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HT I

Vector Calculus

1.1 Two circles have equations:

(i) x2 + y2 + 2ax+ 2by + c = 0;

(ii) x2 + y2 + 2a′x+ 2b′y + c′ = 0.

Show that these circles are orthogonal if 2aa′ + 2bb′ = c+ c′.

1.2 Find the equation for the tangent plane to the surface 2xz2− 3xy− 4x = 7 at (1,−1, 2).

Multiple Integrals: 2D

1.3 (a) For the following integrals sketch the region of integration and so write equivalent
integrals with the order of integration reversed. Evaluate the integrals both ways.∫ √2

0

dy

∫ 2

y2
dx y ,

∫ 4

0

dx

∫ √x
0

dy y
√
x ,

∫ 1

0

dy

∫ y2

−y
dx x .

(b) Reverse the order of integration and hence evaluate:∫ π

0

dy

∫ π

y

dx
sinx

x
.

1.4 Evaluate ∫∫
exp[−(x2 + y2)]dxdy

over the area of a circle with centre (0, 0) and radius a. By letting a tend to∞, evaluate∫ ∞
−∞

e−x
2

dx.

1.5 (a) A mass distribution in the positive x region of the xy-plane and in the shape of a
semi-circle of radius a, centred on the origin, has mass per unit area k. Find, using plane
polar coordinates,

(i) its mass M ,
(ii) the coordinates (x, y) of its centre of mass,
(iii) its moments of inertia about the x and y axes.

(b) Do as above for a semi-infinite sheet with mass per unit area

σ = k exp

(
−x

2 + y2

a2

)
for x ≥ 0 , σ = 0 for x < 0,

where a is a constant. Comment on the comparisons between the two sets of answers.

Note that the result of Q1.4 will be useful in the evaluation of the required integrals.
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1.6 Evaluate the following integral:∫ a

0

dy

∫ √a2−y2

0

dx (x2 + y2) arctan
y

x
.

1.7 The pair of variables (x, y) are each functions of the pair of variables (u, v) and vice
versa. Consider the matrices

A =


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 and B =


∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

 .

(a) Show using the chain rule that the product AB of these two matrices equals the unit
matrix I.

(b) Verify this property explicitly for the case in which (x, y) are Cartesian coordinates
and u and v are the polar coordinates (r, θ).

(c) Assuming the result that the determinant of a matrix and the determinant of its
inverse are reciprocals, deduce the relation between the Jacobians

∂(u, v)

∂(x, y)
=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
and

∂(x, y)

∂(u, v)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

1.8 (a) Using the change of variable x + y = u, x − y = v, evaluate the double integral∫∫
R

(x2 + y2) dxdy, where R is the region bounded by the straight lines y = x, y = x+ 2,
y = −x and y = −x+ 2.

(b) Given that u = xy and v = y/x, show that ∂(u, v)/∂(x, y) = 2y/x. Hence evaluate
the integral ∫∫

exp(−xy) dxdy

over the region x > 0, y > 0, xy < 1, 1/2 < y/x < 2.
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HT II

Multiple Integrals: 3D

2.1 Spherical polar coordinates are defined in the usual way. Show that

∂(x, y, z)

∂(r, θ, φ)
= r2 sin θ .

Draw a diagram to illustrate the physical significance of this result.

2.2 A solid hemisphere of uniform density k occupies the volume x2 + y2 + z2 ≤ a2, z ≥ 0.
Using symmetry arguments wherever possible, find

(i) its total mass M ,

(ii) the position (x, y, z) of its centre of mass,

(iii) its moments and products of inertia, Ixx, Iyy, Izz, Ixy, Iyz, Izx, where

Izz =

∫
k (x2 + y2) dV, Ixy =

∫
k xy dV, etc.

Probabilities

2.3 If X is a continuous random variable with probability density function (PDF) f(x) =
ce−x for x ≥ 0 and zero otherwise,

(a) find c;

(b) find the cumulative distribution function F (x);

(c) find P (1 < X < 3).

2.4 Let X and Y be two jointly continuous random variables with a joint PDF f(x, y) = cx2y
for 0 ≤ y ≤ x ≤ 1 and zero otherwise.

(a) Sketch the region in the (x, y) plane for which the PDF is non-zero.

(b) Find c.

(c) Find the marginal PDFs fX(x) and fY (y).

(d) Find P (Y ≤ X/2).
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Vector Calculus

2.5 Find ∇φ in the cases:

(a) φ = ln r;

(b) φ = r−1,

where r = |r|.

2.6 Given that F = x2z+ ey/x and G = 2z2y−xy2, find ∇(F +G) and ∇(FG) at (1, 0,−2).

Line Integrals

2.7 A vector field A(r) is defined by its components (4x− y4,−4xy3− 3y2, 4). Evaluate the
line integral

∫
A · dl between the points with position vectors (0, 0, 0) and (1, 2, 0) along

the following paths

(a) the straight line from (0, 0, 0) to (1, 2, 0);

(b) on the path of straight lines joining (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 2, 1) and (1, 2, 0)
in turn.

Show that A is conservative by finding a scalar function φ(r) such that A = ∇φ.

2.8 A vector field A(r) is defined by its components (3x2 + 6y,−14yz, 20xz2). Evaluate the
line integral

∫
A · dl from (0, 0, 0) to (1, 1, 1) along the following paths

(a) x = t, y = t2, z = t3 ;

(b) on the path of straight lines joining (0, 0, 0), (1, 0, 0), (1, 1, 0), and (1, 1, 1) in turn;

(c) the straight line joining the two points.

Is A conservative?

2.9 If φ = 2xyz2, F = (xy,−z, x2) and C is the curve x = t2, y = 2t, z = t3 from t = 0 to
t = 1, evaluate the line integrals:

(a)
∫
C
φ dr;

(b)
∫
C
F× dr.

Surface Integrals

2.10 Show that under certain circumstances the area of a curved surface can be expressed in
the form ∫∫ √

1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy,

where the integral is taken over the plane z = 0.

Sketch the surface z2 = 2xy and find the area of the part of it that lies inside the
hemisphere x2 + y2 + z2 = 1, z > 0.
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2.11 Show that the surface area of the curved portion of the hemisphere in Problem 2.2 is
2πa2 by

(i) directly integrating the element of area a2 sin θdθdφ over the surface of the hemisphere.

(ii) projecting onto an integral taken over the xy plane.

2.12 (a) Find the area of the plane x− 2y + 5z = 13 cut out by the cylinder x2 + y2 = 9.

(b) A uniform lamina is made of that part of the plane x + y + z = 1 which lies in the
first octant. Find by integration its area and also its centre of mass. Use geometrical
arguments to check your result for the area.

2.13 Calculate the solid angle of a cone of half-angle α.

2.14 Calculate the area of a unit sphere in n dimensions. Check that your answer is 2π for
n = 2 and 4π for n = 3.

Hint. Calculate the Gaussian integral
∫
· · ·
∫

dx1 . . . dxn exp[−(x21+· · ·+x2n)] in Cartesian
and in polar coordinates.

Normal Modes

Do Questions 1.1 to 1.5 from Christopher Palmer’s Problem Set on Normal Modes
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HT III

Surface Integrals: Fluxes

3.1 If n is the unit normal to the surface S, evaluate
∫ ∫

r · n dS over

(a) the unit cube bounded by the coordinate planes and the planes x = 1, y = 1 and
z = 1;

(b) the surface of a sphere of radius a centred at the origin.

3.2 Evaluate
∫
A · n dS for the following cases:

(a) A = (y, 2x,−z) and S is the surface of the plane 2x + y = 6 in the first octant cut
off by the plane z = 4.

(b) A = (x+ y2,−2x, 2yz) and S is the surface of the plane 2x+ y + 2z = 6 in the first
octant

(c) A = (6z, 2x+y,−x) and S is the entire surface of the region bounded by the cylinder
x2 + z2 = 9, x = 0, y = 0, z = 0 and y = 8.

3.3 Air is flowing with a speed 0.4 m s−1 in the direction of the vector (−1,−1, 1). Calculate
the volume of air flowing per second through the loop which consists of straight lines
joining, in turn, the following: (1, 1, 0), (1, 0, 0), (0, 0, 0), (0, 1, 1), (1, 1, 1) and (1, 1, 0).

Vector Calculus

3.4 O is the origin and A, B, C are points with position vectors a = (1, 0, 0), b = (1, 1, 1)
and c = (0, 2, 0), respectively. Find the vector area S of the loop OABCO

(a) by drawing the loop in projection onto the (y, z), (z, x) and (x, y) planes and calcu-
lating the components of S;

(b) by filling the loop with (e.g., 2 or 3) plane polygons, ascribing a vector area to each
and taking the resultant.

Calculate the projected area of the loop

(i) when seen from the direction which makes it appear as large as possible;

(ii) when seen from the direction of the vector (0,−1, 1).

What are the corresponding answers for the loop OACBO?

3.5 For A = (3xyz2, 2xy3,−x2yz) and φ = 3x2−yz, find: (a) ∇·A; (b) A ·∇φ; (c) ∇·(φA);
(d) ∇ · (∇φ).

3.6 A body expands linearly by a factor 1+α because of a rise in temperature. The expansion
shifts the particle originally at r to r + h. Calculate ∇ · h. By what fraction does the
volume increase?
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3.7 The magnetic field B at a distance r from a straight wire carrying a current I has
magnitude µ0I/2πr. The lines of force are circles centred on the wire and in planes
perpendicular to it. Show that ∇ ·B = 0.

3.8 Sketch the vector fields A = (x, y, 0) and B = (y,−x, 0). Calculate the divergence and
curl of each vector field and explain the physical significance of the results obtained.

3.9 A bucket of water is rotated slowly with angular velocity ω about its vertical axis. When
a steady state has been reached the water rotates with a velocity field v(r) as if it were
a rigid body. Calculate ∇ · v and interpret the result. Calculate ∇ × v. Can the flow
be represented in terms of a velocity potential φ such that v = ∇φ? If so, what is φ?

3.10 To what scalar or vector quantities do the following expressions in suffix notation corre-
spond (sum where possible): aibjci; aibjcjdi; δijaiaj; δijδij; εijkaibk; and εijkδij.

3.11 Prove, by the most compact calculation you can devise:

(a) ∇×∇φ = 0;

(b) ∇ · (∇×A) = 0.

3.12 Evaluate

(a) ∇× (αa);

(b) ∇× (∇× a);

(c) ∇(φψ);

(d) ∇ · (a× b);

(e) ∇× (a× b);

(f) ∇ · (∇φ×∇ψ).

Here α is a constant, φ and ψ scalar functions, a and b vector functions of position.

3.13 Find a vector field A such that ∇×A = (0, 0, B), where B is a constant. Is this field
unique?

Normal Modes

3.14 AB, BC, and CD are identical springs with negligible mass, and stiffness constant k:
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The masses m, fixed to the springs at B and C, are displaced by small distances x1
and x2 from their equilibrium positions along the line of the springs, and execute small
oscillations. Show that the angular frequencies of the normal modes are ω1 =

√
k/m

and ω2 =
√

3k/m. Sketch how the two masses move in each mode. Find x1 and x2 at
times t > 0 given that at t = 0 the system is at rest with x1 = a, x2 = 0.

3.15 The setup is as in the previous Problem, except that in this case the springs AB and
CD have stiffness constant k0, while BC has stiffness constant k1. If C is clamped, B
vibrates with frequency ν0 = 1.81 Hz. The frequency of the lower-frequency normal
mode is ν1 = 1.14 Hz. Calculate the frequency of the higher-frequency normal mode,
and the ratio k1/k0.

3.16 Question 1.6 from Christopher Palmer’s Problem Set on Normal Modes

3.17 Question 1.7 from Christopher Palmer’s Problem Set on Normal Modes
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HT IV

Vector Calculus

4.1 Use index notation to find the gradient of the following scalar functions of position
r = (x, y, z):

(a) rn, where r = |r|;
(b) a · r, where a is a constant vector.

4.2 Use index notation to find the divergence and curl of the following vector functions of
position r = (x, y, z):

(a) r;

(b) rnr, where r = |r|;
(c) (a · r)b;

(d) a× r;

(e) r× (a× r).

Here a and b are constant vectors (independent of r).

4.3 For a a constant vector, prove that ∇[a · ∇(r−1)] = −∇× [a×∇(r−1)], where r = |r|.

Gauss and Stokes Theorems

4.4 The vector A is a function of position r = (x, y, z) and has components (xy2, x2, yz).
Calculate the surface integral

∫
A ·dS over each face of the triangular prism bounded by

the planes x = 0, y = 0, z = 0, x+y = 1 and z = 1. Show that the integral
∫
A·dS taken

outwards over the whole surface is not zero. Show that it equals
∫
∇ ·A dV calculated

over the volume of the prism. Why?

4.5 Solve Problems 3.1(a,b) and 3.2(c) using Gauss’s Theorem.

4.6 The vector A(r) = (y,−x, z). Verify Stokes’ Theorem for the hemispherical surface
|r| = 1, z ≥ 0.

4.7 Let A = (y,−x, 0). Find
∫
A · dl for a closed loop on the surface of the cylinder

(x− 3)2 + y2 = 2. Consider the cases

(i) in which the loop wraps round the cylinder’s axis;

(ii) in which the loop does not (so it can be continuously deformed to a point).
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Normal Modes

4.8 A stretched massless spring has its ends at x = 0 and x = 3l fixed, and has equal masses
attached at x = l and x = 2l. The masses slide on a smooth horizontal table. Convince
yourself that, for small oscillations, it is reasonable to neglect the changes in tension
caused by the variation in length of the three sections of the spring resulting from the
transverse motion of the masses. Show that the equations of the transverse motion of
the masses are approximately

mÿ1 =
T

l
(y2 − 2y1) and mÿ2 =

T

l
(y1 − 2y2),

where T is the tension in the spring.

Find the frequencies and the ratio of amplitudes of the transverse oscillations for the
normal modes of the two masses.

4.9 The figure shows two masses m at points B and C of a string fixed at A and D, executing
small transverse oscillations. The tensions are assumed to be all equal, and in equilibrium
AB = BC = CD = l.

If the (small) transverse displacements of the masses are denoted by q1 and q2, the
equations of motion are

mq̈1 = −k(2q1 − q2) and mq̈2 = −k(2q2 − q1),

where k = T/l, and terms of order q21, q22 and higher have been neglected.

(a) Show that the normal (decoupled) coordinates for this system are

Q1 =
q1 + q2√

2
and Q2 =

q1 − q2√
2

.

Find the equations they satisfy, then find the general solution of these equations and
hence find the general solution for q1 and q2.

(b) The forces on the RHS of the equations of motion may be interpreted in terms of a
potential energy function V (q1, q2), viz., the equations of motion may be rewritten as

mq̈1 = −∂V
∂q1

and mq̈2 = −∂V
∂q2

(generalising “mẍ = −∂V/∂x”). Find an appropriate expression for V (q1, q2) — so that
correct equations of motion are recovered.
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Derive the same result for V by considering the work done in giving each section of
the string its deformation [e.g., for AB the work done is equal to T (

√
l2 + q21 − l)], and

expanding in powers of q21/l
2.

Show that, when written in terms of the variables Q1 and Q2, V becomes

V =
1

2
mω2

1Q
2
1 +

1

2
mω2

2Q
2
2,

where ω1 =
√
k/m and ω2 =

√
3k/m.

(c) Calculate the kinetic energy K of the masses and hence show that their total energy,
written in terms of Q1, Q2, Q̇1 and Q̇2, can be represented as

H = K + V = H1 +H2,

where H1 is the total energy of ‘oscillator’ Q1 with frequency ω1, and similarly for H2.

What is the expression for the total energy when written in terms of q1, q2, q̇1, and q̇2?
Discuss the similarities and differences.

(d) Show that the equations of motion for Q1 and Q2 have the form

mQ̈1 = − ∂H
∂Q1

and mQ̈1 = − ∂H
∂Q2

.

Waves

4.10 (a) What is the difference between a travelling wave and a standing wave?

(b) Convince yourself that
y1 = A sin(kx− ωt)

corresponds to a travelling wave. Which way does it move? What are the amplitude,
wavelength, frequency, period and velocity of the wave?

(c) Show that y1 satisfies the wave equation

∂2y

∂x2
=

1

c2
∂2y

∂t2

provided that ω and k are suitably related (this is called the “dispersion relation”).

(d) Write down a wave y2 of equal amplitude travelling in the opposite direction. Show
that y1 + y2 can be written in the form

y1 + y2 = f(x)g(t),

where f(x) is a function of x only, and g(t) is a function just of t. Convince yourself that
the combination of two travelling waves is a standing wave. By determining f(x) and
g(t) explicitly, find the wavelength and frequency of y1 + y2. Comment on the velocity
of the waves.
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4.11 (a) A string of uniform linear density ρ is stretched to a tension T , its ends being fixed
at x = 0 and x = L. If y(x, t) is the transverse displacement of the string at position x
and time t, show that

∂2y

∂x2
=

1

c2
∂2y

∂t2

where c2 = T/ρ. What is meant by the statement that this equation is ‘linear’?

Verify that

y(x, t) = Ar sin
(rπx
L

)
sin

(
rπct

L

)
and y(x, t) = Br sin

(rπx
L

)
cos

(
rπct

L

)
,

where r is any integer, are both solutions of this equation, obeying the boundary condi-
tions y(0, t) = y(L, t) = 0. Explain why sums of such solutions are also solutions.

(b) The string is such that at t = 0, ∂y/∂t = 0 for all x, and y(x, 0) has the shape

i.e., the mid-point is drawn aside a small distance a. Explain why the solution after the
mid-point is released has the form

y(x, t) =
∞∑
r=1

Br sin
(rπx
L

)
cos

(
rπct

L

)
and find Br [N.B.: There are infinitely many constants B1, B2, . . . in this expression.
They can be determined from the initial displacement of the string by the technique of
Fourier Analysis:

y(x, 0) =
∞∑
r=1

Br sin
(rπx
L

)
⇒ Br =

2

L

∫ L

0

dx y(x, 0) sin
(rπx
L

)
.

Fourier Analysis is now on the 2nd-year course.]

4.12 (a) Standing waves y = f(x)g(t) exist on a string of length L, as in the previous problems.
Given that the x dependence is

f(x) = A sin(kx),

what is g(t)? [This involves 2 arbitrary constants.]
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(b) At t = 0, the displacement is

y(x, 0) = sin
(πx
L

)
+ 2 sin

(
2πx

L

)
and the string is instantaneously stationary. Find the displacement at subsequent times.

Make rough sketches of y(x, t) at the following times: 0, L/4c, L/2c, 3L/4c, L/c.

4.13 Outline the solution of the wave equation

∂2y

∂x2
=

1

c2
∂2y

∂t2

using the method of separation of variables.

Assuming that transverse waves exist on a string fixed between the points x = 0 and
x = l and that at time t = 0, the string is in its equilibrium position, but has a velocity
[∂y/∂t](x, t = 0) = v(x), find, by the method of separation of variables, the general
solution for the subsequent motion of the string.

14



HT V

Vector Calculus

5.1 Prove that

(i)

∫
∂V

p dS =

∫
V

∇p d3r

(ii)

∫
∂V

dS× a =

∫
V

∇× a d3r,

where ∂V is the closed surface bounding the volume V .

5.2 If G = (a · r)a, where a is a constant vector, and S is a closed surface, show that∫
S

G× dS = 0,

where S is any closed surface.

Verify this result for the special case in which a = (0, 0, 1) and S is the bounding surface
of the hemisphere r ≤ 1, z ≥ 0.

5.3 Prove that ∮
∂S

φdl =

∫
S

dS×∇φ,

where ∂S is the closed curve bounding the surface S.

Verify this relation for the function φ = x3, with ∂S the circle x2 + y2 = a2, z = 0, and
S the part of the plane z = 0 enclosed by ∂S.

5.4 A(r) is defined by

A(r) =

∫
V

∇r′f(|r− r′|)d3r′,

where ∇r′ denotes the gradient with respect to r′, r remaining fixed, f is a well-behaved
function of a single variable and the volume V is fixed. Show that ∇ ×A = 0. [Hint:
Find a function of which A is the gradient.]

Hence find A when f(x) = x4 and V is the sphere r = 1.

5.5 The region V is bounded by a simple, closed surface ∂V . Prove that∫
∂V

ψ∇φ · dS =

∫
V

ψ∇2φd3r +

∫
V

(∇ψ · ∇φ)d3r.

Let ∇2φ = 0 in V and φ(r) = g(r) on ∂V . A function f(r) is chosen so that it also
satisfies f(r) = g(r) on ∂V . By writing ψ = f − φ show that∫

V

|∇φ|2d3r ≤
∫
V

|∇f |2d3r.
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If ∂V is the sphere x2 + y2 + z2 = a2 and in polar coordinates (r, θ, φ), g = a cos θ, show
that ∫

V

|∇φ|2d3r ≤ V =
4

3
πa3.

5.6 If S is a surface bounded by the closed curve ∂S, prove that∮
∂S

r(r · dl) =

∫
S

r× dS.

Verify this formula when ∂S is

(i) the intersection of the cylinder x2 − x+ y2 = 2 with the plane z = 0,

(ii) the intersection of the same cylinder with the sphere x2 + y2 + z2 = 9.

What is the value of the right-hand integral for the portion of the cylinder cut off by the
plane and the sphere?

Waves: Dispersion

5.7 What is meant by (a) a dispersive medium, and (b) the phase velocity v? Explain the
relevance of group velocity g for the transmission of signals in a dispersive medium.
Justify the equation

g =
dω

dk
.

Show that for electromagnetic waves alternative expressions for g are

g = v + k
dv

dk
or g = v − λdv

dλ
or g =

c

µ

(
1 +

d lnµ

d lnλ

)
,

where µ is the refractive index for waves of wavelength λ and wavenumber k (in the
medium).

Show that

g = v

(
1− 1

1 + d lnλ′/d ln v

)
,

where λ′ is the wavelength in vacuum.

5.8 In quantum mechanics, a particle of momentum p and energy E has associated with it
a wave of wavelength λ and frequency ν given by

λ = h/p and ν = E/h,

where h is Planck’s constant. Find the phase and group velocities of these waves when
the particle is

(a) non-relativistic, given that

p = m0v and E =
1

2
m0v

2;
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(b) relativistic, in which case

p =
m0v√

1− v2/c2
and E =

m0c
2√

1− v2/c2
,

where m0 is the particle’s rest mass.

Comment on your answers.

5.9 In a certain dispersive medium a disturbance φ obeys the equation

τ
∂

∂t

(
∂2φ

∂t2
− c21

∂2φ

∂x2

)
+
∂2φ

∂t2
− c20

∂2φ

∂x2
= 0.

Show that a disturbance with frequency ω � 1/τ travels with phase velocity c0, and
that its amplitude decreases by a factor

' exp

[
− πωτ

(
c21
c20
− 1

)]
in each wavelength. [Assume c1 > c0.]

Vector Calculus and Waves: Electromagnetism

5.10 Microscopic Maxwell’s equations in integral form are, if written in Gauss units (I leave
it to you to figure out the conversion to the abominable SI system):∫

∂V

E · dS = 4π

∫
V

d3r ρ (Gauss’s law), (1)∫
∂V

B · dS = 0, (2)∮
∂S

E · dl = −1

c

∂

∂t

∫
S

B · dS (Faraday’s law), (3)∮
∂S

B · dl =
1

c

∫
S

(
4πj +

∂E

∂t

)
· dS (Ampère-Maxwell law), (4)

where E is electric field, B magnetic field, ρ charge density, j current density and c the
speed of light. The integrals are over an arbitrary volume V (whose bounding surface is
∂V ) or arbitrary surface S (whose bounding loop is ∂S).

(a) Use Gauss’s and Stokes’ theorems and the fact that V and S are arbitrary and can
be made infinitesimal to derive Maxwell’s equations in differential form (do make sure
you get the right result: look it up!).

(b) Using Gauss’s and Ampère-Maxwell laws in their differential form, show that

∂ρ

∂t
+∇ · j = 0.

Integrate this over some volume V , use Gauss’s theorem and use the result to argue that
this equation expresses conservation of charge.
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(c) The energy density of the electromagnetic field is

ε =
E2 +B2

8π
.

Use Maxwell’s equations to show that

∂ε

∂t
+∇ ·P = −E · j,

where P = cE×B/4π is called the Poynting vector. Again integrate over some volume
V and argue that the above equation expresses conservation of energy. Give physical
interpretation of P and explain what the right-hand side of the above equation represents.

5.11 Consider electromagnetic field in vacuo: ρ = 0, j = 0.

(a) Use Maxwell’s equations to show that E and B satisfy the wave equation:

∂2E

∂t2
= c2∇2E

and similarly for B. These are electromagnetic waves (light).

(b) Let E and B both be ∝ exp(−iωt+ ik · r).
Show that in order for this to be a solution, we must have ω = ±ck.

Using Maxwell’s equations, show that E and B are perpendicular to each other and to
the direction of the propagation of the wave.

(c) Show that the Poynting vector for light waves is

P = ±c k
k
ε

and explain what this result means physically.

Vector Calculus and Waves: Hydrodynamics

5.12 Consider a fluid or gaseous medium with density ρ(t, r) and velocity u(t, r).

(a) Taking an arbitrary volume V within the fluid, we can express the conservation of
mass as follows

∂

∂t

∫
V

d3r ρ = −
∫
∂V

Fmass · dS,

where the flux of mass is Fmass = ρu (density ρ flowing with velocity u). Use Gauss’s
Theorem and the fact that V is entirely arbitrary and can be taken to be as small as we
like to derive the continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0. (5)

Note that this can be written as(
∂

∂t
+ u · ∇

)
ρ = −ρ∇ · u.
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The left-hand side is the so-called convective time derivative of ρ — the rate of change of
density in a fluid element moving with velocity u. The above equation then means that
negative divergence of the fluid flow ∇ · u < 0 implies local compression and positive
divergence ∇ · u > 0 local rarefaction.

(b) Now apply similar logic to the conservation of momentum. The momentum density
is ρu. The rate of change of momentum in a volume V is

∂

∂t

∫
V

d3r ρu = −
∫
∂V

ρuu · dS−
∫
∂V

pdS.

The first term on the right-hand side is the flux of momentum (which is a tensor quan-
tity: vector flux of each component ρui is ρuiu). The second term is the force on the
boundary of the volume V due to pressure p (pressure times area; minus because dS
points outward). Use the above equation and Eq. (5) to derive Euler’s Equation for the
velocity of the fluid:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p. (6)

(c) Finally we deal with the conservation of energy. The energy density of the fluid is

ε =
ρu2

2
+

p

γ − 1
,

where the first term is kinetic-energy density and the second term is internal-energy
density (γ is a constant and depends on the nature of the medium; e.g., for monatomic
ideal gases, it is 5/3). Express the rate of change of energy in a volume V as

∂

∂t

∫
V

d3r ε = flux of energy through ∂V + work done by pressure on ∂V per unit time.

(the first term is analogous to the other flux terms you have encountered above; the
second term you can work out by considering that if the fluid is flowing through the
boundary of V at velocity u, it must be pushing against pressure p and so doing work
against force pdS). From the resulting equation, prove, using also Eqs. (5) and (6), that
p satisfies (

∂

∂t
+ u · ∇

)
p

ργ
= 0. (7)

Congratulations, you have derived the equations of compressible hydrodynamics — Eqs. (5–
7) for ρ, u and p, a closed system.

5.13 The equations derived in the previous problem have a simple solution: ρ = ρ0, p = p0
and u = 0, where p0 and ρ0 are constants independent of t or r. Now consider small
disturbances of this static homogeneous state:

ρ = ρ0 + δρ, p = p0 + δp, u = δu,

where δρ, δp and δu are all infinitesimally small. Since they are infinitesimally small,
we can substitute the above expressions for ρ, p, u into Eqs. (5-7) and neglect all terms
where these small perturbations enter quadratically.
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(a) Show therefore that δρ, δp and δu satisfy

∂δρ

∂t
+ ρ0∇ · δu = 0, ρ0

∂δu

∂t
= −∇δp, ∂

∂t

(
δp− γ p0

ρ0
δρ

)
= 0. (8)

(b) Hence show that the perturbations satisfy the wave equation

∂2δρ

∂t2
= c2s∇2δρ

and determine cs. These are sound waves.

(c) Let δρ, δp and δu all be ∝ exp(−iωt+ ik · r).
What is the relationship between ω and k?

Using Eqs. (8), show that

δu = ±cs
k

k

δρ

ρ0
and

δp

p0
= γ

δρ

ρ0
.

If you have time and want more hydro action, solve Problem 7.10 now.
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HT VI

Travelling Waves

6.1 By transforming the wave equation

∂2y

∂x2
=

1

c2
∂2y

∂t2

to the variables u = x−ct and v = x+ct, show that its general solution is the d’Alembert
solution

y = f(x− ct) + g(x+ ct),

where f and g are arbitrary functions.

6.2 At time t = 0, the displacement of an infinitely long string is:

y(x, t) =

{
sin(πx/a) for − a ≤ x ≤ a,
0 otherwise.

The string is initially at rest. Using d’Alembert’s solution with phase speed c, sketch
the displacement of the string at t = 0, t = a/2c, and t = a/c.

6.3 Calculate the rate of working (power input) of a device which launches small amplitude
waves y(x, t) = A cos(kx− ωt) into the end of a semi-infinite string by forcing y(0, t) =
A cos(ωt).

6.4 Show that the kinetic energy U and the potential energy V for a length λ = 2π/k of a
transverse wave on a string of linear density ρ and at tension T are given by

U =

∫ λ

0

dx
1

2
ρ

(
∂y

∂t

)2

and V =

∫ λ

0

dx
1

2
T

(
∂y

∂x

)2

.

Evaluate these for the wave y = A cos(kx+ ωt+ φ) and show that U = V .

6.5 Two transverse waves are on the same piece of string. The first has displacement y
non-zero only for kx + ωt between π and 2π, when it is equal to A sin(kx + ωt). The
second has y = A sin(kx− ωt) for kx− ωt between −2π and −π, and is zero otherwise.
When t = 0, the displacement is as shown in the figure.
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Calculate the energy of the two waves.

What is the displacement of the string at t = 3π/2ω? Calculate the energy at this time.

6.6 Two long strings lie along the x-axis under tension T . They are joined at x = 0 so that
for x < 0 the line density ρ = ρ1, and for x > 0, ρ = ρ2. Small transverse oscillations
propagate along these strings from x = −∞. Show that at the join

∂y

∂x

∣∣∣∣
x=0−

=
∂y

∂x

∣∣∣∣
x=0+

.

If a train of waves y(x, t) = ei(kx−ωt) is launched into the combined string from x = −∞,
find the amplitude and phase of the trains that are (a) reflected from the join, and (b)
transmitted through the join.

Using the result of Problem 6.3, verify that energy is conserved.

6.7 The apparatus of the last problem is modified by attaching to the join a particle of mass
m which is connected to a fixed support by a light spring of stiffness p. This spring
exerts a transverse force on the mass when the latter is displaced from y = 0. Show that
at the join

T

(
∂y

∂x

∣∣∣∣
x=0+

− ∂y

∂x

∣∣∣∣
x=0−

)
= m

∂2y

∂t2
+ py

is satisfied.

A train of harmonic waves of frequency ω is transmitted from x = −∞. Show that the
phase of the transmitted wave lags behind that of the incident wave by an angle

arctan

(
c1c2(mω

2 − p)
ωT (c1 + c2)

)
,

where c1 and c2 are the speeds of the waves for x < 0 and x > 0, respectively.

6.8 A semi-infinite string of density ρ per unit length is under tension T . At its free end is
a mass m which slides on a smooth horizontal rod that lies perpendicular to the string.
Determine the amplitude reflection coefficient for transverse waves incident on the mass.
What is the phase difference between the incident and reflected waves?

6.9 An infinite string lies along the x-axis, and is under tension T . It consists of a section
at 0 < x < a, of linear density ρ1, and two semi-infinite pieces of density ρ2. A wave of
amplitude A travels along the string at x > a, towards the short section.

How many types of waves are there in the various sections of the string? How many
boundary conditions need to be satisfied?

Show that, if a = nλ1, (where λ1 is the wavelength on the short section, and n is an
integer), the amplitude of the wave that emerges at x < 0 is A. What is the amplitude
of the wave in the short section?
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HT VII
(vacation work)

Waves

7.1 A bar of uniform cross section A, density ρ and Young’s modulus Y transmits longitu-
dinal elastic waves. If a small element at position x is displaced a distance ξ, derive the
wave equation for ξ and find the wavelength of a harmonic wave of frequency ω.

7.2 Waves of frequency ω travelling in the bar of the last problem are reflected at an end
which has a mass M rigidly attached to it. Find the phase change on reflection and
discuss the cases M = 0 and M →∞.

7.3 For the infinite transmission line of capacitance C and indunctance L per unit length,
show that the voltage V obeys the wave equation and determine the speed of the waves.
Find the characteristic impedance Z (i.e., the ratio of voltage to current) for waves trav-
elling in both the positive and negative x-direction. Why is the characteristic impedance
positive for waves travelling to the right, but negative for waves travelling to the left?
Isn’t that paradoxical, since the circuit is the same for left- and right-travelling waves?

7.4 A semi-infinite transmission line, of capacitance C and inductance L per unit length,
is terminated by an impedance ZT . Find the ratio of the amplitude and the phase
difference for the reflected and incident waves if

(a) ZT =
√
L/C,

(b) ZT = 2
√
L/C,

(c) ZT is a capacitor of capacitance C.

In (a) and (b), what type of impedance is required?

7.5 A uniform string of length l and density ρ has its end points fixed so that its equilibrium
tension is T . A mass M is attached to its mid-point. Show that the angular frequency
ω of small vibrations is given by

z tan z =
ρl

M
, where z ≡ ωl

2c
and c2 ≡ T/ρ.

7.6 Two uniform wires of densities ρ1 and ρ2 and of equal lengths are fastened together
and the two free ends are attached to two fixed points a distance 2l apart, so that the
equilibrium tension is T . Show that the angular frequency ω of small vibrations satisfies

c1 tan(ωl/c1) = −c2 tan(ωl/c2),

where c21,2 ≡ T/ρ1,2.
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7.7 An elastic string of length a consists of two portions, 0 < x < a/2 of density ρ1 and
a/2 < x < a of density ρ2. It is stretched to tension T and the end at x = a is fixed.
The end at x = 0 is then shaken transversely at frequency ω. Show that throughout the
motion, the ratio of the displacement at x = a/2 to that at x = 0 is given by

c2 csc(ωa/2c1)

c2 cot(ωa/2c1) + c1 cot(ωa/2c2)
,

where c21,2 ≡ T/ρ1,2.

Vector Calculus: Hydrodynamics

7.8 Vorticity of a fluid is defined ω = ∇× u and tells you how the fluid circulates (locally),
as we are about to see.

(a) Let us assume that the fluid is barotropic: p = p(ρ), i.e., pressure depends only on
density and has no other variation except via ρ, so ∇p = p′(ρ)∇ρ (this would be the
case, for example, if p = constργ, which is clearly a solution of Eq. (7) of Problem 5.12).

Use Eq. (6) of Problem 5.12 and vector calculus to prove that

∂ω

∂t
= ∇× (u× ω). (9)

(b) Circulation is defined Γ =
∮
C
u · dl, where C is a loop. Show that circulation over

a loop is the flux of vorticity through a surface (so a vorticity “line” is a fluid swirl, or
vortex).

(c) Let C(t) be a “material” loop that moves with the fluid (i.e., each point on the loop
moves at the local instantaneous velocity u(t, r)). Prove Kelvin’s Circulation Theorem:

dΓ

dt
= 0, where Γ(t) =

∮
C(t)

u · dl

(circulation through a loop moving with the fluid is conserved).

Strategy: Work out Γ(t + dt) and Γ(t) to calculate the time derivative. Express these
circulations as fluxes of vorticity through surfaces S(t) and S(t + dt) for which C(t) =
∂S(t) and C(t + dt) = ∂S(t + dt). As the surface S(t + dt), it is covenient to choose
the surface S(t)+ the ribbon traced by the loop C(t) as it moved to become C(t + dt)
(i.e., each of its points moved a distance udt in the direction of the local velocity — this
should allow you to calculate the surface element dS on the ribbon in terms of u, dt
and the line element dl of the loop C(t)). Judicious application of Stokes’ Theorem and
Eq. (9) will lead to the desired result.

(d) Convince yourself that this result means that the field lines of ω “move with the
fluid.”
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