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1.1

1.2

1.3

1.4

1.5

Vector Calculus

Two circles have equations:

(i) 2% + y* + 2ax + 2by + ¢ = 0;

(i) 2% + 92 + 2a’z + 2b'y + ¢ = 0.

Show that these circles are orthogonal if 2aa’ + 2bb' = ¢ + .

Find the equation for the tangent plane to the surface 222? — 3xy —4x = 7 at (1, —1,2).
Multiple Integrals: 2D

(a) For the following integrals sketch the region of integration and so write equivalent
integrals with the order of integration reversed. Evaluate the integrals both ways.

V2 2 4 vz 1 y?
/ dy/ dry, / dx/ dyyvz , / dy/ dro.
0 y? 0 0 0 —y

(b) Reverse the order of integration and hence evaluate:

/”dy/”dxsinx .
0 Y x

[This is the same as A. Lukas’ Problem Set III: Question 1]

//exp 2? +y*)|dxdy

over the area of a circle with centre (0,0) and radius a. By letting a tend to oo, evaluate

& 2
/ e “dx.
— 00

(a) A mass distribution in the positive = region of the zy-plane and in the shape of a
semi-circle of radius a, centred on the origin, has mass per unit area k. Find, using plane
polar coordinates,

(i) its mass M,

(ii) the coordinates (7,7) of its centre of mass,

(iii) its moments of inertia about the z and y axes.
(

Evaluate

b) Do as above for a semi-infinite sheet with mass per unit area

x? + y2
a2

0=k‘exp<— ) for >0, c=0 for z<0,

where a is a constant. Comment on the comparisons between the two sets of answers.

Note that the result of Q1.4 will be useful in the evaluation of the required integrals.
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1.6 Evaluate the following integral:
C Ve y
dy dz (z* + y°) arctan = .
0 0 Z

[This is the same as A. Lukas’ Problem Set III: Question 2(a)]

1.7 The pair of variables (z,y) are each functions of the pair of variables (u,v) and wvice
versa. Consider the matrices

Jr Oz Ou  Odu

ou v ox Oy
A= and B =

oy oy o0 o

ou Ov oxr Oy

(a) Show using the chain rule that the product AB of these two matrices equals the unit
matrix /.

(b) Verify this property explicitly for the case in which (x,y) are Cartesian coordinates
and u and v are the polar coordinates (r,0).

(c¢) Assuming the result that the determinant of a matrix and the determinant of its
inverse are reciprocals, deduce the relation between the Jacobians

O(u,v) Oudv Oudv d(x,y) Oxdy 0xdy
d(z,y)  0O0xdy Oyox O(u,v)  Oudv Ovou’

1.8 (a) Using the change of variable z +y = u,  — y = v, evaluate the double integral
ffR(x2 +4?) daedy, where R is the region bounded by the straight lines y = z, y = z + 2,
y=—zand y=—x+ 2.

[This is similar to A. Lukas’ Problem Set III: Question 2(b)]
(b) Given that v = zy and v = y/x, show that d(u,v)/d(z,y) = 2y/x. Hence evaluate

the integral
// exp(—zy) dzdy

over the region x > 0,y >0, 2y <1, 1/2 <y/x <2.
[This is the same as A. Lukas’ Problem Set III: Question 2(c)]

Normal Modes

1.9 ODE Problem Set 6: Question 6.1

1.10 ODE Problem Set 6: Question 6.2



HT 11

Multivariate Calculus

2.1 A. Lukas’ Problem Set I: Question 1 (gradients)

2.2 A. Lukas’ Problem Set I: Question 2 (radius function)

2.3 A. Lukas’ Problem Set I: Question 4 (cylindrical coordinates)
(

2.4 A. Lukas’ Problem Set I: Question 6 (stationary points)
Multiple Integrals: 3D

2.5 A solid hemisphere of uniform density k occupies the volume 2 + y? + 22 < a2, 2 > 0.
Using symmetry arguments wherever possible, find
(i) its total mass M,
(ii) the position (7,7, Z) of its centre of mass,

I

(iii) its moments and products of inertia, I,,, I yzs Lo, Where

yy»

[ZZ7 I

Y

I, = /k: (2% +y?) dV, I, = /k xy dV, etc.
Probabilities

2.6 If X is a continuous random variable with probability density function (PDF) f(z) =
ce”* for x > 0 and zero otherwise,

(a) find ¢;
(b) find the cumulative distribution function F'(z);
(c) find P(1 < X < 3).
2.7 Let X and Y be two jointly continuous random variables with a joint PDF f(z,y) = ca?y
for 0 <y < x <1 and zero otherwise.
(a) Sketch the region in the (z,y) plane for which the PDF is non-zero.
(b) Find c.
(c) Find the marginal PDFs fx(z) and fy(y).
(d) Find P(Y < X/2).



2.8

2.9

2.10

2.11

2.12

2.13

Line Integrals

A vector field A(r) is defined by its components (4x — y?*, —4xy> — 3y?,4). Evaluate the
line integral [A -dl between the points with position vectors (0,0,0) and (1,2, 0) along
the following paths

(a) the straight line from (0, 0,0) to (1,2,0);

(b) on the path of straight lines joining (0,0,0), (0,0,1), (1,0,1), (1,2,1) and (1,2,0)
in turn.

Show that A is conservative by finding a scalar function ¢(r) such that A = V.

A vector field A(r) is defined by its components (322 + 6y, —14yz, 2022?). Evaluate the
line integral [A -dl from (0,0,0) to (1,1,1) along the following paths
(@)z=ty=t*z2=1;

(b) on the path of straight lines joining (0,0,0), (1,0,0), (1,1,0), and (1,1, 1) in turn;
(c) the straight line joining the two points.

Is A conservative?

If ¢ = 2z2y2% F = (2y,—2,2%) and C is the curve x = t*, y = 2t, z = 3 from ¢t = 0 to
t = 1, evaluate the line integrals:

(a) [, odr;
(b) J,F x dr.

Surface Integrals
Show that under certain circumstances the area of a curved surface can be expressed in

the form
A A
1 huted hted
//\/ * (ax) * (ay) drdy.

where the integral is taken over the plane z = 0.

Sketch the surface 22 = 2zy and find the area of the part of it that lies inside the
hemisphere 22 + y* + 22 =1, 2 > 0.

Show that the surface area of the curved portion of the hemisphere in Question 2.5 is
2ma® by

(i) directly integrating the element of area a? sin #dfd¢ over the surface of the hemisphere.

(ii) projecting onto an integral taken over the zy plane.

(a) Find the area of the plane x — 2y + 5z = 13 cut out by the cylinder 2% + y* = 9.

(b) A uniform lamina is made of that part of the plane x + y + z = 1 which lies in the
first octant. Find by integration its area and also its centre of mass. Use geometrical
arguments to check your result for the area.



2.14 Calculate the solid angle of a cone of half-angle «.

2.15 Calculate the area of a unit sphere in n dimensions. Check that your answer is 27 for
n = 2 and 47 for n = 3.

Hint. Calculate the Gaussian integral [--- [dz;...dz, exp[—(ai+---422)] in Cartesian
and in polar coordinates.

Normal Modes

2.16 ODE Problem Set 6: Question 6.3

2.17 ODE Problem Set 6: Question 6.4



HT III

3.1
3.2
3.3
3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Multivariate Calculus

A. Lukas’ Problem Set II: Question 1 (vector identities)
A. Lukas’ Problem Set II: Question 2 (potential, curl)
A. Lukas’ Problem Set II: Question 3 (vector potential, div)

(a) Use index notation to find the divergence and curl of r x (axr), where a is a constant
vector and r is the position vector.

(b) Prove that V[a- V(r~1)] = =V x [a x V(r~1)], where r = |r|.

For A = (3zyz?,2zy3, —1?yz) and ¢ = 32? —yz, find: (a) V-A; (b) A-Ve¢; (¢) V- (pA);
(d) V- (Vg).
A body expands linearly by a factor 1+« because of a rise in temperature. The expansion

shifts the particle originally at r to r + h. Calculate V - h. By what fraction does the
volume increase?

The magnetic field B at a distance r from a straight wire carrying a current I has
magnitude pol/2mr. The lines of force are circles centred on the wire and in planes
perpendicular to it. Show that V- B = 0.

Sketch the vector fields A = (x,y,0) and B = (y, —z,0). Calculate the divergence and
curl of each vector field and explain the physical significance of the results obtained.

A bucket of water is rotated slowly with angular velocity w about its vertical axis. When
a steady state has been reached the water rotates with a velocity field v(r) as if it were
a rigid body. Calculate V - v and interpret the result. Calculate V x v. Can the flow
be represented in terms of a velocity potential ¢ such that v = V¢? If so, what is ¢7

Find a vector field A such that V x A = (0,0, B), where B is a constant. Is this field

unique?
Surface Integrals: Fluxes

If n is the unit normal to the surface S, evaluate [ [r-ndS over
(a) the unit cube bounded by the coordinate planes and the planes z = 1, y = 1 and
z =1

(b) the surface of a sphere of radius a centred at the origin.



3.12

3.13

3.14

3.15

Evaluate [A -n dS for the following cases:

(a) A = (y,2z,—2) and S is the surface of the plane 2z + y = 6 in the first octant cut
off by the plane z = 4.

(b) A = (v + y* —2x,2yz) and S is the surface of the plane 2z +y + 2z = 6 in the first
octant

(¢) A = (6z,2x+y, —z) and S is the entire surface of the region bounded by the cylinder
22 +22=9,2=0,y=0,2=0and y = 8.

[This is the same as A. Lukas’ Problem Set IV: Question 2(a,b,c)]

Air is flowing with a speed 0.4 m s™! in the direction of the vector (—1, —1,1). Calculate
the volume of air flowing per second through the loop which consists of straight lines
joining, in turn, the following: (1,1,0), (1,0,0), (0,0,0), (0,1,1), (1,1,1) and (1,1, 0).

Wave Equation

F. Parra’s Waves Problem Set I: Question 1.1

F. Parra’s Waves Problem Set I: Question 1.2
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Multivariate Calculus

4.1 A. Lukas’ Problem Set II: Question 4 (Laplacian)
4.2 A. Lukas’ Problem Set II: Question 5 (uncurling)

Gauss and Stokes Theorems

4.3 The vector A is a function of position r = (z,y,z) and has components (zy?, 22, yz).
Calculate the surface integral [A -dS over each face of the triangular prism bounded by
the planesx =0,y =0, 2 =0, z+y = 1 and 2 = 1. Show that the integral fA-dS taken
outwards over the whole surface is not zero. Show that it equals [V - A dV calculated
over the volume of the prism. Why?

4.4 Solve Questions 3.11(a,b) and 3.12(c) using Gauss’s Theorem.

4.5 The vector A(r) = (y,—x,z). Verify Stokes’ Theorem for the hemispherical surface
r| =1, 2z > 0.

[This is the same as A. Lukas’ Problem Set IV: Question 4(a)]

4.6 Let A = (y,—x,0). Find fA - dl for a closed loop on the surface of the cylinder
(x — 3)* + y* = 2. Consider the cases

(i) in which the loop wraps round the cylinder’s axis;

(ii) in which the loop does not (so it can be continuously deformed to a point).
Waves: d’Alembert’s Solution

4.7 At time t = 0, the displacement of an infinitely long string is:

[ sin(rz/a) for —a <z <a,
y(e,t) = { 0 otherwise.

The string is initially at rest. Using d’Alembert’s solution with phase speed ¢, sketch
the displacement of the string at t =0, t = a/2¢, and t = a/c.

4.8 F. Parra’s Waves Problem Set I: Question 1.3
4.9 F. Parra’s Waves Problem Set I: Question 1.4
4.10 F. Parra’s Waves Problem Set I: Question 1.5

Nonlinear Oscillations: Limit Cycles

4.11 ODE Problem Set 5: Question 5.3
4.12 ODE Problem Set 5: Question 5.4
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0.1

5.2

5.3

5.4

2.5

Multivariate Calculus

(i) /pdS = /Vpd3r
av v

(ii) / dSxa = /and3r,
av v

where dV is the closed surface bounding the volume V.

Prove that

If G = (a-r)a, where a is a constant vector, and S is a closed surface, show that

/Gde:O,
s

where S is any closed surface.

Verify this result for the special case in which a = (0,0, 1) and S is the bounding surface
of the hemisphere r <1, z > 0.

Prove that
odl = / dS x Vo,
a8 s

where 95 is the closed curve bounding the surface S.

Verify this relation for the function ¢ = 23, with 0S the circle 2% + y? = a2, z = 0, and
S the part of the plane z = 0 enclosed by 05.

A(r) is defined by
A(r) = / Ve f(r —r'|)d®,
v

where V,/ denotes the gradient with respect to r’, r remaining fixed, f is a well-behaved
function of a single variable and the volume V' is fixed. Show that V x A = 0. [Hint:
Find a function of which A is the gradient.]

Hence find A when f(x) = z* and V is the sphere r = 1.

The region V' is bounded by a simple, closed surface 0V. Prove that
YV -dS = / YV pdr + / (Vi - Vo)dir.
oV 1% 1%

Let V2¢ = 0 in V and ¢(r) = g(r) on OV. A function f(r) is chosen so that it also
satisfies f(r) = g(r) on OV. By writing ) = f — ¢ show that

/|V¢|2d3r§/|Vf|2d3r.
v v
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2.6

5.7
2.8

2.9

If OV is the sphere 2% + y? + 2? = a? and in polar coordinates (1,0, ¢), g = acos, show
that

4
/ Vo|*d’r <V = - 7a®.
v 3

If S is a surface bounded by the closed curve 95, prove that
7{ r(r-dl):/rde.
as S

(i) the intersection of the cylinder x? — x + y* = 2 with the plane z = 0,

Verify this formula when 0S5 is

(i) the intersection of the same cylinder with the sphere z? + y* + 22 = 9.

What is the value of the right-hand integral for the portion of the cylinder cut off by the
plane and the sphere?

Waves: Energetics

F. Parra’s Waves Problem Set I: Question 1.6

F. Parra’s Waves Problem Set I: Question 1.7
Waves in Confined Spaces

(a) What is the difference between a travelling wave and a standing wave?
(b) Convince yourself that
y1 = Asin(kz — wt)

corresponds to a travelling wave. Which way does it move? What are the amplitude,
wavelength, frequency, period and velocity of the wave?
(c) Show that y; satisfies the wave equation

Oy 10%

0x? 2 O
provided that w and k are suitably related (this is called the “dispersion relation”).

(d) Write down a wave yo of equal amplitude travelling in the opposite direction. Show
that y; + yo can be written in the form

y1 +y2 = f(2)g(t),

where f(z) is a function of z only, and g(t) is a function just of ¢. Convince yourself that
the combination of two travelling waves is a standing wave. By determining f(x) and
g(t) explicitly, find the wavelength and frequency of y; + y2. Comment on the velocity
of the waves.

11



5.10 (a) Consider a string of uniform linear density p, stretched to a tension 7', with its ends
fixed at x = 0 and x = L. Show that

. (pmx\ . [ prct . [/pTx prmct
y(x,t) = A,sin <T> sin (T) and y(z,t) = Bpsin (T) cos < 7 ) ,

where p is any integer and ¢ = /T/p, are both solutions describing posible evolution of
the transverse displacement of the string at position x vs. time ¢. Explain why sums of
such solutions are also solutions.

(b) Imagine that at ¢ = 0, the string is plucked at its midpoint to a small distance a and
held still:

li‘

' >
L2 L

Show that, after the midpoint is released, the transverse displacement of the string will

evolve according to
o)
. [(DPTX prct
)= Bysin (77) ,
y(x,t) ; psin (= cos( 7 )

prove that the coefficients are

2 L
B, = Z/o dz y(x,0)sin (%) ,

and calculate them all.

In dealing with this problem, you will find it illuminating to consider a vector space of
functions that vanish at © = 0 and x = L, come up with an orthogonal basis in this
vector space, then turn the wave equation into an infinite set of ODFEs, each correspond-
ing to one of the basis vectors, and solve them by the usual method of projecting the
initial condition onto the basis vectors, solving for the subsequent time evolution of each
projection, and then reassambling these solutions to predict the complete evolution of the
initial displacement.

(c) Ponder and discuss the connexion between what you have done here and Ques-
tion 6.6(c,d) in the ODE Problem Set 6.

(d) Consider the same problem as in (b), but instead of plucking the string, assume that,
at t = 0, its transverse displacement is

2
y(x,0) = sin <7T—Lx> + 2sin <%>

12



5.11

and the string is instantaneously stationary. Find the displacement at subsequent times
and make rough sketches of y(x,t) at the following times: 0, L/4c, L/2¢, 3L/4c, L/c.

(e) Again consider the same problem as in (b), except assuming that the string is initially
in its equilibrium position, y(x,t = 0) = 0, but is imparted an initial velocity profile
[0y/0t)(x,t = 0) = v(z). Find the subsequent motion of the string, y(z,t).

Multivariate Calculus and Waves: Electromagnetism

Microscopic Mazwell’s equations in integral form are, if written in Gauss units (I leave
it to you to figure out the conversion to the abominable SI system):
/ E-dS = 47r/ d’rp (Gauss’s law), (1)
v 1%
/ B-dS = 0, (2)
ov
10
E-dl = ——— | B-dS (Faraday’s law), (3)
as C 8t S
1 . OE R
B-dl = - Arj+ — ) -dS  (Ampere-Maxwell law), (4)
9s CJs 8t

where E is electric field, B magnetic field, p charge density, j current density and c the
speed of light. The integrals are over an arbitrary volume V' (whose bounding surface is
0V') or arbitrary surface S (whose bounding loop is 05).

(a) Use Gauss’s and Stokes’ theorems and the fact that V' and S are arbitrary and can
be made infinitesimal to derive Maxwell’s equations in differential form (do make sure
you get the right result: look it up!).

(b) Using Gauss’s and Ampere-Maxwell laws in their differential form, show that

dp

-1=0.
8t+v J

Integrate this over some volume V', use Gauss’s theorem and use the result to argue that
this equation expresses conservation of charge.

(c¢) The energy density of the electromagnetic field is

E? + B?
E=———.
8
Use Maxwell’s equations to show that
Oe
Z4V-P=—-E-j
ot + J

where P = cE x B/4w is called the Poynting vector. Again integrate over some volume
V' and argue that the above equation expresses conservation of energy. Give physical
interpretation of P and explain what the right-hand side of the above equation represents.

13



5.12

5.13

Consider electromagnetic field in vacuo: p =0, j = 0.

(a) Use Maxwell’s equations to show that E and B satisfy the wave equation:

2
E
_8(%2 =*V’E

and similarly for B. These are electromagnetic waves (light).
(b) Let E and B both be o exp(—iwt 4 ik - r).
Show that in order for this to be a solution, we must have w = +ck.

Using Maxwell’s equations, show that E and B are perpendicular to each other and to
the direction of the propagation of the wave.

(c) Show that the Poynting vector for light waves is

k
P==c—
cks

and explain what this result means physically.
Multivariate Calculus and Waves: Hydrodynamics

Consider a fluid or gaseous medium with density p(t,r) and velocity u(¢,r).

(a) Taking an arbitrary volume V' within the fluid, we can express the conservation of
mass as follows 5

s dSI'P = _/ Fmass : dS7
ot Jy ov

where the flux of mass is F.ss = pu (density p flowing with velocity u). Use Gauss’s
Theorem and the fact that V' is entirely arbitrary and can be taken to be as small as we
like to derive the continuity equation:

dp

AV (pw) = 0. (5)

Note that this can be written as

0
(a+u-V)p:—pV-u.

The left-hand side is the so-called convective time derivative of p — the rate of change of
density in a fluid element moving with velocity u. The above equation then means that
negative divergence of the fluid flow V - u < 0 implies local compression and positive
divergence V - u > 0 local rarefaction.

(b) Now apply similar logic to the conservation of momentum. The momentum density
is pu. The rate of change of momentum in a volume V' is

Q d3rpu:—/ puu-dS—/ pdS.
ot Jy av ov

14



5.14

The first term on the right-hand side is the flux of momentum (which is a tensor quan-
tity: vector flux of each component pu; is pu;u). The second term is the force on the
boundary of the volume V' due to pressure p (pressure times area; minus because dS
points outward). Use the above equation and Eq. (5) to derive Euler’s Equation for the
velocity of the fluid:

s,
P (a—ltl +u- Vu) = —Vp. (6)

(c) Finally we deal with the conservation of energy. The energy density of the fluid is

where the first term is kinetic-energy density and the second term is internal-energy
density (v is a constant and depends on the nature of the medium; e.g., for monatomic
ideal gases, it is 5/3). Express the rate of change of energy in a volume V' as

0
En / d®r e = flux of energy through 0V + work done by pressure on 9V per unit time.
v

(the first term is analogous to the other flux terms you have encountered above; the
second term you can work out by considering that if the fluid is flowing through the
boundary of V' at velocity u, it must be pushing against pressure p and so doing work
against force pdS). From the resulting equation, prove, using also Egs. (5) and (6), that

p satisfies
0 p

Congratulations, you have derived the equations of compressible hydrodynamics— Eqs. (5—
7) for p, u and p, a closed system.

The equations derived in the previous problem have a simple solution: p = pg, p = Do
and u = 0, where py and pg are constants independent of ¢t or r. Now consider small
disturbances of this static homogeneous state:

p=po+0op, p=po+0op, u=ou,

where dp, dp and du are all infinitesimally small. Since they are infinitesimally small,
we can substitute the above expressions for p, p, u into Eqs. (5-7) and neglect all terms
where these small perturbations enter quadratically.

(a) Show therefore that dp, dp and du satisfy

dop B dou 0 Do B
WeroV-éu—O, Po gy = Vp, Py (519 Y o 5,0) =0. (8)

(b) Hence show that the perturbations satisfy the wave equation

02%6p
ot?

= c2V?60p

15



and determine ¢,. These are sound waves.

(c) Let 0p, 6p and du all be o exp(—iwt + ik - r).
What is the relationship between w and k?
Using Eqgs. (8), show that

k
5u:j:cs—5—p and op :7@.
k po Do Po

If you have time and want more hydro action, solve Question 7.25 now.

16



HT VI

Waves: Travelling, Standing, Dispersive

F. Parra’s Waves Problem Set II: do all questions

17



HT VII

(revision problems—vacation work)

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

7.15

7.16
7.17

Multivariate Calculus

. Lukas’ Problem Set I: Question 3 (fixed points of ODEs)

. Lukas’ Problem Set I: Question 5 (homogeneous functions)

. Lukas’ Problem Set I: Question 7 (potentials from gradients)
. Lukas’ Problem Set I: Question 8 (invariant functions)

. Lukas’ Problem Set II: Question 6 (curve integrals)

. Lukas’ Problem Set II: Question 7 (commutators)

. Lukas’ Problem Set III: Question 2(d) (changing variables in 2D integrals)
. Lukas’ Problem Set III: Question 3 (ellipsoids)

. Lukas’ Problem Set III: Question 4 (moments of inertia)

. Lukas’ Problem Set III: Question 5 (Gaussian probabilities)
. Lukas’ Problem Set IV: Question 1 (minimal distances)

. Lukas’ Problem Set IV: Question 2(d) (Gauss theorem)

. Lukas’ Problem Set IV: Question 3 (Gauss theorem on cone)

. Lukas’ Problem Set IV: Question 4(b) (Stokes theorem)

- e

. Lukas’ Problem Set IV: Question 5 (areas and volumes)
Normal Modes

ODE Problem Set 6: Question 6.5
ODE Problem Set 6: Question 6.6

18



7.18

7.19

7.20

7.21

7.22

7.23

Travelling Waves

A semi-infinite string of density p per unit length is under tension 7'. At its free end is
a mass m which slides on a smooth horizontal rod that lies perpendicular to the string.
Determine the amplitude reflection coefficient for transverse waves incident on the mass.
What is the phase difference between the incident and reflected waves?

An infinite string lies along the z-axis, and is under tension 7T'. It consists of a section
at 0 < z < a, of linear density p;, and two semi-infinite pieces of density p;. A wave of
amplitude A travels along the string at x > a, towards the short section.

How many types of waves are there in the various sections of the string? How many
boundary conditions need to be satisfied?

Show that, if a = nA;, (where \; is the wavelength on the short section, and n is an
integer), the amplitude of the wave that emerges at © < 0 is A. What is the amplitude
of the wave in the short section?

A uniform string of length [ and density p has its end points fixed so that its equilibrium
tension is T. A mass M is attached to its mid-point. Show that the angular frequency
w of small vibrations is given by

!
ztanz:pﬁ, where 25% and ¢ =T/p.

Two uniform wires of densities p; and py and of equal lengths are fastened together
and the two free ends are attached to two fixed points a distance 2l apart, so that the
equilibrium tension is T'. Show that the angular frequency w of small vibrations satisfies

¢y tan(wl/cy) = —co tan(wl/cs),
where ¢f , = T/p1s.

An elastic string of length a consists of two portions, 0 < x < a/2 of density p; and
a/2 < x < a of density po. It is stretched to tension T and the end at z = a is fixed.
The end at x = 0 is then shaken transversely at frequency w. Show that throughout the
motion, the ratio of the displacement at x = a/2 to that at = = 0 is given by

o esc(wa/2¢)
¢ cot(wa/2¢1) + ¢ cot(wa/2¢s)’

where ¢t , = T/p1.
Waves: Dispersion

In quantum mechanics, a particle of momentum p and energy E has associated with it
a wave of wavelength A and frequency v given by

A=h/p and v=EFE/h,
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7.25

where h is Planck’s constant. Find the phase and group velocities of these waves when
the particle is

(a) non-relativistic, given that

p=mov and FE = §m002;

(b) relativistic, in which case

where my is the particle’s rest mass.

Comment on your answers.

In a certain dispersive medium a disturbance ¢ obeys the equation

9 (02¢ 232¢) N 0% 0% _

g _ _ — 0.
Tor\oer " “o22) T oz T o2

Show that a disturbance with frequency w < 1/7 travels with phase velocity ¢, and
that its amplitude decreases by a factor

()]
~exp | —mwr| 5 — 1
&0

in each wavelength. [Assume ¢; > c¢o.]
Multivariate Calculus: Hydrodynamics

Vorticity of a fluid is defined w = V x u and tells you how the fluid circulates (locally),
as we are about to see.

(a) Let us assume that the fluid is barotropic: p = p(p), i.e., pressure depends only on
density and has no other variation except via p, so Vp = p/'(p)Vp (this would be the
case, for example, if p = constp?, which is clearly a solution of Eq. (7) of Problem 5.12).

Use Eq. (6) of Problem 5.12 and vector calculus to prove that

Ow
EZVX(uxw). (9)

(b) Circulation is defined I' = §,u - dl, where C is a loop. Show that circulation over
a loop is the flux of vorticity through a surface (so a vorticity “line” is a fluid swirl, or
vortex).

(c) Let C(t) be a “material” loop that moves with the fluid (i.e., each point on the loop
moves at the local instantaneous velocity u(t,r)). Prove Kelvin’s Circulation Theorem:

ar

E_O’ where F(t):% u-dl

c(t)
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(circulation through a loop moving with the fluid is conserved).

Strategy: Work out I'(t + dt) and I'(t) to calculate the time derivative. Express these
circulations as fluxes of vorticity through surfaces S(t) and S(t + dt) for which C(t) =
0S(t) and C(t + dt) = 9S(t + dt). As the surface S(t + dt), it is covenient to choose
the surface S(t)+ the ribbon traced by the loop C(t) as it moved to become C(t + dt)
(i.e., each of its points moved a distance udt in the direction of the local velocity — this
should allow you to calculate the surface element dS on the ribbon in terms of u, dt
and the line element dl of the loop C(t)). Judicious application of Stokes” Theorem and
Eq. (9) will lead to the desired result.

(d) Convince yourself that this result means that the field lines of w “move with the
fluid.”
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