Questions on Dimensional Analysis
A. Schekochihin, Merton College, MT12

1. G. I. Taylor and the Bomb

In the early autumn of 1940, during some of the most desperate days of the
Battle of Britain, a Cambridge Professor of fluid dynamics G. I. Taylor was
invited to lunch by an Imperial College Professor and Nobel-prize winner
George Thomson, who was then chairman of the MAUD committee (MAUD
= “Military Application of Uranium Detonation”). G. I. Taylor was told
that it might be possible to produce a bomb in which a very large amount of
energy would be released by nuclear fission (this was to become the atomic
bomb). The crucial question was what would be the mechanical effect of
such an explosion? G. I. Taylor’s subsequent solution of this problem may
be the most famous example of the application of dimensional analysis of all
time. In this problem, you will work through some of his calculation.

Let us simplify the problem by assuming that

— a finite amount of energy FE is released instantaneously at a point (i.e.,
we will ignore the radius ry of the volume where the initial energy release
occurs at time ¢t = 0, it will not be a relevant parameter);

— there results a spherically symmetric shock wave, with its front prop-
agating according to some law r/(t), where ry is the radius of the front.

Find r¢(t) as a function of time ¢. Find also the velocity of the front
us(t) and the pressure p(t) in the surrounding air just outside the front.
The density pg of air before the explosion is given. If you identify correctly
what the governing parameters are (all of them are mentioned above), you
should be able to use dimensional analysis to work out r¢, uy and py with
only constant dimensionless prefactors left undetermined.

Based on the result you have obtained, will, in your opinion, making the
bomb bigger (say doubling its size) makes much of a difference?

If you did not know the energy of the explosion F (classified!), but had
a movie of the fireball, how would you estimate E? (When the Americans
tested the bomb and released a series of high-speed photographs, G. I. Taylor
estimated E and published the result, which caused much embarassment in
the American government circles.)



2. Poiseuille Flow

Attempt this question after the second lecture on Dimensional Analysis

This example is also famous, and much more peaceful than the previ-
ous one. It was first worked out experimentally by H. Hagen (1839) and
J. L. M. Poiseuille (1840) (working independently of each other) and later
theoretically explained by G. G. Stokes (1845).

Consider a pipe of length [ and diameter d. A pressure drop between
the ends of the pipe, p; — ps, is maintained to pump an incompressible fluid
of viscosity p through the pipe. Find the volumetric flow rate @), i.e., the
volume of the fluid that passes through any cross-section of the pipe per unit
time.

If T double the diameter of the pipe, by what factor will () change? What
if I double the pressure contrast? And what if I double viscosity? Does the
answer make sense? (Why does viscosity matter?) What if I double viscosity
and cut the pipe length by half?

Hint. A judicious choice of governing parameters in this problem is d, u
and (p; —p2)/l — the pressure drop per unit length (think about why that is).

Now find the velocity U at which the fluid flows through the pipe.

Why do you think the density of the fluid does not matter here? Under
what conditions would you expect it to start being an important parameter?
(Think about the discussion in the lectures — what is the dimensionless
number that controls this?)



Further Reading

e P. W. Bridgman, Dimensional Analysis (there is a very cheap Amazon
reprint of this classic 1920 text — a bit dated, but still quite readable)

e G. I. Barenblatt, Scaling (this is quite advanced, but you can read
the first couple of chapters; this is the book from which I lifted the
G. I. Taylor example — but don’t look until you have attempted to
solve it unaided! It also contains several other intesting examples of
dimensional analysis, including one giving important insights into row-
ing, which you will find fascinating in the unlikely case that you are
into that kind of thing, despite being a Merton physicist — and if you
are not into it, this will give you the satisfying feeling that you know
more of the physics of it than those who are)

e L. Landau and E. Lifshitz, Fluid Mechanics (Vol. 6 of their Course of
Theoretical Physics, all of the ten volumes of which every self-respecting
physicist should keep on his/her desk at all times; you will find there an
account of some rather complicated issues that arise in the Poiseuille
problem at large Reynolds numbers; you can also read there how bub-
bles rise, bodies move through fluid etc.)



