperature. Now what can you say about U,F,H,G?

3. Derive all the Maxwell relations.

4. Sketch an isotherm and an adiabat passing through a given point p, V on the indi-
cator diagram for a gas. Hence show that more work energy can be extracted from
a gas in an isothermal expansion (between given volumes) than in an adiabatic one.
Where has the energy for this extra work come from?

5. Give an example of a physical process which can take place in a closed system at
constant pressure and temperature. What thermodynamic potential is unchanged
in such a process?

6. A piece of rubber of length L is subject to work by hydrostatic pressure and a
tensional force f .
(i) Construct an expression for dU .
(ii) Generate the potentials which have as proper variables (S,V,f) and (S,p,f)
(iii) Derive the Maxwell relation (first developing any potential you may need)

@S

@L

����
T,p

= � @f

@T

����
p,L

3.3 Section C. Applications (rod, surface, magnetization, solid)

(14.1, 14.3, 14.6)

1. Show that, for an elastic rod under tension f ,

@CL

@L

����
T

= �T
@
2
f

@T 2

����
L

(2)

where CL is the heat capacity at constant length.

2. The surface tension of liquid argon is given by � = �0(1�T/Tc)1.28 where �0 = 0.038
N/m and the critical temperature Tc = 151 K. Find the surface entropy per unit
area at the triple point, T = 83 K.
[Ans. 2.58⇥ 10�4 J/K]

3. (L) The susceptibility � of a paramagnetic substance is defined by M = �Hin where
M is the magnetization and Hin is the magnetic field inside the sample. For this
question assume weak magnetization, such that Hin ' H = B/µ0, where B is the
applied field. Many paramagnetic substances are described to good approximation
by the Curie-Weiss law:

� =
a

T � Tc
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where a and Tc are constants. When a sample is cooled by adiabatic demagnetization
from a high field B to a low field B0, the temperature falls from Ti to Tf . We would
like to show that these temperatures are related by

Tf � Tc

Ti � Tc

' B0

B
. (3)

To this end, consider the magnetic Helmholtz function F = U � ST . We have
dF = �SdT �mdB and it is useful to consider F (T,B). This can be written

F (T,B) = F (T, 0) +

Z
B

0

@F

@B

����
T

dB.

Use this to obtain F (T,B)� F (T, 0) and hence derive

S(T,B) = S(T, 0)� aV

2µ0

B
2

(T � Tc)2
.

The first term is the entropy at B = 0 for any given temperature. The second term
is the magnetic contribution. If we assume that the change in entropy is dominated
by the latter contribution, then for an adiabatic process obtain equation (3).

4. (L) A lump of sodium metal of volume 2⇥10�4m3 is located in a cylinder containing
a mole of argon gas at temperature 295K and pressure 104 Pa. Find the work done
on the gas, and on the sodium metal, (i) when the pressure is increased isothermally
to 107 Pa, and (ii) when, starting from the same initial conditions, the temperature
is increased isobarically to 360K. All processes may be considered reversible. [At
STP, the isothermal bulk modulus of sodium is BT = 6.18 ⇥ 109 Pa and the cubic
expansivity is ↵ = 2⇥ 10�4K�1.]
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PROBLEM SET 1: Basic Thermodynamics

Problem set 1 can be covered in one tutorial or class held during Week 5 of Michaelmas Term

Functions of two variables

1.1 In polar coordinates, x = r cos θ and y = r sin θ.

(a)The definition of x implies that

∂x

∂r
= cos θ =

x

r
. (1)

But we also have x2 + y2 = r2, so differentiating with respect to r gives

2x
∂x

∂r
= 2r =⇒ ∂x

∂r
=

r

x
. (2)

But equations (1) and (2) imply that
∂x

∂r
=

∂r

∂x
. What’s gone wrong?

(b) Show that (
∂x

∂r

)

y

(
∂r

∂y

)

x

(
∂y

∂x

)

r

= −1

Expansions, cycles and heat engines

1.2 Two thermally insulated cylinders, A and B, of equal volume, both equipped with pis-
tons, are connected by a valve. When open, the valve allows unrestricted flow. Initially
A has its piston fully withdrawn and contains a perfect monatomic gas at temperature
Ti, and B has its piston fully inserted, and the valve is closed. The thermal capacity
of the cylinders is to be ignored. The valve is fully opened and the gas slowly drawn
into B by pulling out the piston B; piston A remains stationary. Show that the final
temperature of the gas is Tf = Ti/22/3.

[For a monatomic ideal gas, γ = 5/3.]

1.3 A possible ideal-gas cycle operates as follows:
(i) From an initial state (p1, V1) the gas is cooled at constant pressure to (p1, V2);
(ii) The gas is heated at constant volume to (p2, V2);
(iii) The gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the thermal efficiency is

1− γ
(V1/V2)− 1

(p2/p1)− 1
.

(You may quote the fact that in an adiabatic change of an ideal gas, pV γ stays constant,
where γ = Cp/CV .)
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1.4 Show that the efficiency of the standard Otto cycle (shown above) is 1 − r1−γ, where
r = V1/V2 is the compression ratio.

1.5 An ideal gas is changed from an initial state (p1, V1, T1) to a final state (p2, V2, T2)
by the following quasi-static processes shown in the figure: (i) 1A2 (ii) 1B2 and (iii)
1C2. For each process, obtain the work that must be done on the system and the heat
that must be added in terms of the initial and final state variables, and hence show
that ∆U = CV (T2 − T1) independent of path. (Assume that the heat capacity CV is
constant.)

1.6 A building is maintained at a temperature T by means of an ideal heat pump which uses
a river at temperature T0 as a source of heat. The heat pump consumes power W , and
the building loses heat to its surroundings at a rate α(T − T0). Show that T is given by

T = T0 +
W

2α

(
1 +

√
1 + 4αT0/W

)
.
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Statistical and Thermal Physics

xford

hysics

Second year physics course: A1
Dr A. A. Schekochihin and Prof. A. T. Boothroyd

Problem Set 2

(A. T. Boothroyd)

Some useful constants

Boltzmann’s constant kB 1.3807× 10−23 JK−1

Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 Jmol−1 K−1

1 pascal (Pa) 1Nm−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105Nm−2



PROBLEM SET 2: Basic Thermodynamics

Problem set 2 can be attempted in Week 6 or 7 of Michaelmas Term. There is about one-and-
a-half tutorials or classes worth of material. The starred problem is more difficult.

Entropy Changes

2.1 In a free expansion of a perfect gas (also called a Joule expansion), we know U does not
change, and no work is done. However, the entropy must increase because the process
is irreversible. How are these statements compatible with dU = TdS − pdV ?

2.2 A mug of tea has been left to cool from 90◦C to 18◦C. If there is 0.2 kg of tea in the
mug, and the tea has specific heat capacity 4200 JK−1 kg−1, show that the entropy of
the tea has decreased by 185.7 JK−1. How is this result compatible with an increase in
entropy of the Universe?

2.3 Calculate the changes in entropy of the Universe as a result of the following processes:

(a) A copper block of mass 400 g and heat capacity 150 JK−1 at 100◦C is placed in a
lake at 10◦C;

(b) The same block, now at 10◦C, is dropped from a height of 100m into the lake;

(c) Two similar blocks at 100◦C and 10◦C are joined together (hint: save time by first
realising what the final temperature must be, given that all the heat lost by one block
is received by the other, and then re-use previous calculations);

(d) A capacitor of capacitance 1µF is connected to a battery of e.m.f. 100V at 0◦C.
(NB think carefully about what happens when a capacitor is charged from a battery.);

(e) The capacitor, after being charged to 100V, is discharged through a resistor at 0◦C;

(f) One mole of gas at 0◦C is expanded reversibly and isothermally to twice its initial
volume;

(g) One mole of gas at 0◦C is expanded adiabatically to twice its initial volume;

(h) The same expansion as in (f) is carried out by opening a valve to an evacuated
container of equal volume.

2.4 A block of lead of heat capacity 1 kJK−1 is cooled from 200K to 100K in two ways:

(a) It is plunged into a large liquid bath at 100K;

(b) The block is first cooled to 150K in one bath and then to 100K in another bath.

Calculate the entropy changes in the system consisting of block plus baths in cooling
from 200K to 100K in these two cases. Prove that in the limit of an infinite number of
intermediate baths the total entropy change is zero.

2.5 Two identical bodies of constant heat capacity Cp at temperatures T1 and T2 respectively
are used as reservoirs for a heat engine. If the bodies remain at constant pressure, show
that the amount of work obtainable is

W = Cp (T1 + T2 − 2Tf) ,
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where Tf is the final temperature attained by both bodies. Show that if the most
efficient engine is used, then T 2

f = T1T2. Calculate W for reservoirs containing 1 kg of
water initially at 100◦C and 0◦C, respectively. (Ans: 32.7 kJ.)
(Specific heat capacity of water = 4,200 JK−1 kg−1).

2.6∗ Three identical bodies are at temperatures 300K, 300K and 100K. If no work or heat is
supplied from outside, what is the highest temperature to which any one of these bodies
can be raised by the operation of heat engines?1

(Ans: 400K)

Thermodynamic potentials and calculus

2.7 [This question is just some bookwork practice and should only take a couple of minutes.]

(a) Using the first law dU = TdS−pdV to provide a reminder, write down the definitions
of the four thermodynamic potentials U , H, F , G for a simple p-V system (in terms of
U , S, T , p, V ), and give dU, dH, dF, dG in terms of T, S, p, V and their derivatives.
(b) Derive all the Maxwell relations.

2.8 (a) Derive the following general relations

(i)

(
∂T

∂V

)

U

= − 1

CV

[
T

(
∂p

∂T

)

V

− p

]

(ii)

(
∂T

∂V

)

S

= − 1

CV
T

(
∂p

∂T

)

V

(iii)

(
∂T

∂p

)

H

=
1

Cp

[
T

(
∂V

∂T

)

p

− V

]

In each case the quantity on the left hand side is the appropriate thing to consider for
a particular type of expansion. State what type of expansion each refers to.

(b) Using these relations, verify that for an ideal gas
(
∂T
∂V

)
U
= 0 and

(
∂T
∂p

)

H
= 0, and

that
(
∂T
∂V

)
S
leads to the familiar relation pV γ = constant along an isentrope.

2.9 Use the First Law of Thermodynamics to show that
(
∂U

∂V

)

T

=
Cp − CV

V βp
− p

where βp is the coefficient of volume expansivity and the other symbols have their usual
meanings.

1If you set this problem up correctly you may have to solve a cubic equation. This looks hard to solve but
in fact you can deduce one of the roots [hint: what is the highest temperature of the bodies if you do nothing
to connect them?]

3



Thermodynamics of non p–V systems

2.10 For a stretched rubber band, it is observed experimentally that the tension f is propor-
tional to the temperature T if the length L is held constant. Prove that:

(a) the internal energy U is a function of temperature only;

(b) adiabatic stretching of the band results in an increase in temperature;

(c) the band will contract if warmed while kept under constant tension.

[You may assume that
(

∂L
∂f

)

T
> 0.]

2.11 For a fixed surface area, the surface tension of water varies linearly with temperature from
75× 10−3Nm−1 at 5◦C to 70× 10−3Nm−1 at 35◦C. Calculate the surface contributions
to the entropy per unit area and the internal energy per unit area at 5◦C.

[Ans:
(
∂S
∂A

)
T
= 0.167× 10−3 JK−1m−2,

(
∂U
∂A

)
T
= 121.3× 10−3 Jm−2]

An atomizer produces water droplets of diameter 0.1µm. A cloud of droplets at 35◦C
coalesces to form a single drop of water of mass 1 g. Estimate the temperature of the
drop assuming no heat exchange with the surroundings. What is the increase in entropy
in this process? (Specific heat capacity of water cp = 4, 200 JK−1 kg−1.)

[Ans: ∆T = 1.73K, ∆S = 13.6× 10−3 JK−1]

2.12 The magnetization M of a paramagnetic material is given by M = χB/µ0, where B is
the magnetic flux density and the susceptibility χ follows Curie’s law χ = C/T with C
a constant.

If the heat capacity per unit volume at constant M is cM = a/T 2, show that the heat
capacity per unit volume at constant B is

cB =
a

T 2

(
1 +

B2C

µ0a

)
.

If a sample is initially at temperature T1 in an applied field of flux density B1, show that
the temperature after adiabatic reduction of the field to zero is

T2 =
T1

(
1 + B2

1C
µ0a

)1/2
.
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