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MT 0

Dimensional Analysis
(problems for the extracurricular lecture)

0.1 G. I. Taylor and the Bomb

In the early autumn of 1940, during some of the most desperate days of the Battle of
Britain, a Cambridge Professor of fluid dynamics G. I. Taylor was invited to lunch by
an Imperial College Professor and Nobel-prize winner George Thomson, who was then
chairman of the MAUD committee (MAUD = “Military Application of Uranium Deto-
nation”). G. I. Taylor was told that it might be possible to produce a bomb in which a
very large amount of energy would be released by nuclear fission (this was to become the
atomic bomb). The crucial question was what would be the mechanical effect of such an
explosion? G. I. Taylor’s subsequent solution of this problem may be the most famous
example of the application of dimensional analysis of all time. In this problem, you will
work through some of his calculation.

Let us simplify the problem by assuming that

— a finite amount of energy E is released instantaneously at a point (i.e., we will ignore
the radius r0 of the volume where the initial energy release occurs at time t = 0, it will
not be a relevant parameter);

— there results a spherically symmetric shock wave, with its front propagating according
to some law rf (t), where rf is the radius of the front.

Find rf (t) as a function of time t. Find also the velocity of the front uf (t) and the
pressure pf (t) in the surrounding air just outside the front. The density ρ0 of air before
the explosion is given. If you identify correctly what the governing parameters are (all
of them are mentioned above), you should be able to use dimensional analysis to work
out rf , uf and pf with only constant dimensionless prefactors left undetermined.

Based on the result you have obtained, will, in your opinion, making the bomb bigger
(say doubling its size) makes much of a difference?

If you did not know the energy of the explosion E (classified!), but had a movie of the
fireball, how would you estimate E? When the Americans tested the bomb and released
a series of high-speed photographs, G. I. Taylor estimated E and published the result,
which caused much embarassment in the American government circles. The high-speed
photos are reproduced below: can you come up with your own estimate?
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0.2 Poiseuille Flow

This example is also famous, and much more peaceful than the previous one. It was first
worked out experimentally by H. Hagen (1839) and J. L. M. Poiseuille (1840) (work-
ing independently of each other) and later theoretically explained by G. G. Stokes (1845).

Consider a pipe of length l and diameter d. A pressure drop between the ends of the
pipe, p1 − p2, is maintained to pump an incompressible fluid of viscosity µ through the
pipe. Find the volumetric flow rate Q, i.e., the volume of the fluid that passes through
any cross-section of the pipe per unit time.

If I double the diameter of the pipe, by what factor will Q change? What if I double
the pressure contrast? And what if I double viscosity? Does the answer make sense?
(Why does viscosity matter?) What if I double viscosity and cut the pipe length by half?

Hint. A judicious choice of governing parameters in this problem is d, µ and (p1− p2)/l
— the pressure drop per unit length (think about why that is).

Now find the velocity U at which the fluid flows through the pipe.

Why do you think the density of the fluid does not matter here? Under what conditions
would you expect it to start being an important parameter? (Think about the discussion
in the lectures — what is the dimensionless number that controls this?)

Further Reading

• P. W. Bridgman, Dimensional Analysis (there is a very cheap Amazon reprint of this
classic 1920 text — a bit dated, but still quite readable)

• G. I. Barenblatt, Scaling (this is quite advanced, but you can read the first couple of
chapters; this is the book from which I lifted the G. I. Taylor example — but don’t look
until you have attempted to solve it unaided! It also contains several other intesting
examples of dimensional analysis, including one giving important insights into rowing,
which you will find fascinating in the unlikely case that you are into that kind of thing,
despite being a Merton physicist — and if you are not into it, this will give you the
satisfying feeling that you know more of the physics of it than those who are)

• L. Landau and E. Lifshitz, Fluid Mechanics (Vol. 6 of their Course of Theoretical Physics,
all of the ten volumes of which every self-respecting physicist should keep on his/her desk
at all times; you will find there an account of some rather complicated issues that arise in
the Poiseuille problem at large Reynolds numbers; you can also read there how bubbles
rise, bodies move through fluid etc.)
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MT I

Calculus: Differentiation and Integration

1.1 From the definition of the derivative,

dy

dx
= lim

δx→0

{
y(x+ δx)− y(x)

δx

}
,

evaluate d(x2)/dx. In the same way evaluate d(sinx)/dx.

1.2 Differentiate

(a) y = sinx ex
3

,

(b) y = ex
3 sinx,

(c) y = ln

[
cosh

(
1

x

)]
,

(d) y = xcosx,

(e) y = log10(x
2),

(f) y = arccosx,

(g) y = arctanh

(
x

1 + x

)
.

1.3 Be fearless and differentiate

(i) y =
√
x2 + 1− ln

(
1

x
+

√
1 +

1

x2

)
, answer : y′ =

√
1 +

1

x2
,

(ii) y =
cosh(x2)

sinh2(x2)
− ln coth

(
x2

2

)
, answer : y′ = − 4x

sinh3(x2)
,

(iii) y = ln

√√
x4 + 1−

√
2x√

x4 + 1 +
√

2x
− arctan

√
2x√

x4 + 1
, answer : y′ = 2

√
2

√
x4 + 1

x4 − 1
.

Make sure you get the right answer (and if it does not come out right the first time,
don’t give up and try again).

1.4 (i) Find dy/dx as a function of x and y if

y ey lnx = x2 + y2. (1)

(ii) Find d2y/dx2 as a function of x and y if

ex−y = x+ y. (2)

(iii) A particle moves a distance x in time t where t = ax2 + bx+ c with a, b, c constants.
Prove that the acceleration is proportional to the cube of the velocity.
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1.5 (i) For y = sinh θ and x = cosh θ, find dy/dx and d2y/dx2.

(ii) For y = tm + t−m and x = t+ t−1 show that

(x2 − 4)

{
dy

dx

}2

= m2(y2 − 4), (x2 − 4)
d2y

dx2
+ x

dy

dx
−m2y = 0.

1.6 If xi is an approximation to a root of the equation f(x) = 0, Newton’s method of finding
a better approximation xi+1 is xi+1 = xi − f(xi)/f

′(xi), where f ′(x) = df/dx. Explain
this method graphically or otherwise (e.g., using a series expansion) in terms of the linear
approximation to f(x) near x = xi.

1.7 Use Taylor’s theorem to show that when h is small

(a) f ′(a) =
f(a+ h)− f(a− h)

2h
with an error O(h2f ′′′(a)).

(b) f ′′(a) =
f(a+ h)− 2f(a) + f(a− h)

h2
with an error O(h2f ′′′′(a)).

Taking f(x) = sinx, a = π/6, and h = π/180 find from (a) and (b) the approximate
values of f ′(a) and f ′′(a) and compare them to exact values.

(c) These finite-difference formulae are often used to calculate derivatives numerically.
How would you construct a more precise finite-difference approximation to f ′(a), namely,
an approximation with an error of order O(hn)?

1.8 The function I(x) is defined by I(x) =
∫ x
a
f(x′)dx′. Show graphically that dI(x)/dx =

f(x).

1.9 (a) Explain why

dx

dy
=

(
dy

dx

)−1
.

(b) Given that y is a function of x, show, by putting dy/dx = p, that

d2x

dy2
= −d2y

dx2

/(
dy

dx

)3

.

1.10 Given that

y = x+
x5

5
,

find dx/dy at y = 0 and at y = 6/5. Is the solution you have found in each case the
only solution?

1.11 (a) In the differential equation

x2
d2y

dx2
+ (4x+ 3x2)

dy

dx
+ (2 + 6x+ 2x2)y = x

replace the dependent variable y by z = yx2 to give

d2z

dx2
+ 3

dz

dx
+ 2z = x.
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(b) In the differential equation

4x
d2y

dx2
+ 2(1−

√
x)

dy

dx
− 6y = e3

√
x

replace the independent variable x by t =
√
x to give

d2y

dt2
− dy

dt
− 6y = e3t.

(These are equations with constant coefficients that you will soon be able to solve.)

1.12 Use Leibnitz’s theorem to find the 8th derivative of x2 sinx.

1.13 Evaluate

(a)

∫
(x+ a) dx

(1 + 2ax+ x2)3/2
,

(b)

∫ π/2

0

cosx esinxdx,

(c)

∫ π/2

0

cos3 x dx,

(d)

∫ 2

−2
|x | dx,

(e)

∫
dx

(3 + 2x− x2)1/2
(complete square first),

(f)

∫ π

0

dθ

5 + 3 cos θ

(
use t = tan

θ

2

)
,

(g)

∫
dx

x(1 + x2)
,

(h)

∫
x sinx dx,

(i)

∫
lnx dx (by parts),

(j)

∫
(cos5 x− cos3 x) dx,

(k)

∫
sin5 x cos4 x dx,

(l)

∫
sin2 x cos4 x dx,

(m)

∫ √
x2 − 9

x
dx,

(n)

∫
dx

x2
√

16− x2
.
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1.14 Derive general formulae for the integrals

In =

∫ ∞
0

dx xne−x
2

,

where n is a positive integer. You will find it opportune to consider odd and even n
separately and to know that ∫ ∞

−∞
dx e−x

2

=
√
π.

Notice that if we define

f(λ) ≡
∫ ∞
0

dx e−λx =
1

λ
,

then, for example, ∫ ∞
0

dx xe−λx = −f ′(1) = 1

and you can similarly find integrals of this sort with higher powers of x in the integrand.
Generalising this method to the integrals In above is not hard.

1.15 By sketching the integrand of the following integrals, determine which integrals vanish:

(i)

∫ ∞
−∞

xe−x
2

dx, (ii)

∫ π

−π
x sinx dx, (iii)

∫ π

−π
x2 sinx dx.

1.16 Prove that if f(x) is an odd function of x, then

∫ a

−a
f(x)dx = 0.

1.17 Given that lnx is defined by
∫ x
1
t−1dt, show that lnx+ ln y = lnxy.

Complex Numbers

1.18 For a) z1 = 1 + i, z2 = −3 + 2i and b) z1 = 2eiπ/4, z2 = e−3iπ/4 find

(i) z1 + z2, (ii) z1 − z2, (iii) z1z2, (iv) z1/z2, (v) |z1|, (vi) z∗1 .

1.19 For z = x+ iy find the real and imaginary parts of

(i) 2 + z; (ii) z2; (iii) z∗; (iv) 1/z; (v) |z|; (vi) i−5; (vii) (1 + i)2; (viii) (2 + 3i)/(1 + 6i);
(ix) eiπ/6 − e−iπ/6.

1.20 Find the modulus and argument of each of (i) R + iωL (ii) R + iωL + 1/iωC where R,
L, C are all real.

Hence find the modulus and argument of each of (iii) V0eiωt

R+iωL
(iv) V0eiωt

R+iωL+1/iωC
where

V0 is also real. Find also the real and imaginary parts of of (iii) and (iv). (These
manipulations are important in a.c. circuit theory, where ω is the angular frequency and
Z = E + iωL + 1/iωC is the complex impedance of a resistance R, inductance L and
capicitance C in series.)
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1.21 Change to polar form (z = reiθ)

(i) −i, (ii) 1
2
−
√
3i
2

, (iii) −3− 4i, (iv) 1 + i, (v) 1− i, (vi) (1 + i)/(1− i).

1.22 Draw in the complex plane

(i) 3− 2i, (ii) 4e−iπ/6, (iii) |z − 1| = 1, (iv) Re(z2) = 4, (v) z − z∗ = 5i,

(vi) z = teit (for real values of the parameter t),

(vii) arg(z + 3i) = π/4, (viii) |z + 1|+ |z − 1| = 8.

1.23 Find (i) (1 + 2i)7, (ii) (1− 2i)7/(1 + 2i)7.

1.24 Solve for all possible values of the real numbers x and y

(i) 2ix+ 3 = y − i, (ii) (x+ 2y + 3) + i(3x− y − 1) = 0, (iii) z2 = z∗2 (z = x+ iy),

(iv) |2x− 1 + iy| = x2 + iy.
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MT II

Calculus: Curves, Line Integrals, Series, Expansions, Limits

2.1 (a) Find the arc length of the curve y = coshx between x = 0 and x = 1.

(b) Find the arc length of the curve x = cos t, y = sin t for 0 < t < π/2.

(c) Find the surface area and volume of a sphere of radius R by treating it as obtained
by rotating the curve y =

√
R2 − x2 about the x-axis.

For (b) and (c) do you get the answers you expect?

2.2 Evaluate the following line integrals:

(a)
∫
C

(x2 + 2y)dx from (0,1) to (2,3) where C is the line y = x+ 1.

(b)
∫
C
xy dx from (0,4) to (4,0) where C is the circle x2 + y2 = 16

(c)
∫
C

(y2dx+xydy+ zxdz) from A = (0, 0, 0) to B = (1, 1, 1) where (i) C is the straight
line from A to B; (ii) C is the broken line from A to (0, 0, 1) and then from (0, 1, 1) to
B.

2.3 (a) Find an and bn for 1
4
− 1

8
+ 1

16
− · · · =

∑∞
n=1 an =

∑∞
n=0 bn. Sum the series.

(b) Write out the first few terms of the series

∞∑
n=1

(−1)n

n
.

What is this series equal to exactly?

(c) Squares and products of whole series can also occur, for example
(a1 + a2 + a3 + · · · )2 and (a1 + a2 + a3 + · · · )× (b1 + b2 + b3 + · · · ).
How would you write these in

∑
notation?

2.4 (a) Find by differentiation the expansion of each of the following functions in powers of
x up to and including terms in x3:

(i) ex, (ii)
√

(1 + x), (iii) tan−1 x.

(b) Obtain the value of sin 31o by expanding sin x to four terms about the point x = π/6.
How accurate is your answer?

2.5 (a) From the series for sinx and cos x show that

tanx = x+
x3

3
+

2x5

15
+ · · ·

(b) Using the power series for ey and ln(1 + x), find the first four terms in the series for
exp{(ln(1 + x)}, and comment on the result.
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2.6 Write down the power series expansion for x−1 sinx. Hence evaluate, to four significant

figures, the integral

∫ 1

0

x−1 sinx dx.

2.7 Find the following limits using power series expansion and asymptotic forms of functions
in various limts; convince yourself that this is the same as using L’Hôpital’s rule.

(a) lim
x→0

sinx

x
, lim

x→∞

sinx

x
,

(b) lim
x→0

1− cos2 x

x2
, lim

x→∞

1− cos2 x

x2
,

(c) lim
x→0

sinx− x
e−x − 1 + x

, lim
x→∞

sinx− x
e−x − 1 + x

,

(d) lim
x→−1

sin πx

1 + x
,

(e) lim
x→∞

2x cosx

1 + x
,

(f) lim
x→0

√
2 + x−

√
2

x
,

(g) lim
x→0

secx− cosx

sinx
,

(h) lim
x→π/2

(sinx)tanx.

Vectors & Matrices

Problem Set 1, Questions 1–7 (vectors, vector spaces), 8–16 (geometry).
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MT III

Calculus: Partial Derivatives, Sketching Functions

3.1 The acceleration of gravity can be found from the length l and period T of a pendulum;
the formula is g = 4π2l/T 2. Using the linear approximation, find the relative error in g
(i.e. ∆g/g) in the worst case if the relative error in l is 5 % and the relative error in T
is 2%.

3.2 (a) Find du/dt in two ways given that u = xnyn and x = cos at, y = sin at, where a, n
are constants.

(b) Find du/dx in two ways given that u = x2y + y−1 and y = lnx.

3.3 Given that w = exp(−x2− y2), x = r cos θ, y = r sin θ, find
∂w

∂r
and

∂w

∂θ
in two ways.

3.4 (a) The perfect gas law PV = RT , R is a constant, may be regarded as expressing
any one of the quantities pressure P , volume V or temperature T of a perfect gas as a
function of the other two. Verify explicitly that(

∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −1 and

(
∂P

∂V

)
T

= 1

/(
∂V

∂P

)
T

.

(b) Show that these relations hold whatever the relation f(P, V, T ) = 0 between P, V
and T .

3.5 (a) Find ∂f/∂x for

(i) f = (x2 + y2)1/2, (ii) f = arctan
(y
x

)
, (iii) f = yx.

(b) Verify that fxy = fyx for

(i) f = (x2 + y2) sin(x+ y), (ii) f = xmyn.

(c) The function f(x, y) is such that fxy = 0. Find the most general forms for fx and fy
and deduce that f has the form f(x, y) = F (x) + G(y), where the functions F and G
are arbitrary.

(d) If V = f(x− ct) + g(x+ ct), where c is a constant, prove that

Vxx −
1

c2
Vtt = 0.

12



3.6 A variable z may be expressed either as a function of (u, v) or of (x, y), where u = x2+y2,
and v = 2xy.

(a) Find

(
∂z

∂x

)
y

in terms of

(
∂z

∂u

)
v

and

(
∂z

∂v

)
u

.

(b) Find

(
∂z

∂u

)
v

in terms of

(
∂z

∂x

)
y

and

(
∂z

∂y

)
x

.

(c) Express

(
∂z

∂u

)
v

−
(
∂z

∂v

)
u

in terms of

(
∂z

∂x

)
y

and

(
∂z

∂y

)
x

.

(d) Verify your expression explicitly in the case z = u+ v.

3.7 Sketch the following functions. Are they (i) continuous, (ii) differentiable, throughout
the domain −1 ≤ x ≤ 1?

(a) f(x) = 0 for x ≤ 0, f(x) = x for x > 0,

(b) f(x) = 0 for x ≤ 0, f(x) = x2 for x > 0,

(c) f(x) = 0 for x ≤ 0, f(x) = cos x for x > 0,

(d) f(x) = |x|.

3.8 Sketch the graph of

f(x) = e−x + 2x, x ≥ 0; f(x) = ex, x < 0

and sketch its 1st, 2nd and 3rd derivatives. Show that the third derivative is discontin-
uous at x = 0.

3.9 (a) Sketch (in three dimensions) and (b) draw a contour map of the surfaces

(i) z = (4− x2 − y2)1/2,
(ii) z = 1− 2(x2 + y2),

(iii) z = xy,

(iv) z = x2 − y2.

Complex Numbers

3.10 Write the following in the form a+ ib, where a and b are real:

(i) ei, (ii)
√

i, (iii) ln i, (iv) cos i, (v) sin i, (vi) ln(−e),

(vii) ln 1
2
(
√

3 + i), (viii) (1 + i)iy, (ix) e3 ln 2−iπ, (x) cos(π − 2i ln 3), (xi) arctan(
√

3i),

(xii) sinh(x+ iy), (xiii) tanh(x+ iy).

(Note i = eiπ/2)

3.11 Sketch the curves C1 and C2 in the Argand diagram for z defined respectively by arg[(z−
4)/(z − 1)] = π/2 and arg[(z − 4)/(z − 1)] = 3π/2.
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3.12 Show that
∞∑
n=0

2−n cosnθ =
1− 1

2
cos θ

5
4
− cos θ

.

3.13 Prove that

n∑
r=1

(
n
r

)
sin 2rθ = 2n sinnθ cosn θ where

(
n
r

)
≡ n!

(n− r)!r!
.

[Hint: express the left side as Im

(∑(
n
r

)
ei2rθ

)
.]

Complex Numbers: Roots

3.14 Find all the values of the following roots

(i) 4

√
−1−

√
3i

2
,

(ii) (−8i)2/3,

(iii) 8
√

16.

3.15 Solve the equation z4 = −4i.

3.16 Find the 5th roots of unity and plot them on an Argand diagram. What is the sum of
the roots? What is the sum of n roots of any complex number?

3.17 By considering the roots of z2n+1 + 1 = 0, with n a positive integer, show that

n∑
k=−n

cos

(
2k + 1

2n+ 1
π

)
= 0.

3.18 Show that the equation with the four roots z = 1
2
(±
√

3± i) is z4 − z2 + 1 = 0.

3.19 Show that the equation (z + i)n − (z − i)n = 0 has roots z = cot(rπ/n), where r =
1, 2, . . . , n− 1.

3.20 Find the roots of the equation (z − 1)n + (z + 1)n = 0. Hence solve the equation
x3 + 15x2 + 15x+ 1 = 0.

3.21 Prove that the sum and product of the roots, xi, of the polynomial anx
n+ · · ·+a0 satisfy∑

xi = −an−1/an and
∏
xi = (−1)na0/an. Hence find the sum and the product of the

roots of P = x3−6x2 + 11x−6. Show that x = 1 is a root and by writing P = (x−1)Q,
where Q is a quadratic, find the other two roots. Verify that the roots have the expected
sum and product.
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MT IV

Calculus

4.1 Expand f(x, y) = exy to second order around the point x = 2, y = 3.

4.2 Find the position and nature of the stationary points of the following functions and
sketch rough contour graphs in each case.

(i) f(x, y) = x2 + y2, (ii) f(x, y) = x3 + y3 − 2(x2 + y2) + 3xy,

(iii) f(x, y) = sinx sin y sin(x+ y), 0 < x < π/2; 0 < y < π/2.

4.3 (a) Which of the following are exact differentials? For those that are exact, find f .

(i) df = x dy + y dx, (ii) df = x dy − y dx, (iii) df = x dx+ y dy + z dz.

(b) What is the value of
∮
x dy + y dx around the curve x4 + y4 = 1?

4.4 For the function
y = cos(a cos−1 x)

show that
(1− x2)y′′ − xy′ + a2y = 0 (1)

where a is a constant.

Use Leibnitz’ theorem to differentiate (1) n times and then put x = 0 to show that for
n ≥ 0

y(n+2)(0) = (n2 − a2)y(n)(0)

where y(n)(0) is the nth derivative of y(x) evaluated at x = 0.

Use this result to obtain a terminating power series expansion for y = cos(3 cos−1 x) in
terms of x. Verify that your solution solves (1).

Vectors & Matrices

Problem Set 2, Questions 1–7 (matrices, linear maps), 8–12 (linear equations).
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MT V

1st-Order ODEs

5.1 State the order of the following differential equations and whether they are linear or

non-linear : (i)
d2y

dx2
+ k2y = f(x); (ii)

d2y

dx2
+ 2y

dy

dx
= sinx; (iii)

dy

dx
+ y2 = yx.

5.2 Solve the following differential equations using the method stated:

(a) Separable (i) dy
dx

= xey/(1 + x2), y = 0 at x = 0. (ii) dx
dt

= (2tx2 + t)/t2x− x)

(b) Almost separable dy
dx

= 2(2x+ y)2

(c) Homogeneous 2dy
dx

= (xy + y2)/x2

(d) Homogeneous but for constants dy
dx

= (x+ y − 1)/(x− y − 2)

(e) Integrating Factor (i)dy
dx

+ y/x = 3, x = 0 at y = 0. (ii) dx
dt

+ x cos t = sin 2t

(f) Bernoulli dy
dx

+ y = xy2/3.

5.3 Solve the following first order differential equations :

(i)
dy

dx
=
x− y cosx

sinx

(ii) (3x+ x2)
dy

dx
= 5y − 8

(iii)
dy

dx
+

2x

y
= 3

(iv)
dy

dx
+ y/x = 2x3/2y1/2

(v) 2
dy

dx
=
y

x
+
y3

x3

(vi) xy
dy

dx
− y2 = (x+ y)2e−y/x

(vii) x(x− 1)
dy

dx
+ y = x(x− 1)2

(viii) 2x
dy

dx
− y = x2

(ix)
dx

dt
= cos(x+ t), x = π/2 at t = 0

(x)
dy

dx
=

x− y
x− y + 1

(xi)
dx

dy
= cos 2y − x cot y, x = 1/2 at y = π/2

(x)
dx

dt
=

2tx2 + t

t2x− x
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5.4 By introducing a new variable Y = (4y− x), or otherwise, find the solution of the o.d.e.

dy

dx
− 16y2 + 8xy = x2.

Check your answer:

y =
x

4
− 1

8
tanh(2x+ C),

where C is an artbitrary constant.

5.5 Solve the o.d.e.
dy

dx
=

(3x2 + 2xy + y2) sinx− (6x+ 2y) cosx

(2x+ 2y) cosx
.

[Hint: look for a function f(x, y) whose differential df gives the o.d.e.]

5.6 The equation
dy

dx
+ ky = yn sinx,

where k and n are constants, is linear and homogeneous for n = 1. State a property of
the solutions to this equation for n = 1 that is not true for n 6= 1.

Solve the equation for n 6= 1 by making the substitution z = y1−n.

2nd-Order Linear, Homogeneous ODEs

5.7 Solve the following differential equations

(a) y′′ + 2y′ − 15y = 0,

(b) y′′ − 6y′ + 9y = 0, where y = 0 and y′ = 1 at x = 0,

(c) y′′− 4y′+ 13y = 0 (write the solution in terms of complex exponentials and in terms
of sines and cosines),

(d) y′′ + k2y = 0 (write the general solution in terms of complex exponentials and in
terms of sines and cosines; is it possible to find a solution with y = 0 at x = 0 and
x = L? for which values of k?),

(e) y′′′ + 7y′′ + 7y′ − 15y = 0.

5.8 A damped harmonic oscillator is displaced by a distance x0 and released at time t = 0.
Show that the subsequent motion is described by the differential equation

m
d2x

dt2
+mγ

dx

dt
+mω2

0x = 0 with x = x0,
dx

dt
= 0 at t = 0,

explaining the physical meaning of the parameters m, γ and ω0.

(a) Find and sketch solutions for (i) overdamping, (ii) critical damping, and (iii) under-
damping. (iv) What happens for γ = 0?

(b) For a lightly damped oscillator, the quality factor, or Q-factor, is defined as

Q =
energy stored

energy lost per radian of oscillation
. (3)

Show that Q = ω0/γ.
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MT VI

2nd-Order ODEs

6.1 Find the general solutions of

(a) 5y′′ + 2y′ + y = 2x+ 3, y = −1, y′ = 0 at x = 0,

(b) y′′ − y′ − 2y = e2x,

(c) 4y′′ − 4y′ + y = 8ex/2, y = 0, y′ = 1 at x = 0,

(d) y′′ + 3y′ + 2y = xe−x,

(e) y′′ − 4y′ + 3y = 10 cos x,

(f) x′′ + 4x = t+ cos 2t, x = 0 at t = 0,

(g) y′′ − 2y′ + 2y = ex(1 + sin x), y = 0 at x = 0 and x =
π

2
,

(h) y′′ + 2y′ + y = 2e−x + x3 + 2 cosx,

(i) y′′ − 2y′ + y = 3ex, y = 3, y′ = 0 at x = 0,

(j) 1 + yy′′ + (y′)2 = 0,

(k) x2y′′ + xy′ + y = x.

6.2 Consider the differential equation

x(x+ 1)y′′ + (2− x2)y′ − (2 + x)y = (x+ 1)2.

(a) One of its homogeneous solutions is y1(x) = 1/x. Find the general solution. Use the
“variation of prameters” method, i.e., seek solutions in the form y(x) = ψ(x)y1(x).

(b) Now pretend that you do not know that 1/x is a homogeneous solution, but know
the second homogeneous solution, y2(x), that you found in (a) (in fact if you stare at
the equation for a few minutes, you will see that you could have guessed that solution).
Use the knowledge of y2(x) to find both y1(x) and the general solution of the equation.

6.3 Consider the differential equation

9xy′′ + (6 + x)y′ + λy = 0.

There are several values of λ for which this can be solved via reduction to a 1st-order
equation. For at least one of them, it is possible to find a solution that

(i) vanishes at both positive and negative infinities: y(x→ ±∞)→ 0,

(ii) is continuous at x = 0.

Experiment with solutions corresponding to various tractable values of λ and find one
for which the above two properties can be satisfied. The solution you find is likely to be

y = const e−x/9
∫ x

−∞
dz

ez/9

|z|2/3
.

Vectors & Matrices

Problem Set 3, Questions 1–5 (determinants).
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MT VII

2nd-Order Inhomogeneous ODEs and Forced Oscillators

7.1 Solve the differential equation

d2y

dx2
− 2

dy

dx
+ (β2 + 1)y = ex sin2 x

for general values of the real parameter β. Explain why this solution fails for β = 0 and
β = 2 and find solutions for these values of β.

7.2 When a varying couple I cosnt is applied to a torsional pendulum with natural period
2π/m and the moment of inertia I, the angle of the pendulum satisfies the equation of
motion

θ̈ +m2θ = cosnt.

The couple is first applied at t = 0 when the pendulum is at rest in equilibrium. Show
that, in the subsequent motion, the root-mean-square angular displacement is 1/|m2−n2|
when the average is taken over a time large compared with 1/|m−n|. Discuss the motion
in the limit |m− n| → 0.

7.3 Consider a damped oscillator subject to an oscillatory driving force:

m
d2x

dt2
+mγ

dx

dt
+mω2

0x = F cosωt.

(a) Explain what is meant by the steady-state solution of this equation, and calculate
the steady state solution for the displacement x(t) and the velocity ẋ(t).

(b) Sketch the amplitude and phase of x(t) and ẋ(t) as a function of ω.

(c) Determine the resonant frequency for both the displacement and the velocity.

(d) Defining ∆ω as the full width at half maximum of the resonance peak, calculate
∆ω/ω0 to leading order in γ/ω0.

(e) For a lightly damped, driven oscillator near resonance, calculate the energy stored
and the power supplied to the system. Confirm that the Q-factor (defined in the previous
question), is Q = ω0/γ. How is Q related to the width of the resonance peak?

7.4 (a) A mass m is constrained to move in a straight line and is attached to a spring of
strength λ2m and a dashpot which produces a retarding force −αmv, where v is the
velocity of the mass. Find the displacement of the mass as a function of time when an
amplitude-modulated periodic force Am cos pt sinωt with p � ω and α � ω is applied
to it.

(b) Show that for ω = λ at times t� 1/α, the displacement is an amplitude-modulated
wave:

x = −Acosωt sin(pt+ φ)√
4ω2p2 + α2ω2

, where tanφ =
α

2p
.
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Coupled ODEs

7.5 Solve the simultaneous differential equations

dy

dx
+ 2

dz

dx
+ 4y + 10z − 2 = 0 (4)

dy

dx
+

dz

dx
+ y − z + 3 = 0 (5)

where y = 0 and z = −2 when x = 0.

7.6 Solve the differential equations

2
d2y

dx2
− 3

dy

dx
+ 2

dz

dx
+ 3y + z = e2x (6)

d2y

dx2
− 3

dy

dx
+

dz

dx
+ 2y − z = 0. (7)

Is it possible to have a solution to these equations for which y = z = 0 when x = 0?

Vectors & Matrices

Problem Set 3, Questions 6–10 (scalar products)

In Question 6, the three polynomials that you are asked to deal with are the first three of an
infinite set called Hermite polynomials. The m-th order Hermite polynomial can be generated
by the following formula:

Hm(x) = (−1)mex
2 dm

dxm
e−x

2

.

(a) Convince yourself that these are indeed m-th order polynomials.

(b) Figure out how to prove that they form an orthogonal set of functions, namely that their
scalar product is

〈Hm, Hn〉 =

∫ +∞

−∞
dx e−x

2

Hm(x)Hn(x) = 2mm!
√
π δm,n.

NB: You are unlikely to be able to figure this out entirely on your own, so this is an exercise
if finding things out, using the broad range of resources that are available to you.

(c) With the above result in hand, prove that the Hermite polynomials form a complete set,
i.e., for any real, continuous function f(x) : R→ R, find an infinite set of coefficients fm such
that

f(x) =
∞∑
m=0

fmHm(x).
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MT VIII (Vacation Work)

Calculus

8.1 By finding their stationary points and examining their general forms, determine the
range of values that each of the following functions can take. In each case, make a
sketch graph incorporating the features you have identified.

(a) y(x) =
x− 1

x2 + 2x+ 6
,

(b) y(x) =
1

4 + 3x− x2
,

(c) y(x) =
8 sinx

15 + 8 tan2 x
.

8.2 Expand [ln(1 + x)]2 in powers of x as far as x4. Hence determine:

(a) whether cos 2x + [ln(1 + x)]2 has a maximum, minimum or point of inflection at
x = 0,

(b) whether
[ln(1 + x)]2

x(1− cosx)

has a finite limit as x→ 0 and, if so, its value.

8.3 Spherical polar coordinates (r, θ, φ) are defined in terms of Cartesian coordinates (x, y, z)
by

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

(a) Find (∂x/∂r), treating x as a function of the spherical polar coordinates, and (∂r/∂x)
treating r as a function of the Cartesian coordinates.

(b) Given that f is a function of r only, independent of θ and φ, show that

∂f

∂x
=
x

r

df

dr
, (8)

∂2f

∂x2
=

1

r

df

dr
+
x2

r

d

dr

(
1

r

df

dr

)
, (9)

and hence deduce that

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

1

r2
d

dr

(
r2

df

dr

)
.

21



Complex Numbers

8.4 (a) Obtain and sketch the locus in the complex plane defined by Re(z−1) = 1. On the
same picture, sketch the locus defined by Im(z−1) = 1. At what angle do these loci
intersect one another? Show that the unit circle touches both loci but crosses neither of
them.

(b) Make a sketch of the complex plane showing a typical pair of complex numbers z1
and z2 that satisfy the equations

z2 − z1 = (z1 − a)e2πi/3

a− z2 = (z2 − z1)e2πi/3,

where a is a real positive constant. Describe the geometrical figures whose vertices are
z1, z2 and a.

8.5 The polynomial f(z) is defined by

f(z) = z5 − 6z4 + 15z3 − 34z2 + 36z − 48.

Show that the equation f(z) = 0 has two purely imaginary roots. Hence, or otherwise,
factorize f(z), and find all of its roots. Check that the sum and product of the roots
take the expected values.

8.6 Show that the equation
(z + 1)n − e2inθ(z − 1)n = 0

has roots z = −i cot(θ + rπ/n), with r = 0, . . . , n− 1. Hence show that

n∏
r=1

cot
(
θ +

rπ

n

)
=

{
(−1)n/2, for n even,

(−1)(n−1)/2 cotnθ, for n odd.

8.7 Find all the roots, real and complex, of the equation z3 − 1 = 0. If ω is one of the
complex roots, prove that 1 + ω + ω2 = 0. Find the sums of the following series:

S1 = 1 +
x3

3!
+
x6

6!
+ . . . , S2 = x+

x4

4!
+
x7

7!
+ . . . , S3 =

x2

2!
+
x5

5!
+
x8

8!
+ . . .
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ODEs

8.8 Consider the differential equation

y′′ − 3y′ + 2y = f(x).

What is its particular solution for

f(x) = (a) x2,

(b) e4x,

(c) ex,

(d) sinhx,

(e) sinx,

(f) x sinx,

(g) e2x + cos2 x.

8.9 Verify that y = x+ 1 is a solution of

(x2 − 1)
d2y

dx2
+ (x+ 1)

dy

dx
− y = 0.

Hence find the general solution of this equation. Answer:

y = C1(x+ 1) + C2

[
1

4
(x+ 1) ln

x− 1

x+ 1
+

1

2

]
.

where C1 and C2 are arbitrary constants.

8.10 Find a continuous solution with continuous first derivative of the system

d2y

dx2
+ 2

dy

dx
+ 2y = sinx+ f(x)

subject to y(−1
2
π) = y(π) = 0, where

f(x) =

{
0 x ≤ 0
x2 x > 0

[Hint: obtain a general solution for each of the cases x < 0 and x > 0 and then obtain
relations between your four arbitrary constants by making the solutions agree at x = 0.]

8.11 An alternating voltage V = V0 sinωt is applied to the circuit below.
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The following equations may be derived from Kirchhoff’s laws:

I2R +
Q

C
= V, (10)

L
dI1
dt

= I2R, (11)

dQ

dt
= I1 + I2, (12)

(13)

where Q is the charge on the capacitor.

Derive a second-order differential equation for I1, and hence obtain the steady state
solution for I1 after transients have decayed away.

Determine the angular frequency ω at which I1 is in phase with V , and obtain expressions
for the amplitudes of I1 and I2 at this frequency.

Suppose now that the switch S is closed and the voltage supply removed when I1 is at
its maximum value. Obtain the solution for the subsequent variation of I1 with time for
the case L = 4CR2, and sketch the form of your solution.

8.12 (a) Prove that
d2θ

dt2
=

1

2

du

dθ
,

where u = (dθ/dt)2.

(b) A simple pendulum with damping proportional to the square of its velocity is de-
scribed by the equation

2
d2θ

dt2
+ k

(
dθ

dt

)2

= −λ sin θ,
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where θ is the angular displacement from the downwards vertical, and k and λ are
constants. By writing this equation in terms of the variable u, or otherwise, obtain an
expression for the square of the angular velocity of the pendulum as a function of θ.

(c) The pendulum is given an initial angular velocity ω0 at its equilibrium position θ = 0.
Show that it will reach the horizontal if

ω2
0 =

λ

1 + k2
(
kekπ/2 + 1

)
.

8.13 A particle of unit mass is acted on by a constant force represented by the vector a and
by a retarding force proportional to its velocity. The equation of motion is

d2r

dt2
= a− γdr

dt

where γ > 0 is a constant. At time t = 0 r = r0 and dr/dt = v0.

(i) Show that d[a× (γr + dr/dt)]/dt = 0.

(ii) Find the differential equation satisfied by s = a · r and solve it.

(iii) Sketch s and ds/dt as a function of time t for the case r0 = 0 and a · v0 = 0.

8.14 Let a be a vector depending on time t, and Ω is a constant vector. The vector a obeys
the equation of motion

da

dt
= Ω× a.

(i) Show that a · da/dt = 0. Write down, in words, what this equation implies about
the motion of a.

(ii) Show that da2/dt = 0, and that d(a ·Ω)/dt = 0. What do these equations tell us
about the motion of a.

(iii) On the basis of the information provided by the points (i) and (ii), sketch a possible
motion of a.

(iv) How many initial conditions are required to get a unique solution for a?

(v) Now consider the particular case Ω = Ωk and a = axi + ayj + azk. Show that
ȧx = −Ωay, ȧy = Ωax, and ȧz = 0. Find a(t) for a(0) = (1, 1, 1) and describe the
motion of a(t) as time varies.
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Vectors & Matrices

Problem Set 4, Questions 1–9 (eigenvectors & eigenvalues).

Further (Optional) Revision

1) We have used the set of V&M questions associated with Prof Lukas’s course, which started
in 2013. Download Merton Maths problem sets from before that time and solve all the old
V&M questions. This way you will know that you can still do all those things that previous
generations learned to do. We will not mark this part of the Vacation Work, but please bring
to the tutes in HT all the questions/issues you have identified with your understanding of the
subject (or contact graduate mentors).

The questions are (using the numbering scheme from the old problem sets):
MT-III 7-12, MT-IV 8-10, MT-V 5-8, MT-VI 1-9, MT-VII 1-17, MT-VIII 3-7.

2) Rise to Prof Lukas’s “Vacation Challenge.”

3) We have used Merton’s own problem sets for Calculus, Complex Numbers and ODEs.
Download the departmental problem sets proposed by your lecturers and go through anything
there that has not been included in the Merton sheets. Again, this will not be marked, but
any difficulties you might have can be dealt with in tutes or by graduate mentors.
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