
A1: Thermodynamics, Kinetic Theory and Statistical

Mechanics

Toby Adkins

March 20, 2016



Contents

1 Basic Thermodynamics 2

1.1 Some De�nitions 3
1.2 The Zeroth Law 5
1.3 The First Law 6

1.3.1 Heat Capacity 6
1.3.2 Thermodynamic Changes 8
1.3.3 The Carnot Cycle 9

1.4 The Second Law 12
1.4.1 Carnot's Theorem 12
1.4.2 Back to Clausius and Kelvin 13
1.4.3 Clausius' Theorem and Entropy 14
1.4.4 Calculating Entropy Changes 15
1.4.5 The Joule Expansion 17

1.5 Thermodynamic Relations 18
1.5.1 General Conditions for Thermodynamic Equilibrium 18
1.5.2 Thermodynamic Potentials 19
1.5.3 The Maxwell Relations 20
1.5.4 Some Useful Thermodynamic Relations 21

1.6 Thermodynamics of Other Materials 23
1.6.1 Elastic Rod 23
1.6.2 Liquid Film 24
1.6.3 Paramagnetism 25

2 Kinetic Theory 27

2.1 Statistical Description of a Gas 28
2.1.1 The Thermodynamic Limit 28

2.2 Distributions and Isotropy 30
2.2.1 Isotropic Distributions 30
2.2.2 The Maxwellian Distribution 31

2.3 Particle Flux 33
2.3.1 Pressure 33
2.3.2 E�usion 36

2.4 Collisions 38
2.4.1 The Characteristic Velocity 38
2.4.2 Collisions in a Mixture 39

2.5 Transport 40
2.5.1 Thermal Conductivity 40
2.5.2 Viscosity 41
2.5.3 Self-Di�usion 43
2.5.4 Heat Di�usion 44

2.6 Local Equilibrium 49

1



Toby Adkins A1

2.6.1 The Kinetic Equation 49
2.6.2 Conservation Laws 50
2.6.3 Self-Di�usion 2.0 51

3 Statistical Mechanics 53

3.1 Basic Principles 54
3.1.1 States of a System 54
3.1.2 Gibbs Entropy 54
3.1.3 Entropy Maximisation 55
3.1.4 Stirling's Formula 56

3.2 The Canonical Ensemble 58
3.2.1 Some Important Relationships 59
3.2.2 Stability and Equilibria 60
3.2.3 Some Common Examples 62

3.3 The Grand Canonical Ensemble 65
3.3.1 Chemical Potential 65
3.3.2 The Grand Potential 66
3.3.3 Multi-species Systems 67

3.4 The Ideal Gas 70
3.4.1 Distinguishability 70
3.4.2 Thermodynamic Quantities 71
3.4.3 Internal Degrees of Freedom 71
3.4.4 The Equipartition Theorem 73
3.4.5 With the Grand Canonical Ensemble 74

3.5 Quantum Gases 77
3.5.1 Occupation Number Statistics 77
3.5.2 Density of States 78
3.5.3 Standard Calculations 79
3.5.4 Degenerate Fermi Gas 81
3.5.5 Degenerate Bose Gas 86

3.6 The Photon Gas 91
3.6.1 Thermodynamically 91
3.6.2 As a Quantum Gas 91

4 Further Thermodynamics 93

4.1 Real Gases 94
4.1.1 Virial Expansion 94
4.1.2 Van-der-Waals Gas 95
4.1.3 Dieterici Gas 95
4.1.4 Critical Points 95
4.1.5 Expansions of Real Gases 97

4.2 Phase Transitions and Equilibria 100
4.2.1 Latent Heat 100
4.2.2 The Clausius-Clapeyron Equation 100

2



1. Basic Thermodynamics

This chapter aims to cover the basic concepts of Thermodynamics, including:

• Some De�nitions

• The Zeroth Law

• The First Law

• The Second Law

• Thermodynamic Potentials

• Thermodynamics of Other Materials

Students will �nd that a lot of the material covered in this chapter has an almost purely
experimental basis; many relations in Thermodynamics come from the results of exper-
iment, rather than derivation from some fundamental concept, such as the value of the
adiabatic constant for particular substances. This should not be a cause for alarm; in fact
quite the opposite. It simply means more results that can be quoted without proof. Note
that we will use d to refer to an exact di�erential, and d̄ to refer to an inexact di�erential.
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1.1 Some De�nitions

Before diving right into derivations and such, we need to de�ne some concepts that will be
used throughout this chapter, as follows:

• System and Surroundings - The 'system' is the term used to refer to the part of
the Universe that we wish to examine, and the 'surroundings' are simply everything
that is not this system, though it is often used to refer to the vicinity of the sys-
tem. Generally, we are only interested in changes to the system, rather than the
surroundings

• Observables - There are two main types of observables in Thermodynamics. Macro-
scopic observables refer to large properties of the system, such as temperature (T),
volume (V) and pressure (p). Conversely, microscopic observables correspond to the
properties of individual entities within the system, such as the position and velocity
of all the particles within a gas. Evidently, these are much harder to determine than
the macroscopic observables. We can describe the state of the system in terms of
either macroscopic or microscopic observables, though evidently the former is simpler
to do. For each 'macro-state' of the system (a particular combination of macroscopic
observables), there may be a large number of corresponding 'micro-states'. For ex-
ample, if a gas is at a particular temperature and pressure, there is a very large
number of possibilities for the number of combinations of the energies and velocities
of the individual particles that may create this

• Thermodynamic Equilibrium - This occurs where the macroscopic observables are in-
dependent of time (not changing). Macro-states are only de�ned in Thermodynamic
equilibrium, because we cannot de�ne the values of the macroscopic quantities when
they are changing. However, the micro-states of the system are always well-de�ned,
as they do not depend on a consideration of the average quantities of the system

• Function of State - These are functions of parameters q = q1, q2, . . . , qn (variables of
state) that specify the state of the system. These are by de�nition exact di�erentials,
such that

∆f(q) = f(q
f
)− f(q

i
)

An equation of state is simply a relationship between two functions of state. The
most well-known function of state (in Thermodynamics at least) is the Ideal Gas Law

pV = nmRT (1.1)

where nm corresponds to the number of moles in the system, and R = 8.3144598
JK−1mol−1 is the universal gas constant. This means that for any ideal gas, there
are only two independent variables of state

• Ideal Gas - This is a theoretical gas composed of many randomly moving point parti-
cles that do not interact except when they collide elastically. These two assumptions
are important in deriving many results in Kinetic Theory, as supposed to Thermo-
dynamics, but in this chapter we will only be working with ideal gases

• Quasi-static - A change in the system is said to be quasi-static if it is done slowly
enough to preserve thermodynamic equilibrium. This means that the functions of
state remain de�ned throughout. A good way of thinking about a quasi-static change
is as making a very large number of in�nitesimal changes to the system, where each
barely modi�es the system, but their net e�ect is some overall change in the system
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• Reversible - A change in the system is said to be reversible if it is quasi-static and
there is no hysteresis, or heat loss

• Isothermal - A change in the system is said to be isothermal if there is no change in
temperature of the system

• Adiabatic - A change is said to be adiabatic if it is both reversible and isothermal.
This is the case when the system is thermally isolated.

As readers may have guessed, we will mostly be describing systems in terms of the macro-
scopic functions of state, rather than on a micro-state level; we will leave that until Chapter
(3).
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1.2 The Zeroth Law

The Zeroth Law of Thermodynamics states that

If a system A is in thermal equilibrium with system B, and system B is
in thermal equilibrium with system C, then A in in thermal equilibrium
with system C

This means that all systems must have some common property that can be used to relate
them. If A is to be in thermal equilibrium with C, then they both must satisfy some
function of state

fac(a1, a2, a3, . . . , c1, c2, c3, . . . )

Similarly, if A is to be in thermal equilibrium with B, then they both must satisfy some
function of state

fbc(b1, b2, b3, . . . , c1, c2, c3 . . . )

We can re-arrange these functions for c1 such that, for new functions gac and gbc,

gac(a1, a2, a3, . . . , c2, c3 . . . ) = gbc(b1, b2, b3, . . . , c2, c3 . . . ) (1.2)

We can de�ne some function fab such that

fab(a1, a2, a3, . . . , b1, b2, b3 . . . ) = 0 (1.3)

without assuming any correspondence between the states of A and B. We should be able
to arbitrarily take some of the parameters that satisfy (1.3) and substitute them into (1.2);
this should not change the validity of (1.2). This means that the functions gac and gbc are
independent of c1, c2, . . . , and so we can de�ne two new functions such that

Θa(a1, a2, a3, . . . ) = Θb(b1, b2, b3 . . . )

The function Θ is thus the property that is shared by all materials that we call tempera-
ture; a macroscopic observable that is a function of the state parameters.

A thermometer is a device used to measure the temperature of another device. They func-
tion by placing two objects in thermal contact until they both reach thermal equilibrium.
Knowledge about the behaviour of the thermometer at particular temperatures, such as
calibrating a column of liquid mercury against a temperature scale, can then allow us to
determine the temperature of the �rst body. Thus, a simple alternative statement to the
Zeroth Law is that 'thermometers work'.
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1.3 The First Law

The First Law of Thermodynamics is simply a statement of energy conservation as

Energy is conserved, and both heat and work are forms of energy

Let U be the internal energy of the system; this can include the kinetic energy of the
particles, the rotational energy, the chemical potential energy, the electrical energy, and so
on. Let W be the work done on the system by some external body. Then we can write:

dU = d̄Q+ d̄W (1.4)

What is this quantity Q? We de�ne the di�erences in energy dU as the adiabatic work done
to move a system from one adiabatic state to another. We can then de�ne the quantity
Q as the di�erence between the adiabatic work, and the actual work done on the system.
We call this 'heat'; this means that heat is essentially energy in transit.

Figure 1.1: Compressing an ideal
gas

Consider an ideal gas inside a thermally isolated cylin-
der at some pressure p, constrained by a piston of area
A. The work done to move the piston a distance dx
against the pressure of the gas is

d̄W = F dx

= −(pA) dx

= −p (Adx)

= −pdV

Assuming that this change is made gradually and not
explosively, we can say that this change is reversible.
Then, we can re-write (1.4) as

dU = d̄Q− pdV

It must be stressed that this last expression is for an
ideal gas, and is not a universal equation; we will see
other such forms of (1.4)

1.3.1 Heat Capacity

The heat capacity of a system is a measure of how much heat must be supplied to it to
raise the temperature of the system in order to change the temperature by dT . As such,
we can write

d̄Q = C dT (1.5)

Let us consider the internal energy to be a function of T and V , namely U = U(T, V ).
Using (1.4), we can write that

d̄Q = dU − d̄W
= dU + pdV

=

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV + pdV

Dividing through by dT , we arrive at

d̄Q

dT
=

(
∂U

∂T

)
V

+

[(
∂U

∂V

)
T

+ p

](
dV

dT

)
(1.6)
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At constant volume, dV = 0. The heat capacity at constant volume is de�ned as

CV =

(
∂U

∂T

)
V

= T

(
∂S

∂T

)
V

(1.7)

Similarly, at constant pressure dp = 0. The heat capacity at constant pressure is de�ned
as

Cp =

(
∂U

∂T

)
V

+

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

= T

(
∂S

∂T

)
p

(1.8)

Just looking at these two expressions, it is clear that generally Cp > CV ; this means that it
takes more energy to change the temperature at constant pressure than it does at constant
volume.

Let us consider these quantities for an ideal gas. Suppose that the internal energy is a
function of temperature only U = U(T ), such that

U =
3

2
nmRT

We will derive this result in the chapter on Kinetic Theory. Using the Ideal Gas Law, and
substituting it into the relations for Cp and CV , we obtain

CV =

(
∂U

∂T

)
V

=
3

2
nmR

Cp = CV + nmR =
5

2
nmR

We de�ne the adiabatic index γ as

γ =
Cp
CV

= 1 +
nmR

CV
=

5

3
for an ideal gas (1.9)

This is a constant which appears a lot when considering heat changes of systems. Now
that we have de�ned these heat capacities, we can use them to calculate the heat changes
at constant pressure and volume. Re-arraging the ideal gas law for T and substituting it
into (1.5), we obtain

d̄Q =
C

R
(V dp+ pdV )

We can then either evaluate this at dp = 0 or dV = 0 and use the corresponding expression
for the heat capacity.

From an initial state (p1, V1) a gas is cooled at constant pressure to (p1, V2). Then, the gas
is heated at constant volume to (p2, V2). Calculate the ratio of change in heat during the
�rst process to the second.

For this, use the formula above. The �rst process is at constant pressure, and so

Q1 =
Cp
R
pdV

=
Cp
R
p1

∫ V2

V1

dV

=
Cp
R
p1 (V2 − V1)
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Similarly, the second process is at constant volume, so

Q2 =
CV
R

V dp

=
CV
R

V2

∫ p2

p1

dp

=
CV
R

V2 (p2 − p1)

Thus, we arrive at the desired result

Q1

Q2
=
Cp
CV
· p1(V1 − V2)

V2(p2 − p1)
= γ

(V1/V2)− 1

(p2/p1)− 1

1.3.2 Thermodynamic Changes

We can now examine isothermal and adiabatic processes for an ideal gas. In an isothermal
process, temperature remains constant, meaning that there is no change in internal energy.
Thus

0 = d̄Q+ d̄W

d̄Q = −d̄W

∆Q = −
∫
d̄W

=

∫ V2

V1

pdV

=

∫ V2

V1

nmRT

V
dV

Integrating this, we arrive at the useful expression

∆Q = nmRT log

(
V2

V2

)
(1.10)

Now consider an adiabatic change. There is no heat exchange with the surroundings, and
so d̄Q = 0.

dU = d̄W

CV dT = −nmRT
V

dV

dT

T
= −nmR

CV

dV

V

log

(
T2

T1

)
= −nmR

CV
log

(
V2

V1

)
Using the de�nition in (1.9) for an ideal gas, and taking the exponential of both sides, we
�nd that

TV γ−1 = constant (1.11)

This can be re-arranged into a few useful forms by using the Ideal Gas Law. As a little
aside, we have derived this equation just by manipulation of mathematical identities; it
has not really told us anything about how the gas actually behaves. The same result can
be derived a little more intuitively through Kinetic Theory (see Section (2.3.1)).
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1.3.3 The Carnot Cycle

Thermodynamic processes can be graphed in order to give us a visual understanding of
the way that they operate. The most common set of axes to use for this are pressure and
volume, and so diagrams of this type are often referred to as p -V diagrams. On such
diagrams, lines along which there is no change in pressure are called isotherms and lines
along which there is no change in heat are called adiabats.

Thermodynamic processes that form a closed loop when graphed on a p -V diagram are
known as cycles, as they can be repeated.

Figure 1.2: The Carnot Cycle

This is known as the Carnot Cycle. It consists of four processes:

• 1→ 2: Heat Q1 is supplied to allow the isothermal expansion

Q1 = nmRT1 log

(
V2

V1

)
• 2→ 3: The system expands adiabatically

T1

T2
=

(
V3

V2

)γ−1

• 3→ 4: Heat Q2 is lost from the system as it contracts isothermally

Q2 = −nmRT2 log

(
V4

V3

)
• 4→ 1: The system contracts adiabatically

T2

T1
=

(
V1

V4

)γ−1

Evidently, in order for energy to be conserved, the cycle has to have some output work

W out = Q2 −Q1
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In this way, we can model the Carnot Cycle as being the result of a theoretical 'Carnot
Engine' with output W out that is connected to two reservoirs at temperatures T1 and
T2. As the Carnot Cycle is reversible, so is the Carnot Engine. Schematically, we can
represent this as in Figure (1.3). In this context, a resevoir can be thought of as a body
that is su�ciently large such that we can consider to have near-in�nite heat capacity; we
can continue adding or removing heat, and it's temperature will not change.

Figure 1.3: The Carnot Engine

E�ciency

We de�ne the e�ciency of some general engine as ratio of the work done to the energy
given to the system. In this case, the work done is W out, while the heat supplied is Q1.
Thus, we can write the e�ciency of a general heat engine is given by

η = 1− Q2

Q1

In the case of the Carnot Engine, we can use the expressions on Page 9 to �nd that

V2

V1
=
V3

V4
−→ Q2

Q1
=
T2

T1

The latter of these relationships can also be simply derived by considering the fact that the
total entropy change of the system is zero (though one must be careful with the de�nition
of entropy used). This means that our expression for the e�ciency becomes

ηc = 1− T2

T1
(1.12)

Three identical bodies are at temperatures 300K, 300K and 100K. If no work or heat is
supplied from outside, what is the highest temperature to which any one of these bodies can
be raised by the operation of heat engines?

Let the 300K bodies be A and B, and the 100K body be C. Connect up a Carnot Engine
using A and C as reservoirs, and use it to power another Carnot Engine (in reverse) that
pumps heat from C to B. This means that the heat transferred to C from A will then be
transferred to B, so long as the temperature of A is greater than that of C. In this case,
the e�ciency of the �rst Carnot Engine is ηc = 2/3, meaning that it transfers 1/3 of the
input heat to C. Hence, we can transfer 100K to B, and so the highest temperature to
which any of the bodies can be raised is 400K. There is another way to do this problem
by solving a cubic equation, but this solution is much more elegant.
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Carnot Engines in Reverse

One type of application of heat engines is where the engine is run in reverse, requiring the
input of work in order to move heat around. As we will see, in order for an engine to be
reversible, it must be a Carnot Engine.

• Refrigerator - This moves heat from a cooler body to a hotter body. As such, e�-
ciency is given by the amount of heat that can be extracted for the amount of work
done. As such, we de�ne e�ciency in this case as

η =
Q`
W

where Q` is the heat taken from the lower body. As it must be Carnot Engine, we
�nd that

η =
T`

Th − T`
(1.13)

where T` is the temperature of the cooler body, and Th is the temperature of the
hotter body.

• Heat Pump - Conversely, this moves heat from a hotter reservoir to somewhere else
desired. Suppose that we want to add Qh to the second body. The work done to
accomplish this is again W , and so the e�ciency is

η =
Qh
W

Again using the fact that it must be a Carnot Engine, it follows that

η =
Th

Th − T`
(1.14)

In both cases, the e�ciency may achieve values greater than unity (this has to be the
for the heat pump as Qh < W in order to conserve energy), which is why they are such
attractive methods for moving heat around.

A building is maintained at a temperature T by means of an ideal heat pump which uses a
river at temperature T0 as a source of heat. The heat pump consumes power W , and the
building loses heat to its surroundings at a rate α(T −T0). Find an expression for T in the
steady state.

Using (1.14), we can immediately write

η =
T

T − T0

When the house reaches steady state (i.e a stable temperature), the rate of heat loss to
the surroundings has to be equal to the output heat of the pump. Thus,

α(T − T0) = ηW

=
T

T − T0
W

WT = α(T − T0)2

Solving this quadratic for T , we obtain

T = T0 +
W

2α

(
1 +

√
1 +

4αT0

W

)
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1.4 The Second Law

Let us begin by considering two alternative statements of the Second Law of Thermody-
namics.

Clausius' Statement: No process is possible whose sole result is the trans-
fer of heat from a colder body to a hotter body

or

Kelvin's Statement: No process is possible whose sole result is the com-
plete conversion of heat into work

We will show that these are equivalent, but we �rst need to prove a very important result.

1.4.1 Carnot's Theorem

Carnot's Theorem states that

No engine operating between two temperature reservoirs can be more ef-
�cient than the Carnot Engine

That is, the most e�cient engine is the Carnot Engine. Let us prove this by supposing
that we could great an engine E that was more e�cient than the Carnot Engine C. Run E
between two reservoirs at temperatures T1 and T2 such that it's output work powers C in
reverse, as shown below.

Figure 1.4: The engine E and a Carnot engine C run in reverse

By the original assumption, we have that ηe > ηc. Then

W

Q′1
>
W

Q1

Q1 > Q′1

The First Law of Thermodynamics implies that

W = Q′1 −Q′2 = Q1 −Q2

Q1 −Q′1 = Q′2 −Q2

Both sides of this expression are positive, and so this means that the combined system
does no work to take heat from T2 and dump it in T1, which violates Clausius's statement
of the Second Law. Thus, reductio ad absurdum, we have shown the result.
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An interesting corollary of this theorem is the statement that

All reversible engines have the same e�ciency equal to that of the Carnot
Engine

Consider a reversible engine R such that ηr < ηc. Connect it to a Carnot Engine as shown
below.

Figure 1.5: A Carnot Engine C and a reversible engine R run in reverse

From the First Law of Thermodynamics,

Q′2 = Q′1 −W
Q2 = Q1 −W

Now use our original assumption that

ηr < ηc

1− Q2

Q1
< 1− Q′2

Q′1
W

Q1
<
W

Q′1
Q′1 < Q1

But this contradicts Clausius' statement, and so the result follows.

1.4.2 Back to Clausius and Kelvin

We can now show that Clausius' and Kelvin's statements are equivalent. First, consider a
hypothetical engine K that violates Kelvin's statement (converting all heat into work) and
use it to drive a Carnot Engine in reverse. Then by the First Law of Thermodynamics

W = Q′1

Q2 = Q1 −W

The net heat �owing from the combined engine into T1 is thus

Q1 −Q′1 = Q2

This means that heat is �owing directly from the cooler reservoir into the hotter reser-
voir (T1 > T2), violating Clausius' statement. Thus, Kelvin's statement implies Clausius'
statement.

14
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Figure 1.6: A hypothetical 'Kelvin viola-
tor' powering a Carnot Engine in reverse

Figure 1.7: A hypothetical 'Clausius vi-
olator' connected to a Carnot Engine

We still have to prove the reverse case. Consider an engine L that violates Clausius'
statement and connect to a Carnot engine as shown in Figure (1.7). Consider the net heat
�ows in and out of the engine.

Q in = Q1 −Q2

Q out = Q2 −Q2 = 0

This means that the net e�ect is the conversion of heat completely into work, violating
Kelvin's statement. We have thus shown that the statements are completely equivalent.

1.4.3 Clausius' Theorem and Entropy

Clausius' Theorem states that for a system at constant temperature T∮
d̄Q

T
≤ 0 (1.15)

where the equality sign applies when the change is reversible. The proof of this is a little
tedious, so it will not be covered here. In the case where the equality applies, we know
that the integrand must be an exact di�erential. We thus de�ne

dS =
d̄Q rev

T

This function of state is known as the entropy of the system, and is in a sense a measure
of the 'disorder' of the system at a particular temperature. Consider (1.15).∮

d̄Q

T
≤ 0∫ b

a

d̄Q

T
+

∫ a

b

d̄Q rev

T
≤ 0∫ b

a

d̄Q

T
≤
∫ b

a

d̄Q rev

T

d̄Q

T
≤ d̄Q rev

T
;

This means we can write

dS =
d̄Q rev

T
≥ d̄Q

T
(1.16)
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If a system is thermally isolated, dQ = 0, meaning that dS ≥ 0. This leads to a more
universal statement of The Second Law of Thermodynamics as

For any thermally isolated system, the entropy must either stay the same
or increase: dS ≥ 0

This is often stated as 'the entropy of the Universe must increase' as this is technically
true; if we consider the Universe as a thermally isolated system, it's entropy can do nothing
but increase (as there are no truly adiabatic processes).

For a reversible change, d̄Q = TdS. This means we can re-write the First Law of Thermo-
dynamics as

dU = TdS − pdV (1.17)

Even though we have proven it using results for reversible changes, this equation turns
out to be always true; for an irreversible change, d̄Q ≤ TdS but d̄W ≥ −p dV , meaning
that dU remains the same regardless of the reversibility of the process. For an adiabatic
process, the total change in entropy is zero as d̄Q = 0 by de�nition. However, this is not
the case for isothermal processes.

1.4.4 Calculating Entropy Changes

Consider a large reservoir at temperature Tr that is placed in thermal contact with a smaller
system at temperature Ts that has heat capacity C that is independent of temperature.
As the reservoir remains at constant temperature, it's change in entropy is given by

∆Sr =

∫
d̄Q rev

Tr

=
1

Tr

∫
d̄Q rev

=
1

Tr
C(Ts − Tr)

This is because we assume that the bodies will reach thermodynamic equilibrium, and we
have used (1.5). Thus,

∆Sr = C

(
Ts
Tr
− 1

)
(1.18)

Similarly for the system

∆Ss =

∫
d̄Q rev

T

=

∫
d(CT )

T

= C

∫
dT

T

using (1.5) again. Thus,

∆Ss = C log

(
Tr
Ts

)
(1.19)

The change in entropy of the Universe, ∆Su, is simply the sum of both of these terms.
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Initially, a cube of heat capacity C is cooled from an initial temperature Ta to a �nal tem-
perature Tb using a heat-bath at temperature Tb. For Ta > Tb, �nd the ratio of Ta to Tb
that allows the total entropy change to vanish in the limit where an in�nite number of
intermediate baths are used.

If in the interval Ta − Tb there are n baths, then each bath creates a temperature change
of (Ta − Tb)/n. Consider the ith bath. The temperature at which we evaluate the bath is
given by

Ti = Ta − i
(
Ta − Tb

n

)
The total change in entropy for the baths is thus

∆Sb = C
Ta − Tb

n

n∑
i=1

1

Ta − i
(
Ta−Tb
n

)
= C

n∑
i=1

1
Ta

Ta−Tb n− i

= C
n∑
i=1

1

Rn− i

We have let R = Ta/(Ta − Tb). Now let j = Rn− i.

∆Sb = C
Rn−1∑
j=n

1

j

≈ C log

(
Rn− 1

n

)
= C log

(
R− 1

n

)
Now, the change in entropy of the cube is always the same, regardless of the value of n.

∆Sc = C log

(
Tb
Ta

)
= C log

(
1− 1

R

)
Thus, the total entropy change is given by in the limit as n→∞ is

∆Su = lim
n→∞

∆Sb + ∆Sc

= lim
n→∞

C log

(
R− 1

n

)
+ C log

(
1− 1

R

)
= C log (R− 1)

This means that we require R = 2 for the entropy to vanish.

Ta
Ta − Tb

= 2

Ta = 2Ta − 2Tb

Ta = 2Tb

This means that the ratio that we require for the entropy to vanish is Ta/Tb = 2, such as
Ta = 200K and Tb = 100K.
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The Entropy of an Ideal Gas

Here we want to calculate the entropy of an arbitrary number (nm) of moles of an ideal
gas. Consider entropy as a function of T and V .

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

=
CV
T

dT +

(
∂p

∂T

)
V

dV

Here we have used (1.31). For an ideal gas, we have that(
∂p

∂T

)
V

=
nmR

V

Integrating dS, we thus �nd that

S = CV log(T ) + nmR log(V ) + constant (1.20)

Thus, the entropy of an idea gas increases with both T and V .

1.4.5 The Joule Expansion

Consider two containers A and B of volumes Va and Vb respectively that are connected by
a tap. Initially, container A is �lled with one mole of ideal gas at pi and Ti. We now pose
the question; if the system is thermally isolated, what is the change of entropy when the
tap is opened (assuming no work is done to open the tap)?

As the system is thermally isolated, d̄Q = 0. There is also no work done, which implies
d̄W = 0. This means that there can be no change in temperature as dU(T ) = 0.

dU = TdS + d̄W

0 = TdS − pdV

dS =
pdV

T
=
RdV

V

This means we �nd that the entropy of the expansion is

∆S = R log

(
Vf
Vi

)
The only way to get the gas back into chamber A is to compress it. The best way to do this,
or rather the way that requires the least work, is via a reversible isothermal compression.

∆W = −
∫ Vi

Vf

pdV = −
∫ Vi

Vf

RT

V
dV = RT log

(
Vf
Vi

)
This means that for The Joule Expansion, the entropy change is simply

∆S =
∆W

T
(1.21)
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1.5 Thermodynamic Relations

Before diving into the material for this section, it would be useful to recall two important
results from partial calculus. Consider a function z = f(x, y). We can write

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dx

and

dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz

Substituting the second of these into the �rst:

dx =

(
∂x

∂y

)
z

(
∂y

∂x

)
z

dx+

[(
∂x

∂y

)
z

(
∂y

∂x

)
x

+

(
∂x

∂z

)
y

]
dz

For dz = 0, we �nd the reciprocity relation(
∂y

∂x

)
z

=

(
∂x

∂y

)−1

z

(1.22)

Now for dx = 0, we obtain the cyclic relation(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (1.23)

We will use these extensively when manipulating partial derivatives in this section.

1.5.1 General Conditions for Thermodynamic Equilibrium

Consider a system in contact with surroundings that are at To and po. The surroundings
will do work d̄W and transfer d̄Q to the system. Calculating the change in entropy of the
surroundings as the system comes to thermal equilibrium:

dUo = −dU = TodSo − po(−dV )

dSo = −
(
dU + podV

To

)
The entropy change in the Universe is thus

dSu = dSo + dS ≥ 0

TodSu = − (dU + podV − TodS)

As po and To are constants, we de�ne the availability A

dA = dU + podV − TodS (1.24)

such that

dA ≤ 0

in equilibrium. A will decrease as the system goes towards equilibrium, and so equilibrium
will be reached when A is minimised.
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1.5.2 Thermodynamic Potentials

Thermodynamic potentials are scalar quantities used to represent the thermodynamic state
of a system. They are total di�erentials as they are functions of state.

Internal Energy

Internal Energy U(S, V ) is de�ned as

dU = TdS − pdV (1.25)

• It has natural variables S and V . It follows that

T =

(
∂U

∂S

)
V

and p = −
(
∂U

∂V

)
S

• Internal energy corresponds to the heat absorbed by the system under isochoric
(constant V ) expansion: dU = CV dT

• If a system is thermally isolated at a �xed volume, dA = dU . Equilibrium will be
reached when the internal energy of the system is minimised

Enthalpy

The enthalpy H(S, p) is de�ned as

H = U + pV (1.26)

• It has natural variables S and p. It has the explicit form of

dH = dU + pdV + V dp

= TdS − pdV + pdV + V dp

dH = TdS + V dp

It follows that

T =

(
∂H

∂S

)
p

and V = −
(
∂H

∂p

)
S

• Enthalpy corresponds to the heat absorbed by a system in an isobaric (constant p)
process: dH = Cp dT . For example, if a chemical reaction is exothermic, dH < 0

• If a system is thermally isolated with �xed pressure, dA = dH. Equilibrium will be
reached when the enthalpy of the system is minimised

Helmholtz Free Energy

The Helmholtz Free Energy F (V, T ) of a system is de�ned as

F = U − TS (1.27)

• It has natural variables V and T . It has the explicit form of

dF = dU − SdT − TdS
= TdS − pdV − SdT − TdS

dF = −pdV − SdT

It follows that

p = −
(
∂F

∂V

)
T

and S = −
(
∂F

∂T

)
V
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• The Helmholtz Free Energy corresponds to the maximal amount of work that the
system can do in an isothermal (constant T ) process: dF = −pdV . If dF > 0, then
work is done on the system by the surroundings

• If a system has a �xed temperature and volume, then dA = dF . Equilibrium will be
reached when the Helmholtz function is minimised

Gibbs Free Energy

The Gibbs Free Energy G(T, p) of a system is de�ned as

G = U − TS + pV (1.28)

• It has natural variables T and p. It has the explicit form of

dG = dU − TdS − SdT + pdV + V dp

= TdS − pdV + pdV − TdS + V dp− SdT
dG = V dp− SdT

It follows that

V =

(
∂G

∂p

)
T

and S = −
(
∂G

∂T

)
p

• For a system undergoing processes at constant T and p, dG = 0. This means that
the Gibbs function is conserved in any phase transition under these constraints

• If a system has a �xed temperature and pressure, the dA = dG. Equilibrium will be
reached when the Gibbs function is minimised

1.5.3 The Maxwell Relations

The so called Maxwell Relations are derived from the fact that the thermodynamic poten-
tials are total di�erentials. This means that for some general function

df = Adx+Bdy −→ ∂A

∂y
=
∂B

∂x

Considering the thermodynamic potentials:

• Internal Energy - dU = TdS − pdV(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(1.29)

• Enthalpy - dH = TdS + V dp (
∂T

∂p

)
S

=

(
∂V

∂S

)
p

(1.30)

• Helmholtz Free Energy - dF = −SdT − pdV(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

(1.31)

• Gibbs Free Energy - dG = V dp− SdT(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

(1.32)
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1.5.4 Some Useful Thermodynamic Relations

We can use these thermodynamic potentials to derive some very useful thermodynamic
relations.

1. Consider S(T, V )

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

=

(
∂S

∂T

)
V

dT +

(
∂p

∂T

)
V

dV

from (1.31). Let dS = 0:

−
(
∂S

∂T

)
V

dT =

(
∂p

∂T

)
V

dV(
∂T

∂V

)
S

= −
(
∂p

∂T

)
V

(
∂S

∂T

)−1

V

Recall (1.7). Then: (
∂T

∂V

)
S

= − T

CV

(
∂p

∂T

)
V

(1.33)

This is appropriate for an adiabatic or isentropic (at constant entropy) as there is
no change in entropy. This can be used to derive (1.11) if the Ideal Gas Law is
considered

2. Consider U(T, V )

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV

= CV dT +

(
∂U

∂V

)
T

dT

Using the First Law of Thermodynamics, and substituting the result for dS from
above

dU = TdS − pdV

CV dT +

(
∂U

∂V

)
T

dT = T

[(
∂S

∂T

)
V

dT +

(
∂p

∂T

)
V

dV

]
− pdV

Let dT = 0 (
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p

dU = CV dT +

[
T

(
∂p

∂T

)
V

− p
]
dT

Now, letting dU = 0, and re-arranging, we arrive at(
∂T

∂V

)
U

= − 1

CV

[
T

(
∂p

∂T

)
V

− p
]

(1.34)

This is appropriate for an isothermal expansion as there is no change in the internal
energy
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3. Consider H(T, p)

dH =

(
∂H

∂T

)
p

dT +

(
∂H

∂p

)
T

dp

= Cp dT +

(
∂H

∂p

)
T

dp

dS =

(
∂S

∂T

)
p

dT −
(
∂V

∂T

)
p

dp

using (1.32). Substitute these into the explicit form of dH

Cp dT +

(
∂H

∂p

)
T

dp =

(
∂S

∂T

)
p

dT −
(
∂V

∂T

)
p

dp+ V dp

dp

[(
∂H

∂p

)
T

+ T

(
∂V

∂T

)
p

− V

]
= dT

[
T

(
∂S

∂T

)
p

− Cp

]

Let dT = 0 (
∂H

∂p

)
T

= V − T
(
∂V

∂T

)
p

dH = Cp dT +

[
V − T

(
∂V

∂T

)
p

]
dp

Letting dH = 0, and re-arranging, we arrive at(
∂T

∂p

)
H

=
1

Cp

[
T

(
∂V

∂T

)
− V

]
(1.35)

This is appropriate for a reversible isothermal expansion as it occurs at constant H.

4. Consider S(T, V )

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV(
∂S

∂T

)
p

=

(
∂S

∂T

)
V

+

(
∂S

∂V

)
T

(
∂V

∂T

)
p

Cp
T

=
CV
T

+

(
∂S

∂V

)
T

(
∂V

∂T

)
p

Using (1.31) and a cyclical di�erential identity:(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

= −
(
∂p

∂V

)
T

(
∂V

∂T

)
p

Substituting this in, and using the known de�nitions of βp and κT , we arrive at

Cp − CV =
V Tβ2

p

κT
(1.36)
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1.6 Thermodynamics of Other Materials

Up until this point, we have just considered Ideal Gases, writing the First Law of Thermo-
dynamics in a particular form, and deriving many results from this. However, the relevant
thermodynamic concepts can be extended to systems other than Ideal Gases. Instead of
writing d̄W = −pdV , we write

d̄W = X dx (1.37)

where X is some intensive (do not depend on system size), generalised force, and dx is
some extensive (depend on system size), generalised displacement. Some examples include

X x

�uid pressure (−p) volume (V )
elastic rod tension (f) length (L)
liquid �lm surface tension (γ) surface area (A)
dielectric electric �eld (E) polarisation (p)
magnetic magnetic �eld (B) magnetisation (m)

In these more general cases, we de�ne the heat capacity at constant 'blah' by

C blah = T

(
∂S

∂T

)
blah

(1.38)

The following sections detail some examples of applying these thermodynamic concepts
to these generalised cases. Do not forget the thermodynamic relations, particularly the
Helmholtz free energy in isothermal calculations involving entropy.

1.6.1 Elastic Rod

The equation of state for an elastic rod is

dU = TdS + fdL (1.39)

Young's isothermal modulus is de�ned as the ratio of the stress σ to the strain ε.

σ =
df

A

ε =
dL

L

→ ET =
σ

ε
=
L

A

(
∂f

∂L

)
L

The linear expansiveness at constant tension is give by

αf =
1

L

(
∂L

∂T

)
f

We can investigate some properties of the material.

• Adiabatic Stretching - Suppose that we increase the length without a change in
entropy, what is the response of the system?

d̄Q = 0

dU = d̄W

CT dT = f dL

Thus, as CT > 0, f > 0, meaning that for an increase in length, temperature will
also increase
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• Contraction under constant f - If we warm the band under constant tension, it will
contract. Using the reciprocity relation(

∂L

∂T

)
f

(
∂f

∂L

)
T

(
∂T

∂f

)
L

= −1(
∂L

∂T

)
f

= −
(
∂f

∂T

)
L

(
∂L

∂f

)
T

αf = − 1

AET

(
∂f

∂T

)
L

Now if we assume that the tension f is proportional to the temperature T if the
length L is held constant, then clearly αf < 0. This means it will contract

• Entropy changes under stretching - How does the entropy change under stretching?
Again using a reciprocity relation(

∂f

∂T

)
L

= −
(
∂f

∂L

)
T

(
∂L

∂T

)
S

= −AETαf

From the Helmholtz function,

S = −
(
∂F

∂T

)
L

and f =

(
∂F

∂L

)
T

This means that

∆Q = T∆S = αfAETT∆L

Stretching the rod increases entropy if αf > 0 for the substance. Let us consider the case of
a metallic wire. This contains many small crystallites which have low entropy. The action
of stretching the wire distorts those small crystallites, and that increases their entropy
and so heat is absorbed. However, for materials like rubber rubber αf < 0, and hence
an isothermal extension means that heat is emitted. The action of stretching a piece of
rubber at constant temperature results in the alignment of the long rubber molecules that
are initially bunched, reducing their entropy and causing heat to be released.

1.6.2 Liquid Film

In this case, the equation of state for the internal energy is given by:

dU = TdS + γdA

From the Helmholtz free energy,

dF = −SdT + γdA(
∂S

∂A

)
T

= −
(
∂γ

∂T

)
A

Consider the case where a cloud of droplets condenses isothermally to form a single droplet.
What is the change in temperature?

dU = TdS + γdA = 0

T

[(
∂S

∂A

)
T

dA+

(
∂S

∂T

)
A

dT

]
+ γdA = 0

T

(
∂S

∂A

)
T

+ cpMdT + γdA = 0
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Re-arranging, we can �nd an expression for the change in temperature:

cpMdT = −
(
T

(
∂S

∂A

)
T

+ γ

)
dA

cpMdT = −
(
∂U

∂A

)
T

dA

∆T = − ∆A

cpM

(
∂U

∂A

)
T

The change in entropy can simply be calculated from

∆S ≈
(
∂S

∂A

)
T

∆A(
∂S

∂A

)
T

=
1

T

[(
∂U

∂A

)
T

− γ
]

= −
(
∂γ

∂T

)
A

∆S =
∆A

T

[(
∂U

∂A

)
T

− γ
]

1.6.3 Paramagnetism

Paramagnetic materials are those that obtain a magnetisation M in a magnetic �eld,
giving them a magnetic moment m = MV for M = χmB/µo. We de�ne the magnetic
susceptibility as

χm = lim
H→0

M

H
=
C

T
(1.40)

This means that χ obeys Curie's inverse law. The equation of state for the internal energy
is

dU = TdS +B · dm (1.41)

Note that for paramagnetic materials, it is useful to include the magnetic energy in the
Helmholtz free energy, given by

F = U − TS −m ·B
→ dF = −SdT −m · dB

If we want the change in entropy at constant temperature, for example, we can apply the
Helmholtz relation (

∂S

∂B

)
T

=

(
∂m

∂T

)
B

=
∂

∂T

(
V χmB

µo

)
B

= − CV

µoT 2
B

→ ∆S = −B
2CV

2µoT 2

This is a negative quantity. This means that entropy decreases upon isothermal magneti-
sation; this is because the magnetic domains within the material become aligned, reducing
the number of micro-states that the system can occupy, and so reducing disorder. We will
learn more about this idea of "disorder" in 3.
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The same paramagnetic material is initially at temperature T1. Find the �nal temperature
T2 when the �eld is reduced adiabatically from B to zero (adiabatic demagnetisation).

Using another cyclic relation:(
∂T

∂B

)
S

= −
(
∂T

∂S

)
B

(
∂S

∂B

)
T

Thus, we can write, using the Helmholtz function(
∂T

∂B

)
S

=

(
− T

cBV

)(
−CBV
µoT 2

)
=

CB

µocBT

dT

dB
=

TCB

µoa
(

1 + B2C
µoa

)
Re-arranging and integrating:∫ T2

T1

dT

T
=

∫ 0

B

CB

µ0a+B2C
dB

log

(
T2

T1

)
=

[
1

2
log
(
µoa+B2C

)]0

B

= −1

2
log

(
1 +

B2C

µoa

)
Thus, we arrive at the expression

T2 =
T1√

1 + B2C
µoa
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2. Kinetic Theory

This chapter aims to cover the basics of Kinetic Theory, including:

• Statistical Description of a Gas

• Distributions and Isotropy

• Particle Fluxes

• Collisions

• Transport

• The Kinetic Equation

Kinetic Theory provides a much greater insight into the actual processes behind the be-
haviour of �uids, rather than just de�ning the evolution of macroscopic quantities as in
Thermodynamics. It has the further advantage of always being de�ned, regardless of the
state of the system. In this way, one could think of Thermodynamics as the study of the
stable states of the system, and Kinetic Theory as the study of how it got there. Note that
we will be making extensive use of probability distributions in this chapter, so it is recom-
mended that readers are familiar with some of their basic properties and implementation.

28



Toby Adkins A1

2.1 Statistical Description of a Gas

In this treatment of Kinetic Theory, we will make the following assumptions about the
Ideal Gas that we are considering:

• The number of particles is very large, but their separation is large in comparison to
their molecular size. This means that most of the container is empty space

• The particles do not interact with one another (or the container boundaries) except
via elastic, binary collisions with one another

• The particles do not experience any quantum e�ects; no quantum correlations

• The velocities of the particles are random and uncorrelated, according to some general
distribution

In practice, all this is satis�ed if the gas is su�ciently dilute (low enough number density
n) and su�ciently hot (high enough temperature T ) to avoid Quantum Mechanics, but
not so hot as to run into Relativity. Evidently, we will relax some of these assumptions
later, but they will hold unless otherwise stated.

Suppose that have a container of gas at t = 0, and want to predict it's behaviour at
future times. One way to do this would be to know the initial position and velocity of
every molecule of gas in the container, and then solve the resultant equations of motion.
However, this runs into two main problems:

1. There is too much information; as there are about 1023 molecules per m3, we would
require about 1012 Tb of data to store this, which is more data than the entire web
generated last year

2. It is very di�cult, nigh impossible to determine the initial conditions. However, even
if we did manage to do this, a small error would change the evolution by an order
of unity in a very small time-scale, as particles experience about 109 collisions every
second. Even a stray electron appearing at the edge of the observable universe would
completely change the time-evolution of the system after only 150 collisions

The pertinent question is thus as to how we do indeed describe the gas.

2.1.1 The Thermodynamic Limit

We solve this problem by assuming that particle motion is random, meaning that v is a
random variable, and there is a su�ciently large number of particles to describe the system
by average quantities. This is known as The Thermodynamic Limit.

Let us consider an example. Suppose that the internal energy of the gas consisting of N
particles of mass m is given by the expression

U =
1

2
Nm

〈
v2
〉

We are just considering the energy of the motion around the mean velocity, as we can
arbitrarily set this to zero. Evidently, the exact internal energy of the gas is given by the
sum of the kinetic energies if the individuals molecules.

Ue =
N∑
i=1

1

2
mv2

i
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Is our original supposition valid? Let us calculate the variance in the energy, assuming
that the velocities of the particles are independent.

σ2 =
〈
(Ue − U)2

〉
=
〈
U2
e

〉
− U2

=

〈∑
i

1

2
mv2

i

∑
j

1

2
mv2

j

〉
−

(∑
i

1

2
m
〈
v2
i

〉)2

=
1

4
m2

∑
i

〈
v4
i

〉
+
∑
i 6=j

〈
v2
i

〉 〈
v2
j

〉
−

(∑
i

〈
v2
i

〉)2


=
1

4
m2
[
N
〈
v4
〉

+N(N − 1)
〈
v2
〉2 −N2

〈
v2
〉2
]

=
1

4
Nm2

(〈
v4
〉
−
〈
v2
〉2
)

Now consider the ratio of the standard deviation to the actual energy:

σ

Ue
=

1√
N

√
〈v4〉
〈v2〉2

− 1 ∝ 1√
N

This means that for very large N , U ≈ Ue. This means that in The Thermodynamic
Limit, average quantities are extremely good approximations, subject to the assumption
that particles velocities are independent.
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2.2 Distributions and Isotropy

As seen in the previous section, the only feasible way to describe a gas is through a
statistical approach. To do this, we need to introduce the concept of a velocity distribution
function f(v)d3v. It is the joint PDF of vx, vy and vz such that∫ ∞

−∞
d3v f(v) =

∫ ∞
−∞

dvxdvydvz f(vx)f(vy)f(vz) = 1

meaning that it is properly normalised throughout the entirely of phase space. It represents
the faction of molecules that have velocities in the cube [v, v + d3v] in phase space.

2.2.1 Isotropic Distributions

A distribution is said to be isotropic if f(v) = f(v); that is, there is no special direction
that in�uences velocity. We can thus make a transformation to polar coordinates in phase
space:

f(v)d3v = f(v)v2 sin θ dvdθdφ

This means that while there is azimuthal symmetry, there is in fact a dependence on θ. If
we consider a sphere of radius v in phase-space, as in the �gure below, it is evident that the
volume of phase space enclosed by the ring will change depending on the value of theta,
with the minimum value actually occurring for θ = 0.

Figure 2.1: A sphere in phase space

Let the PDF of speeds be f̃(v). Then

f̃(v) =

∫ 2π

0
dφ

∫ π

0
dθ f(v)v2 sin θ = 4πv2f(v)

We thus �nd the important relationship between the velocity and speed disbributions of

f̃(v) = 4πv2f(v) (2.1)

31



Toby Adkins A1

From this, we can already show some properties of the velocity distribution. As the system
is isotropic, we can say that

〈vnx〉 =
〈
vny
〉

= 〈vnz 〉 = 0

For example, it is easy to show by direct integration that

〈|vi|〉 =
1

2
〈v〉 and

〈
v2
i

〉
=

1

3

〈
v2
〉

Suppose that we have some general moment

〈vi1vi2vi3 . . . vin〉

that we want to calculate for f(v). If n is odd, then we can immediately say the expression
is zero; this is because f(v) is an even function in v, and so the integral will evaluate to
zero. For the other cases, we can consider some generalised, symmetric tensor to work out
the desired result. For example, suppose that we want to calculate

〈vivjvkvl〉

There are six di�erent possible tensor combinations. This means that we can write, without
loss of generality, that

〈vivjvkvl〉 = αδijδkl + βδikδjl + γδilδjk

As the distribution is isotropic, exchanging any two of the indices will leave the product
invariant. By exchanging arbitrary combinations of the indices, it becomes clear that
α = β = γ. This gives

〈vivjvkvl〉 = α (δijδkl + δikδjl + δilδjk)

Let i = j and l = k:

〈vivivkvk〉 = α (δiiδkk + δilδli + δilδli)〈
v2 v2

〉
= α

(
n2 + n+ n

)〈
v4
〉

= α(15)

α =
1

15

〈
v4
〉

This means that we obtain the �nal result of

〈vivjvkvl〉 =
1

15

〈
v4
〉

(δijδkl + δikδjl + δilδjk)

2.2.2 The Maxwellian Distribution

Let us assume that the distribution is proportional to the Boltzmann factor, namely that

f(v) ∝ e−v2/v2
th where vth =

√
2kBT

m

for the Boltzmann constant kB. We require that the distribution function is normalised
over all phase space. Hence

1
!

=

∫
d3v f(v)∫

d3v f(v) =

(∫ ∞
∞

dvi e
−v2/v2

th

)3

=
(
πv2

th

)3/2
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We can thus write out expression for the velocity distribution as

f(v) =
1

(
√
πvth)

3 e
−v2/v2

th (2.2)

Using (2.1), we can write the speed distribution as

f̃(v) =
4πv2

(
√
πvth)

3 e
−v2/v2

th (2.3)

This is known as the Maxwell-Boltzmann distribution. Graphically, we can represent it as

Figure 2.2: The Maxwell-Boltzmann distribution, showing vmax, 〈v〉 and
√
〈v2〉

Moments of the Maxwellian

Using our knowledge of probability distributions from statistics, we know that we can �nd
the expectation value of some vn by

〈vn〉 =

∫ ∞
0

dv vnf̃(v)

However, evaluating these integrals can become very long and tedious for higher powers
of n as integration by parts has to be used multiple times. It can be shown, by creating a
recursion formula for the integral (considering both odd and even cases) that

〈vn〉 =


(n+2)!

(n+2
2

)! 2n+1 vth
n for even n

2√
π

(
n+1

2

)
! vth

n for odd n
(2.4)

Evidently, these formulae do not have to be remembered, but they are just here for reference
to check one's evaluation of moments. Some of the more common ones might be worth
remembering.

〈v〉 =
2√
π
vth

〈
v2
〉

=
3

2
vth

2
〈
v3
〉

=
4√
π
vth

3
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2.3 Particle Flux

Equations (2.2) and (2.3) describe the distribution of particles inside the isotropic gas, but
this is not necessarily the same as, say, the distribution of particles that make contact with
the walls of the container. In order to be able to �nd this, we need to consider the �ux of
particles on the walls of the container.

Let us align our z-axis perpendicular to the wall in question. Particles will only hit the wall
if they are less than vz away in some unit time. The fraction of particles with this velocity
is f(v)d3v. This means that the number of particles in the phase-space cube [v, v + d3v]
that hit the wall per-unit-area, per-unit-time is given by

dΦ(v) = nvz f(v)d3v

= n(v cos θ)f(v)v2 sin θ dvdθdφ

Our expression for particle �ux thus is

dΦ(v) = n cos θ sin θ v3f(v) dvdθdφ (2.5)

• This is not a Maxwellian distribution as it has an extra factor of v in it. This means
that it preferentially selects molecules with higher velocities, as these are more likely
to be going quickly enough to hit the wall. The distribution of speeds is given by

f̃e(v) =
2v3

vth4
e−v

2/v2
th (2.6)

This means that the most probable speed is

∂

∂v
: 0 = 3v2 − 2

v2
th

v4

vp =

√
3

2
vth

This is higher than the most probable speed for the rest of the gas vth. We can
conclude that, on average, particles included in this �ux are moving more quickly
than those that are not

• It is also not isotropic due to picking up the factor of cos θ. This is a manifestation
of the idea of the angular size of the area element as seen from the perspective of a
given particle; if it is travelling almost perpendicular to the wall, the angular size of
the are element will be very small, and so is less likely to hit it. The distribution of
angles is given by

f̃e(θ) = 2 sin θ cos θ (2.7)

The most probable angle is clearly π/4, which is in a sense intuitively obvious

2.3.1 Pressure

Pressure is a form of momentum �ux; it is a measure of the average amount of momentum
imparted to the walls of the container by the gas. Assume that collisions of individual
particles with the walls of the container are elastic, and that the wall is una�ected by the
collision (massive in comparison to the particles). Particles perpendicularly incident on
the wall at a speed vz will rebound with the same speed in the opposite direction, meaning
that the impulse imparted to the wall is

∆p = 2mvz
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where m is the mass of an individual particle. By the de�nition of (2.5), the number of
molecules doing this per-unit-area, per-unit-time is dΦ(v). Hence

dp = ∆p dΦ(v)

= 2mvz n cos θ sin θ v3f(v) dvdθdφ

= 2mn cos2 θ sin θ v4f(v) dvdθdφ

p = 2mn

∫ 2π

0
dφ

∫ π/2

0
dθ cos2 θ sin θ

∫ ∞
0

dv v4f(v)

= 2mn (2π)

(
1

3

)∫ ∞
0

dv v4f(v)

=
1

3
mn

∫ ∞
0

dv v2f̃(v)

Here we have made use of (2.1). Thus, our new expression for pressure is

p =
1

3
nm

〈
v2
〉

=
2

3

U

V
= nm

〈
v2
z

〉
(2.8)

This is in accordance with our expectations; a higher pressure may be a result of more gas
molecules, or the fact that the molecules are moving more quickly.

Recovering Thermodynamics

Using the fact that N = nV , we can write the equation for pressure as

p =
1

2
mn vth

2

=
1

2
mn

2kBT

m
= nkBT

→ pV = nmRT

where nm is the number of moles (not number density) and R = NAkB is the universal gas
constant. Note that N = nmNA where NA is Avogadro's constant. We have thus obtained
the Ideal Gas Law from Kinetic Theory. It is also clear from the expression for vth that

kBT =
1

2
mvth

2

This means that we can now de�ne temperature as the energy of a particle moving at the
most probable speed, giving us a more concrete idea than we originally had when de�ning
temperature in Section (1.2). We also see that the energy is given by

U =
3

2
NkBT = CV T (2.9)

This means, as we have assumed before, that the internal energy of an ideal gas depends
only on the temperature of the gas, and thus on the speed of the particles within it.

Adiabatic Expansion

We are now equipped to consider the adiabatic expansion of a gas as in Section (1.3.2).
Consider an insulated cylindrical vessel �lled with monatomic ideal gas, closed on oneside
and plugged by a piston on the other side. The piston is very slowly pulled out at some
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velocity u � vth. Let a particle of gas, with perpendicular component of it's velocity vz,
be incident on the piston.

In the rest frame of the piston, the particle is incident at velocity

v′i = vz − u

We assume that the velocity of the piston is unchanged as m piston � m particle. The �nal
velocity of the particle in this frame is thus

v′f = −(vz − u)

Transforming back to the rest frame of the container, the �nal velocity of the particle is

vf = −(vz − u) + u

= −(vz − 2u)

The change in energy of the particle is given by

∆E = T initial − T �nal

=
1

2
m(vz − 2u)2 − 1

2
mv2

z

=
1

2
m(v2

z − 2uvz + 4u2)− 1

2
mv2

z

= −2muvz + 2mu2

≈ −2muvz

as u � vth which is on the order of vz. Let d2ΦA(vz) be the �ux of molecules hitting the
surface area element dA of the piston per unit time. This is given by

d2ΦA(vz) = nvz f(vz)dvz dA

The rate of change of the internal energy of the container is thus

d

(
dU

dt

)
= ∆E d2ΦA(vz)

= −2mnu dA v2
zf(vz)dvz

dU

dt
= −2mnu dA

∫ ∞
0

dvz v
2
zf(vz)

= −mnu dA
〈
v2
z

〉
= −1

3
mnu dA

〈
v2
〉

by symmetry. This can be written as

dU

dt
= −2

3

U

V
u dA

However, u dA is simply the rate at which the volume increases.

dU

dt
= −2

3

U

V

dV

dt

This di�erential equation can easily be solved, and using the ideal gas law allows us to
re-obtain the result we derived in Thermodynamics of

pV 5/3 = constant

This time, we have a better understanding of where this result comes from; it is the change
in the internal energy of the gas particles that occurs as the volume expands as a result of
work being done on the piston.
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2.3.2 E�usion

Suppose now that we open a small hole of dimension d � λmfp (the typical distance
travelled by a given particle, as we will see later) in the side of the container. Then, �ux
of particles escaping through the hole or e�using is simply given by

Φ(v) =

∫
dΦ(v)

= n

∫ 2π

0
dφ

∫ π/2

0
dθ sin θ cos θ

∫ ∞
0

dv v3f(v)

=
1

4
n 〈v〉

Using the fact that p = nkBT and assuming that the distribution is Maxwellian, we can
arrive at the expression

Φ =
p√

2πmkBT
(2.10)

Once again, the distribution of e�using particles has the properties outlined in Section
(2.3); faster particles, and those that make small angles with the normal, are more likely
to e�use. E�usion can be used experimentally as a way of measuring internal properties
of the distribution without modifying the distribution itself. For example, we can �nd the
vapour pressure of a gas inside a container by measuring the rate of change of mass inside
that container. Suppose that the particles e�use through a hole of area A. Then the rate
of change of mass is

dM

dt
= m ΦA

= p A

√
m

2kBπT

p =

√
2kBπT

m

1

A

dM

dt

A closed vessel is partially �lled with liquid mercury; there is a hole of area A = 107m2

above the liquid level. The vessel is placed in a region of high vacuum at T = 273 K and
after 30 days is found to be lighter by ∆M = 2.4 × 105 kg. Estimate the vapour pressure
of mercury at 273K. (The relative molecular mass of mercury is 200.59)

We have already derived the appropriate expression, it is just a matter of putting the
information together.

∆M

∆t
≈ 9.26× 10−12 kgs−1

m =
Relative Atomic Mass

Na

≈ 3.3× 10−25 kg

→ p ≈ 0.0247 Nm−2

This is the approximate vapour pressure of mercury, assuming that the system is at equi-
librium.
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Conditions for Equilibrium

Suppose that we have two containers joined by a hole of radius a. What are the conditions
for now �ow between the containers? This will actually depend on the size of the hole.

• a� λmfp - In this case, we require that the pressures balance, namely

n1T1 = n2T2 (2.11)

• a � λmfp - This is the e�usive case. Evidently, we require that the e�usive �ux is
the same in both directions, namely

n1

√
T1 = n2

√
T2 (2.12)

Remember that in both cases, total number density n = n1 + n2 must be conserved.

Some results of E�usion

Suppose that we have a container with a small hole of area A. We can use the expression
for particle �ux, under the e�usion condition, to �nd the rate of change of some quantities
inside the container.

• Number Density - The rate of particles escaping from the container is evidently

dN

dt
= −ΦA = −1

4
A 〈v〉n

Dividing through by the volume in the container, we �nd that the di�erential equation
for the number density is given by

dn

dt
= −1

4

A

V
〈v〉n (2.13)

If the temperature of the vessel remains constant, this can simply be solved to �nd
n(t) and consequently p(t).

• Energy - We need to calculate the energy �ux J

dJ = dΦ(v) · 1

2
mv2

J =
1

8
nm

〈
v3
〉

This means that we can write the rate of change of the internal energy as

dU

dt
= −JA (2.14)

Recalling (2.9), we �nd that U = U(n, T ). Assuming that neither n or T remain
constant (such as for an isolated container), we can obtain a set of coupled equations
for these variables from the above equation, which we can then solve for their time
evolution.
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2.4 Collisions

Let us only consider consider binary collisions between two sets of particles, where the
particles can be modelled as hard spheres. Let the two species have radii r1 and r2 respec-
tively, and the same number density n. Imagine now that only one particle is moving, with
all others �xed. The particles that it will collide with are contained within the cylinder of
volume π(r1 + r2)2vt for some characteristic speed of the system v. We de�ne

σ = π(r1 + r2)2 (2.15)

This is known as the collision cross section. The number of particles in this imaginary
cylinder is then given by σnvt. The collision time t = τc occurs when the number of
particles in this cylinder is one.

σnvτc = 1

τc =
1

σnv

Then, the typical distance between collisions is given by

λmfp =
1

σn
(2.16)

This is known as the mean free path of the particles. Both λmfp and τc both obey the
exponential probability distribution; this makes sense, as the probability that particles
have not collided after long times or distances will be very low as quantities are very small.
Typically, τc v 10−9, λmfp v 10−3 and r v 10−10.

2.4.1 The Characteristic Velocity

We have not addressed the question of what this characteristics velocity v should be. As
we have assumed that all particles (apart from the one that we were considering) were
stationary, it makes the most sense for v to be the relative velocity between the particles.
For a large number of particles, we know that 〈v〉 ≈

〈
v2
〉1/2. Then:〈

v2
r

〉
=
〈
|v1 − v2|

2
〉

=
〈
v2

1

〉
+
〈
v2

2

〉
− 2 〈v1 · v2〉

= 2
〈
v2
〉

v ≈
√

2 〈v〉

We have made the important assumption that the velocities of the particles prior to the
collision are independent; that is, the particles have collided enough times with other par-
ticles prior to a second collision that we can neglect any e�ect of the previous collision.
This assumption breaks down at low n.

It turns out that we do not need to be this speci�c when specifying this characteristic
velocity v. On these scales,

vth v 〈v〉 v
〈
v2
〉1/2

This means that our choice of v in fact makes very little di�erence; which one we use is
essentially the de�nition of τc in that case.
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2.4.2 Collisions in a Mixture

Consider a more general case where we have two species of particle in the same container,
one with e�ective collision radius r1 and number density n1, and the other with r2 and n2.
What is the time between collisions for collisions of type-1 particles with type-2 particles?
Using the same argument as before,

τc =
1

σ12n1v

However, in this case, v is not as easily well de�ned. Once again, we will assume that the
particle velocities are independent, namely that

f(v1, v2) = f(v1)f(v2)

Assume that both species have a Maxwellian distribution. Then

〈vr〉 =

∫ ∫
d3v1 d

3v2 |v1 − v2| f(v1, v2)

=

∫ ∫
d3v1 d

3v2 |v1 − v2|
(

1

(
√
πu1)3

e−v
2
1/u

2
1

)(
1

(
√
πu2)3

e−v
2
1/u

2
2

)
We now want to make the substitutions that vr = v1 − v2 and V = m1v1+m2v2

m1+m2
such that

d3v1 d
3v2 = d3V d3vr. Then

v2
1

u2
1

+
v2

2

u2
2

=
1

2kBT

[
V 2 (m1 +m2) + v2

r

(
m1m

2
2 +m2

1m2

(m1 +m2)2

)]
=

1

2kBT

[
V 2 (m1 +m2) + v2

r

(
m1m2

m1 +m2

)]
=

1

2kBT

[
V 2(Mt) + v2

r (µ)
]

=
V 2

(2kBT )/Mt
+

v2
r

(2kBT )/µ

=
V 2

u2
t

+
v2
r

u2
µ

Thus, the �nal expression that we want to evaluate is

〈vr〉 =
1

(πutuµ)3

∫ ∫
d3V d3vr vr e

−
(
V 2

u2
t

+
v2
r
u2
µ

)

=

∫
d3V

1

(
√
πut)3

e−V
2/u2

t

∫
d3vr

vr
(
√
πuµ)3

e−v
2
r/u

2
µ

=

(∫
d3V x

1

(
√
πut)3

e−V
2
x /u

2
t

)3 ∫
d3vr

vr
(
√
πuµ)3

e−v
2
r/u

2
µ

=

∫
d3vr

vr
(
√
πuµ)3

e−v
2
r/u

2
µ

=
2√
π
uµ

This means that we obtain a �nal expression for the collision frequency νc = 1/τc as

νc = (r2
1 + r2

2)

√
8πkBT

µ
(2.17)
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2.5 Transport

This section focusses on examining how a gas transports quantities, which could be mo-
mentum, energy or other particles themselves, from one place to another. We will still
be considering the system to be globally in the steady state, but changing locally. In all
derivations, we assume that the pressure is not too high (λ� d, where d is the molecular
diameter) such that we can neglect collisions involving more than two particles, and the
pressure is not too low (λ� L, where L is the length scale of the container) such that the
particles mainly collide with one another and not the walls of the container.

2.5.1 Thermal Conductivity

Let J be the heat �ux in the gas that results from some temperature gradient ∇T , such
that J = 0 when ∇T = 0. By the conservation of energy, we know that J has to have the
opposite sign to ∇T . Assuming that the temperature gradient is small, we can write that

J = J(∇T )

≈ J(0) + J ′(0)∇T + . . .

= −κ∇T + . . .

This means that to �rst order
J = −κ∇T (2.18)

where κ is known as the coe�cient of thermal conductivity.

Consider a particle travelling with some component of velocity in the positive z direction
that crosses a plane of constant z. As the particles travel an average of λmfp ≡ λ between
collisions, the distance travelled parallel to the z-axis is δz = λ cos θ (see Figure (2.3)).
These particles arriving at z from z − δz will bring some extra energy δE. Let the heat
capacity per particle be cn = 3kB/2. Then

δE = cnT (z − δz)− cnT (z)

= cn

(
T (z)− ∂T

∂z
δz

)
− cnT (z)

= −cn
∂T

∂z
λ cos θ

The total energy �ux in the z-direction is

Jz =

∫
dΦ(v) δE

= −cnλ
∂T

∂z

∫
dΦ(v) cos θ

= −1

3
ncn 〈v〉λ

∂T

∂z

Comparing this with the z component of (2.18), we �nd that

κ =
1

3
cvλ 〈v〉 (2.19)

where cv = 3/2nkB = ρcm is the heat capacity per unit volume. Interestingly, we see that
κ is independent of n and thus pressure as λ ∝ 1/nσ.
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The thermal conductivity of argon (atomic weight 40) at S.T.P. is 1.6×102 Wm1K1. Find
the e�ective collision radius. Solid argon has a close packed cubic structure, in which, if the
atoms are regarded as hard spheres, 0.74 of the volume of the structure is �lled. The density
of solid argon is 1.6 gcm3. Find the e�ective radius in this case, and compare the two results

Using the fact that CV = 3/2NkB, we can rearrange (2.19) to �nd that

λ =
κ

kBN
√

2kBT
πm

≈ 1× 10−7 m

From the de�nition of λ,

λ =
1

nσ

=
1

4πr2
1n

r1 =
1√

4πnλ
≈ 1.93× 10−10 m

Now for solid argon,

NV atom = 0.74V total

n

(
4

3
πr2

2

)
= 0.74

4

3
πr2

2 = 0.74
m

ρ

r2 ≈ 1.95× 10−10 m

These answers are di�erent because the hard sphere approximation used to derive λ be-
comes less accurate. This is because at higher temperatures, the particles are more en-
ergetic, meaning that more of a 'direct hit' is required to cause a collision, leading to a
reduction in e�ective collision radius.

2.5.2 Viscosity

Let us consider a one-dimensional shear �ow

u = ux(t, z) x̂

That is, a �ow in the x direction whose magnitude depends on the value of z. Suppose
that at lower values of z, uzx is greater than at higher values. Then particles that travel
to z from z − δz will bring some extra momentum with them, as in Figure (2.3), creating
a momentum �ux Πzx against the velocity gradient ∇ux.

We know that Πzx = 0 for ∇ux = 0, and (by the conservation of energy) that Πzx must
have the opposite sign to ∇ux. Assuming that the shear velocity gradient is small, we can
write that

Πzx = Πzx

(
∂ux
∂z

)
≈ Πzx(0) + Π′zx(0)

∂ux
∂z

+ . . .

= −η∂ux
∂z

+ . . .
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Figure 2.3: Transport due to a temperature and velocity gradient

This means that to �rst order

Πzx = −η∂ux
∂z

(2.20)

where η is known as the coe�cient of dynamical viscosity.

Let us calculate the extra momentum brought by each particle.

δp = mux(z − δz)−mux(z)

≈ m
(
ux(z)− ∂ux

∂z
δz

)
−mux(z)

= −m∂ux
∂z

λ cos θ

This means that the total momentum �ux is given by

Πzx =

∫
dΦ(v) δp

= −nm∂ux
∂z

λ

∫
dΦ(v) cos θ

= −1

3
nmλ 〈v〉 ∂ux

∂z

Comparison with (2.20) yields

η =
1

3
nmλ 〈v〉 (2.21)

Interestingly, we also �nd that this is independent of pressure. How can this be? At lower
pressures, less particles will be moving through this plane of constant z, but they will have
a longer λ. This means that each particle is individually better at transmitting momentum,
and so this cancels out the e�ect of having fewer particles producing the momentum �ux.
Evidently, this will start to break down when λ is on the order of magnitude of the size of
the container.
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A momentum �ux is simply analogous to a pressure; in this case, it is the pressure that
each in�nitesimal layer of gas exerts on adjacent layers. For �nite di�erences in velocity
and separation, we can write that

F

A
= −η∆u

∆z
(2.22)

where ∆u is the velocity di�erence perpendicular to the separation ∆z.

Two plane disks, each of radius 5 cm, are mounted coaxially with their adjacent surfaces 1
mm apart. They are in a chamber containing Ar gas at S.T.P. (viscosity 2.1× 105 Nsm2)
and are free to rotate about their common axis. One of them rotates with an angular veloc-
ity of 10 rad s1. Find the couple which must be applied to the other to keep it stationary.

We want to consider the force exerted on the disk in the θ̂ direction along the edge of the
disk.

Fθ = −η∂uθ
∂z

A

Converting to torque, we multiply by r as r ⊥ F . As uθ is the velocity at r, uθ = ωr.

dτθ = −ηr∂uθ
∂z

dA

= −ηr∂(ωr)

∂z
(2πr)dr

= −η∂ω
∂z

2πr3dr

≈ −ηω
z

2πr3dr

for a small gap z. Integrating:

τ = −ηω
z

πa4

4

We thus �nd that τ ≈ 2 × 10−6. For a disk that is slowing down, we can �nd the rate of
change of ω by recalling that τ = Idw/dt, where I = 1/2ma2 for a disk.

2.5.3 Self-Di�usion

A gas can move itself around, in a sense. If we have some labelled particles of number
density n∗(r), then this distribution will change over time as the particles within the overall
gas. As these particles move, they set up a 'number gradient' ∇n∗. What is the �ux of
the labelled particles Φ∗? By the same logic as before, we know that Φ∗ = 0 if ∇n∗ = 0,
and (by number density conservation) that it must be opposite in sign. We can thus write

Φ∗ = Φ∗(∇n∗)
≈ Φ∗(0) + Φ∗′(0)∇n∗ + . . .

= −D∗∇n∗ + . . .

This means that to �rst order
Φ∗ = −D∗∇n∗ (2.23)

where D∗ is the coe�cient of self-di�usion.
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Now, consider a particle travelling with some component of velocity in the positive z
direction that crosses a plane of constant z. Using the same argument as before, the
number of extra particles δn∗ that arrive is

δn∗ = n∗(z − δz)− n∗(z)

= n∗(z)− ∂n∗

∂z
δz − n∗(z)

= −∂n
∗

∂z
λ cos θ

Then the total �ux of the labelled particles in the z direction is

Φ∗z =

∫
dΦ(v) δn∗

= −∂n
∗

∂z
λ

∫
dΦ(v) cos θ

= −1

3
λ 〈v〉 ∂n

∗

∂z

Comparison with (2.23) yields

D∗ =
1

3
λ 〈v〉 (2.24)

It is clear that D∗ ∝ p−1; for higher pressures, we would expect molecules to be able to
travel a shorter distance due to a greater number of collisions, and hence a lower coe�cient
of self-di�usion. Observing that ρ = nm, we obtain the useful relationship that D∗ρ = η.

Consider a volume V of gas bounded by a closed surface S. Then the rate of change of
the number density n∗ within the volume will be opposite and equal to the number of the
labelled particles that leave the volume via this surface.

∂

∂t

∫
V
d3r n∗ = −

∫
∂V
dS · Φ∗

= −
∫
V
d3r ∇ · Φ∗

=

∫
V
d3r D∗∇2n∗

by the Divergence Theorem and (2.24). As we are integrating over an arbitrary volume,
we can write

∂n∗

∂t
= D∗∇2n∗ (2.25)

This is known as the self-di�usion equation.

2.5.4 Heat Di�usion

We have already found the coe�cient for thermal conductivity. We now want to �nd how
temperature �ows within the gas, which is directly related to the rate at which energy
is transported throughout the gas. In a similar vein to the previous section, consider a
volume V of gas bounded by a closed surface S. Then the rate at which energy changes
in the volume is going to be opposite and equal to the amount of energy that leaves the
volume through this surface. The energy density ε of the gas is given by

ε =
U

V
=

3

2
nkBT = cvT
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Then we can write

∂

∂t

∫
V
d3r ε = −

∫
∂V
dS · J

= −
∫
V
d3r ∇ · J

by the Divergence Theorem. As we are integrating over an arbitrary volume, we can write

∂ε

∂t
+∇ · J = 0

This is the energy conservation equation for the gas. Suppose that there is a source of heat
that generates heat at a rate H per unit volume. Assume that there is no loss of the gas
particles, meaning that n is time-independent. Using (2.18):

∂(cvT )

∂t
+∇ · (−κ∇T ) = H

cv
∂T

∂t
= κ∇2T +H

Re-arranging, we arrive at the heat di�usion equation

∂T

∂t
= α∇2T +

H

cv
(2.26)

Here, α = κ/cv is known as the coe�cient of thermal di�usivity.

Newton's Law of Cooling

Newton's law of cooling states that the temperature of a cooling body falls exponentially
towards the temperature of its surroundings with a rate which is proportional to the area
of contact between the body and the environment. Evidently, this is not always true, as
objects tend to cool exponentially at long times as the leading exponential term becomes
dominant. Mathematically, we can express this as

J = h∆T (2.27)

where ∆T = T − T surroundings, and h is a vector perpendicular to the surface whose mag-
nitude is the heat transfer coe�cient.

Some Examples

Let us take a look at some examples of problems concerning the heat equation.

1. A cylindrical wire of thermal conductivity κ, radius a and resistivity ρ uniformly car-
ries a current I. The wire is now placed in air at temperature To and the wire loses
heat from its surface according to Newton's law of cooling. Find the temperature T (r).

We shall assume that the wire is su�ciently long that there is no z dependence. We
know that in the steady state, the heat loss to the surroundings must be opposite
and equal to the heat generated. Let the heat transfer coe�cient be h.

JA = V H

2πa`(h(T (a)− To)) = πa2`H

h(T (a)− To) =
a

2
H

T (a) = To +
a

2h
H
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This is our boundary condition at the surface. Assuming that the wire obey's Ohmic
heating:

H =
I2R

πa2`

=
I2

πa2`

(
ρ`

A

)
=

ρI2

π2a4

We shall then assume that the system is in the steady state. This means that the
heat equation becomes

∇2T = −H
κ

1

r

d

dr

(
r
dT

dr

)
= −H

κ

r
dT

dr
= −Hr

2

2κ
+ c1

T (r) = −Hr
2

4κ
+ c1 log(r) + c2

We require the solution to be �nite at r = 0, meaning that c1 = 0. Imposing the
condition derived above:

T (a) = −Ha
2

4κ
+ c2

To +
a

2h
H = −Ha

2

4κ
+ c2

c2 = To +
a

2h
H +

Ha2

2κ

This means that the �nal solution is

T (r) = To +
ρI2

4π2a4κ
(a2 − r2) +

ρI2

8π2a3h

2. Consider a thick, uniform layer of material with coe�cient of thermal di�usivity α.
Solve for the time evolution of the system given the following boundary conditions:

• The surface of the layer is subject to a time-dependant sinusoidal temperature
variation given by

T (0, t) = To +
∑
n

Tn cos(nt)

Suppose that the solution is of the form

T (x, t) =
∑
ω

T̃ (x, ω) eiωt

Take the FT of both sides of the heat equation:∫ ∞
−∞

dt e−iωt
∂T

∂t
= α

∫ ∞
−∞

dt e−iωt
∂2T

∂x2

iωT̃ = α
∂2T̃

∂x2

T̃ (x, 0) = c1e
ikx + c2e

−ikx
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We require that c2 = 0 for the solution to be properly bounded. Let c1 =
T̃ (0, ω).

iω = −αk2

k2 = − iω
α

k = (−1 + i)

√
ω

2α
=

1

δω
(−1 + i)

Thus, the �nal solution is of the form

T (x, t) =
∑
w

T̃ (0, ω) e−x/δωei(ωt−x/δω) (2.28)

δω is known a the skin depth, and is a measure of the attenuation of the propa-
gating wave. Calculating the FT of the initial condition:

T̃ (0, ω) = To +

∫ ∞
−∞

dt e−iωt
∑
n

Tn cos(nt)

= To +
1

2

∑
n

Tn

∫ ∞
−∞

dt e−iωt
(
eint + e−int

)
= To +

1

2

∑
n

Tn

∫ ∞
−∞

dt e−i(w−n)t + e−i(w+n)t

= To +
1

2

∑
n

Tn · (δ(ω − n) + δ(ω + n))

Substituting this result back into (2.28), we �nd that

T (x, t) = To +
∑
n

Tne
−x/δn cos

(
nt− x

δn

)
• The interor of the material is subject to a space-dependant sinusoidal tempera-
ture variation given by

T (x, 0) = T0 +
∑
n

Tn cos(nx)

Suppose that the solution is of the form

T (x, t) =
∑
k

T̃ (k, t)eikx

Taking the FT of both sides of the heat equation:∫ ∞
−∞

dk e−ikx
∂T

∂t
=

∫ ∞
−∞

dk e−ikx
∂2T

∂x2

∂

∂t

∫ ∞
−∞

dk e−ikx T = α(ik)2T̃

∂T̃

∂t
= −αk2T̃

T̃ (k, t) = T̃ (x, 0)e−αk
2t

48



Toby Adkins A1

Thus, the �nal solution is of the form

T (x, t) =
∑
k

T̃ (x, 0)e−αk
2t eikx (2.29)

Calculating the FT of the initial condition as above, we arrive at the �nal
solution of

T (x, t) = To +
∑
n

Tn cos(nx)

Note that in this section, we have used a di�erent normalisation convention on the
Fourier Transform than in the Mathematical Methods notes.
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2.6 Local Equilibrium

Note that the material covered in this section is not on syllabus, but we have included it
here for the sake of interest.

Up until this point, we have assumed that the distribution function of the particles de-
pended only on their velocity v. However, this may not always be the case, as there
might be some region of the gas with a higher number density or with some mean �ow
u. With this in mind, allow the distribution to depend on both position (r) and time (t):
F (t, r, v). The expression F (t, r, v)d3rd3v thus represents the fraction of particles with ve-
locities in the range [v, v+d3v] and located in the cube in space [r, r+d3r] at a given time t.

Let our macroscopic scales of the system be ` and t. These are the scales on which the
gas is inhomogeneous; that is, the scales on which any variations are measurable. Suppose
that we now break the system into small �uid 'elements' of size δ` and observe them for a
time δt. Then we still have

`� δ`� λmfp

t� δt� τc

On these scales, these �uid elements can be considered to be almost homogeneous, and
hence can be considered to be Maxwellian in this locality. This means that we arrive at
the local distribution function

FM (t, r, v) =
n(t, r)

(
√
πvth)3

e−|v−u|
2/v2

th (2.30)

for some mean �ow u = u(t, r), and vth that depends on some temperature distribution
T (t, r). Evidently, global equilibrium occurs where n, u and T are constant. However, for
any evolution to occur, this has to not be the case. This means that in fact these local
distributions are not quite Maxwellian. We thus write

F (t, r, v) = FM (t, r, v)︸ ︷︷ ︸
local Maxwellian

+ δF (t, r, v)︸ ︷︷ ︸
local relaxation

2.6.1 The Kinetic Equation

Consider the particles present at r with velocities v at a time t+ δt. Particles with these
properties will either be those that move into this location, or those that are scattered into
this velocity.

F (t+ δt, r, v) =

ballistic motion︷ ︸︸ ︷
F (t, r − vδt, v) +

contribution
from collisions︷︸︸︷

δFc

Assuming that δt� 1, we can Taylor expand as

F (t+ δt, r, v) ≈ F (t, r, v)− (vδt) · ∇F (t, r, v)

Dividing through by δt and taking the limit

lim
δt→0

F (t+ δt, r, v)− F (t, r, v)

δt
= lim

δt→0
−v · ∇F (t, r, v) +

δFc
δt
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This means that we obtain the Kinetic Equation

∂F

∂t
+ v · ∇F = C[F ] (2.31)

where v is the velocity of the particles, and C[F ] is known as the collision operator. We
know that C[F ] needs to satisfy the following properties:

• The local Maxwellian must be a �xed point

C[FM ] = 0

That is, the collision will not change the local Maxwellian

• Relaxation to the local Maxwellian must happen on a time-scale v τc

• Conservation laws must be satis�ed.

The simplest model that satis�es this is:

C[F ] = −F − FM
τc

= − 1

τc
δF (2.32)

This is known as Krook's Collision Operator.

2.6.2 Conservation Laws

Now that we have an equation for the evolution of the local distributions, we can use it to
derive some local conservation equations for the gas. We assume that there is some mean
�ow u = uxx̂, and de�ne w as the peculiar velocity (the di�erence between the velocity of
the particle and the mean �ow).

• Number Density

∂n

∂t
=

∂

∂t

∫
d3v F

=

∫
d3v

(
−vz

∂F

∂z
+ C[F ]

)
= − ∂

∂z

∫
d3v vzF︸ ︷︷ ︸

no mean velocity
in z direction

+

∫
d3v C[F ]︸ ︷︷ ︸

collisions do not
change particle no.

This means we obtain the expected result of

∂n

∂t
= 0 −→ n = const

• Momentum Density

∂

∂t
(mnux) =

∂

∂t

∫
d3v mvxF

=

∫
d3v mvx

(
−vz

∂F

∂z
+ C[F ]

)
= − ∂

∂z

∫
d3v mvxvzF︸ ︷︷ ︸

= toΠzx
by de�nition

+

∫
d3v mvxC[F ]︸ ︷︷ ︸
momentum
is conserved

Again, we obtain the expected result of

∂

∂t
(mnux) +

∂Πzx

∂z
= 0
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• Energy Density

ε =

∫
d3v

1

2
mv2F︸ ︷︷ ︸

total kinetic energy

− 1

2
mnu2

x︸ ︷︷ ︸
energy of mean �ow

As we are interested in the local conservation, we need to subtract the 'macroscopic'
energy of the mean �ow.

∂ε

∂t
=

∂

∂t

(∫
d3v

1

2
mv2F − 1

2
mnu2

x

)
=

∫
d3v

1

2
mv2

(
−vz

∂F

∂z
+ C[F ]

)
−mnux

∂ux
∂t

= − ∂

∂t

∫
d3v

1

2
mv2vzF + ux

∂Πzx

∂z

Let v = uxx̂+ w.∫
d3v

1

2
mv2vzF =

∫
d3w Fwz

(
1

2
mu2

x +
1

2
mw2 +muxwx

)
=

∫
d3w

1

2
mw2wxF + ux

∫
d3w mwxwzF

= Jz + uxΠzx

This means we obtain

∂ε

∂t
+
∂Jz
∂z

= −Πzx
∂ux
∂z

The last term is the result of viscous heating due to the mean �ow of the gas; we can
obtain the same conservation equation used to derive (2.26) by letting ux = 0

2.6.3 Self-Di�usion 2.0

Using this powerful apparatus that we have now obtained, let us examine the problem of
self-di�usion again. Let us compare the relative magnitude of the terms in (2.31). We know
that δF � FM , and that variations in δF occur over very large time-scales as supposed to
those of FM .

∂

∂t
v
vthλmfp
`2

v
vth
`

λmfp
`

v v vth

for some characteristic length of the system ` � λmfp. This means that we can neglect
the �rst term

δF ≈ −τc v∇FM (2.33)

Suppose that, as before, we have a number of labelled particles n∗ of mass m∗ within the
gas, with distribution F ∗ that satis�es (2.31). Integrating this over all space:∫

d3v

(
∂F ∗

∂t
+ v · ∇F ∗

)
= − 1

τc

∫
d3v δF ∗

∂

∂t

∫
d3v F ∗ +∇ ·

∫
d3v vF ∗ = − 1

τc

∫
d3v δF ∗

∂n∗

∂t
+∇ ·

(∫
d3v vF ∗

)
= 0
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by the de�nition of δF ∗. ∫
d3v vF ∗ =

∫
d3v v(F ∗M + δF ∗)

=

∫
d3v vδF ∗

as the mean velocity for F ∗M is zero. Using (2.33),∫
d3v vδF ∗ =

∫
d3v v · (−τc v∇FM )

= −τc
∫
d3v v2∇F ∗M

= −τc ∇
∫
d3v v2F ∗M

= −τc
〈
v2
〉
∇n∗

This means the equation becomes

∂n∗

∂t
− τc

〈
v2
〉
∇ · (∇n∗) = 0

∂n∗

∂t
= D∗∇2n∗

where D∗ = τc
〈
v2
〉
is the expression for the self-di�usion coe�cient. This expression is

evidently the exact one, rather than the approximate one that we found in Section (2.5.3).

We can take the �rst moment of the Kinetic Equation in order to �nd the momentum
conservation equation of the labelled particles.

∂

∂t

∫
d3v m∗vF ∗ = −

∫
d3v (m∗v)(v∇F ∗) +

∫
d3v m∗vC[F ∗]

∂

∂t
(m∗n∗u∗) = −∇

∫
d3v mv2F ∗ − 1

τc

∫
d3v (F ∗ − F ∗M )m∗v

= −m∗n∗∇
〈
v2
〉
− 1

τc
m∗n∗u∗

Thus, we obtain a result that we have all known since secondary school; that the magnitude
of friction is proportional to velocity, and that it acts in the opposite direction to the
motion.

F friction = − 1

τc
m∗n∗u∗
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3. Statistical Mechanics

This chapter aims to cover the basics of Statistical Mechanics, including:

• Basic Principles

• The Canonical Ensemble

• The Ideal Gas

• The Grand Canonical Ensemble

• Quantum Gases

• The Photon Gas

Arguably, Statistical Mechanics is one of the most powerful pieces of physics that one learns
as an undergraduate. Evidently, Quantum Mechanics will always give the correct answer,
but it will become increasingly di�cult - and almost impossible - to compute the required
problem. Statistical Mechanics provides an elegant solution to this, allowing one to treat
a large variety of relatively complex systems without much thought actually being given
to the small details of the problem. This author certainly enjoyed this course immensely,
and hopes that this is re�ected in these notes.
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3.1 Basic Principles

Evidently, as we saw in Chapter (1), Thermodynamics allows us to make a large set of
predictions about a system; it can give us the equation of state, the entropy, the energy,
the heat capacity, and so on. However, in order to be able to write down the important
equations

dU = TdS − pdV and dF = −SdT − pdV

we have to have some knowledge about various aspects of the system. For ideal gases, we
can get this from Kinetic Theory, but we need to be able to extend this kind of formalism
to other systems. This is where Statistical Mechanics comes in.

3.1.1 States of a System

Suppose that a system consists of Ω microstates (that is, a possible states of all the particles
of the system), where for each microstate α we have an associated probability pα, and
associated energy Eα. It is evident that Ω� 1 for an macroscopically de�ned system due
to the sheer number of particles and possible energies involved. This means that we can
de�ne certain quantities of the system in terms of their mean quantities, such as the mean
energy :

U =
∑
α

pαEα (3.1)

Evidently, this is where the statistical nature of this subject comes in; we recognise that
we cannot know the exact energy of the system, and settle instead on trying to calculate
the mean energy. Note that we evidently require the probabilities are properly normalised,
namely that

∑
α pα = 1.

Pressure

From this, we can immediately derive an expression for pressure in this formalism. Consider
an system undergoing some adiabatic process. From Quantum Mechanics, we know that
in adiabatic processes, the system remains in a state of well de�ned energy during the
process (assuming it was already in a state of well-de�ned energy), which means that the
microstates α of the system do not change. From (1.17), we can write that

dUadiabatic =

(
∂U

∂V

)
p1,...,pΩ

dV =
∑
α

pα
∂Eα
∂V

dV

However, during an adiabatic process, we know that dU = −pdV . This means that we can
simply de�ne the pressure as

p = −
∑
α

pα
∂Eα
∂V

(3.2)

This kind of calculation can also be repeated for non-pV systems. This means that if we
were able to know the complete sets {pα} and {Eα}, we would be able to calculate this
quantity explicitly.

3.1.2 Gibbs Entropy

The next logical question to ask is as to how to calculate these {pα} given that we know
the set of energies {Eα}. Knowing the latter is not too di�cult, as this can be given to us
from Quantum Mechanics without much trouble. What about the {pα}? Suppose that we
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know nothing about our system at all. In this case, the system must be isolated, as oth-
erwise we would be able to gain some information about the system from how it interacts
with its surroundings. The only fair way to assign probabilities to the microstates of the
system is to say that they are equally likely; we have no information to tell use otherwise.
This leads us to the important statistical mechanics inference that for an isolated system
in equilibrium, all microstates are equally likely.

Suppose that our system consists of N particles, where N � Ω. Now, let us randomly
assign each of theN particles to the microstates {α}, in a similar way to randomly throwing
marbles into a very large set of boxes. In this way, we arrive at having Nα particles in the
microstate α, and associated probability

pα =
Nα

N
for

∑
α

Nα = N

Now what is the most likely outcome of our assignment {Nα}? The number of ways E of
carrying out our un-ordered assignment is given by

W =
N !

N1! . . . NΩ!

As we have no information about the system to tell us that any such assignment is more
likely than another, all outcomes are equally probable. This means that the most likely
outcome for {Nα} will be the one that maximises W , or rather logW . We will make
extensive use of (3.5).

logW = logN !− log (N1! . . . NΩ!)

v N logN −N −
∑
α

(Nα logNα −Nα)

= −
∑
α

Nα log

(
Nα

N

)
Recalling the de�nition of pα above, and dividing through by N , we arrive at the expression

SG = −
∑
α

pα log pα (3.3)

This is known as the Gibbs Entropy of a system. We will see it's full signi�cance shortly,
but for now, we understand it as a function that is related to the possible assignments of
particles to microstates within a given system.

3.1.3 Entropy Maximisation

In the previous section, we supposed that the most likely outcome for our assignment {Nα}
will be that maximises logW. This corresponds directly to SG being maximised, subject
to a set of constraints Fi = 0 that correspond to our knowledge about the system. This
means that we want to maximise

SG −
m∑
i=1

λiFi

unconditionally with respect to Ω +m variables

p1, . . . , pΩ, λ1, . . . , λm︸ ︷︷ ︸
Lagrange Multipliers
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such that m ≤ Ω. This is because the number of constraints cannot be greater than the
number of microstates, as m = Ω corresponds to total knowledge of the system. In reality,
m� Ω as we are limited by our knowledge of the system.

Let us suppose that we are completely ignorant about our system; we know that it exists,
but we really don't know anything about it. This means that the only constraint that we
can place on SG is

λ

(∑
α

pα − 1

)
= 0 (3.4)

Maximising unconditionally:

dSG − dλ

(∑
α

pα − 1

)
− λ

∑
α

dpα = 0

−
∑
α

(log pα + 1 + λ) dpα − dλ

(∑
α

pα − 1

)
= 0

Setting each of these terms individually to zero:

log pα + 1 + λ = 0

pα = e−(1+λ)

Ω∑
α

e−(1+λ)︸ ︷︷ ︸
independent of α

= 1

→ pα =
1

Ω

Thus, we con�rm our assumption in the previous section that the microstates of an isolated
system in equilibrium are all equally likely.

3.1.4 Stirling's Formula

Before moving on, it would be would be worth introducing Stirling's Formula due to all
the large logarithmic factors that we will be dealing with. It states that

logN ! v N logN −N (3.5)

assuming that N is su�ciently large. In fact, it turns out that N v 50 is enough to reduce
the error in using this formula to 2%, so in the Thermodynamic limit, this is essentially
an exact expression.

In order to prove this formula, we need to consider the integral expression for N !, namely

N ! =

∫ ∞
0

dx xNe−x

This integral evidently has a maximum, as it tends to zero as x → ∞, and is zero for
x = 0. Let us expand the integrand around the maximum. Let

ef(x) = xNe−x

f(x) = N log(x)− x
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Taking the �rst and second derivatives:

∂f

∂x
=
N

x
− 1

∂2f

∂x2
= −N

x2

This means that the maximum of the integrand will occur at x = N . We can thus Taylor
expand the integrand as

N ! =

∫ ∞
0

dx ef(x)

= eN logN−N
∫ ∞

0
dx e−

1
2N

(x−N)2+...

v eN logN−N√2πN

where we have used the fact that we can extend the integral range to [−∞,∞] as the
contribution from the negative part of the integral becomes vanishingly small for large N
(width scales as

√
N). It follows that

logN ! v N logN −N +
1

2
log(2πN)

If N is su�ciently large, we can ignore the last term, as it scales as logN rather than as
N . We thus arrive the result quoted above.
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3.2 The Canonical Ensemble

Suppose that the mean energy of the system is �xed. This means that we now add the
constraint that

β

(∑
α

pαEα − U

)
= 0 (3.6)

In this ensemble, we are going to treat both the volume V and the number of particles N as
exact external parameters, as supposed to some mean property to be measured. Maximising
SG unconditionally with respect to both constraints:

−
∑
α

(log pα + 1 + λ+ βEα)dpα − dλ

(∑
α

pα − 1

)
− β

(∑
α

pαEα − U

)
= 0

Setting each of the terms identically to zero:

log pα = −1− λ− βEα −→ pα = e−(1+λ+βEα)∑
α

e−(1+λ+βEα) = 1 −→ e−(1+λ) =
1∑

α e
−βEα

Putting these two expressions together, we �nd that the probability of a particular mi-
costate α is given by

pα =
e−βEα

Z(β)
for Z(β) =

∑
α

e−βEα (3.7)

We give this the name the canonical ensemble, where Z(β) is a normalisation constant
known as the partition function. This means that if we know all Eα's, we can calculate
the probability of each microstate from this expression.

We are now going to examine the question of the signi�cance of our Lagrange multiplier
β. Substitute our new-found expression for pα into the normal expression for SG.

SG = −
∑
α

pα log pα = −
∑
α

1

Z
e−βEα log

(
1

Z
e−βEα

)
= βU + log(Z)

Calculating the total derivative:

dSG = Udβ + βdU +
dZ

Z

= Udβ + βdU − 1

Z

∑
α

e−βEα(βdEα + Eαdβ)

=��
�Udβ + βdU −

∑
α

pα(βdEα +���Eαdβ)

= βdU − β
∑
α

pαdEα

Recalling (3.2), this reduces to

SG = β (dU + pdV )︸ ︷︷ ︸
...First Law!

= βd̄Qrev
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We now impose the condition that dS = kB dSG, where S is our conventional Thermody-
namic entropy. Then, by the de�nition of d̄Qrev, we �nd that

β =
1

kBT
(3.8)

Thus, the Lagrange Multiplier that we impose along with the constraint on the mean
energy turns out to be inverse temperature! Note that it has units of energy, such that the
partition function remains dimensionless.

3.2.1 Some Important Relationships

Our formalism is thus clear: maximise entropy subject to constraints, �nd the distribu-
tion, �nd the partition function, relate to thermodynamic quantities through entropy, and
di�erentiate to �nd everything. The partition function is all we really need for Thermo-
dynamics, which is what makes Statistical Mechanics such a powerful tool. Now that we
have an expression for β, we can now derive some useful thermodynamic quantities from
our partition function Z(β).

Mean Energy

Using our statistical de�nition of the mean energy U :

U =
∑
α

pαEα

=
∑
α

1

Z
e−βEαEα

= −
∑
α

1

Z

∂

∂β

(
e−βEα

)
This means that the mean energy is calculated from the partition function as

U = −∂ log(Z)

∂β
(3.9)

Heat Capacity

At this stage, is would be useful to �nd a relationship between derivatives with respect to
T and those with respect to β, as we work mainly with the former in Thermodynamics,
and the latter in Statistical Mechanics. From the de�nition of β:

∂β

∂T
= − 1

kBT 2
−→ ∂

∂T
= −β

T

∂

∂β

We can use this relationship to �nd an expression for heat capacity at constant volume.

CV =

(
∂U

∂T

)
= −β

T

(
∂U

∂β

)
V

Substituting our de�nition of U from above, we arrive at

CV =
β

T

∂2 log(Z)

∂β2
(3.10)
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Let us compute this expression explicitly from Z(β).

∂2 log(Z)

∂β2
=

∂

∂β

(
− 1

Z

∑
α

Eαe
−βEα

)

=
1

Z

∑
α

E2
αe
−βEα − 1

Z2

(∑
α

Eαe
−βEα

)(∑
γ

Eγe
−βEγ

)

=
∑
α

pαE
2
α −

(∑
α

pαEα

)(∑
γ

pγEγ

)

Recalling our de�nition of the expectation value of some quantity, we see that the above
expression is clearly the variance of the energy

〈
(∆E)2

〉
. Thus, another way of expressing

the heat capacity is

CV =
(∆E)2

kBT 2
≥ 0

Clearly, a system will only be stable for CV ≥ 0, as otherwise it would be able to increase
it's temperature arbitrarily. We examine similar conditions in Section (3.2.2).

Entropy and Helmholtz Free Energy

Using the partition function, have already found the relationship that

SG = βU + log(Z)

This means that we can write the Thermodynamic entropy of the system as

S =
U

T
+ kB log(Z) (3.11)

This expression is always greater than or equal to zero, as Z > 0 for probabilities to be
well-de�ned (positive). It then follows that:

F = U − TS = −kBT log(Z)

We can take the usual derivatives of F with respect to various variables to �nd the desired
quantities, such as entropy (T ) or pressure (V ). This means that often the hardest part
about Statistical Mechanics is �nding the partition function; the rest is merely taking
derivatives!

3.2.2 Stability and Equilibria

We are now going to derive the conditions that are required for a system to be in equilib-
rium. Suppose that we have a system that is made up of a series of subsystems indexed
by i, that have the quantities:

εi total energy

mi mass

ui velocity

ri centre of mass

Vi volume
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As entropy is additive, the entropy of the total system is the sum of the entropy of the
individual systems; that is:

S =
∑
i

Si

Note that Si can only depend on the internal energy of the sub-system, as the total energy
of the total system is conserved. This means that Si = Si(Ui, Vi), where Ui is the internal
energy of the system (the di�erence between the total and kinetic energy).

We thus want to maximise the total entropy with respect to the following conservation
laws:

δ

(∑
i

εi − ε

)
= 0

a ·

(∑
i

miui − p

)
= 0

b ·

(∑
i

miri × ui − L

)
= 0

σ

(∑
i

Vi − V

)
= 0

We are not going to try and assign any signi�cance to the Langrange multipliers used, as
they are completely arbitrary, with δ = kBβ being the notable exception.

Equilibria

Maximising the expression for entropy and requiring that all of the individual constraints
are zero allows us to obtain relationships between the quantities in each of our subsystems.

• Thermal Equilibrium:

∂Si
∂εi

=
∂Si
∂Ui

=
1

Ti
−→ 1

Ti
= δ =

1

T

This means that the condition for the subsystems to be in thermal equilibrium is if
their temperatures are the same, as anticipated by the Zeroth Law of Thermodynam-
ics

• Mechanical Equilibrium:

∂Si
∂Vi

=
pi
Ti
−→ pi =

σ

δ

This means that the condition for the subsystems to be in mechanical equilibrium is
if the pressures within them are the same, meaning that the pressures are balanced
at the boundaries

• Dynamical Equilibrium:

∂S

∂ui
=

∂S

∂Ui

∂Ui
∂ui

= −miui
1

Ti
−→ miδui = −mi(a+ b× ri)

This means that we can write ui = u+ Ω× ri, where u represents constant transla-
tional motion, while Ω× ri represents rigid rotation.

This means that in equilibrium, we cannot have an gradients of temperature, pressure, or
velocity inside the total system, as we could have anticipated.
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Stability

The stability of the systems comes from looking at further derivatives of S. This is because
we do not in fact know whether the extremum found when maximising S was a maximum,
minimum, or saddle point.

• Thermal Stability:

∂2Si
∂ε2

i

=
∂

∂εi

(
1

T

)
= − 1

T 2

∂T

∂εi
= − 1

T 2

∂T

∂Ui
= − 1

CV T 2

We have thus found that this is a maximum as CV ≥ 0 (proven above)

• Dynamical Stability:

∂Si
∂Ui

=
1

T

Suppose that T < 0. Then, this means that all Si's would be maximised by decreasing
their argument as much as possible; that is, by increasing their kinetic energy, �ying
o� to in�nity. This means that temperature must be negative for dynamical stability.
Note that this restriction does not apply for systems who's motion is constrained,
and prevented from �ying apart (such as a chain of molecules)

3.2.3 Some Common Examples

Let us now examine two common systems that can be treated with the Canonical Ensem-
ble. These will come up many times in this course, as they can be applied to describe the
behaviour of a large variety of systems.

Before we do so, a quick note about systems that are composed of many individual units,
such as the particles in a gas, or atoms within a lattice. Assuming that these units are
distinguishable, the partition function of the composite system is given by

Z(β) = ZN1 (3.12)

This follows from the de�nition of probabilities; the probability pα of having N particles
in a state α is given by p′α

N (where p′α is the probability for a single unit), meaning that
the partition function must be modi�ed in the above way. We will come back to how one
handles indistinguishable units in a later section.

The Two-Level System

Suppose that we have a system that has two energy levels, +∆ and−∆. Then, the partition
function for the system is clearly

Z1(β) =
∑
α

e−βEα = eβ∆ + e−β∆ = 2 cosh(β∆)

The most common system that we can apply this partition function to is that of a spin-1
2

paramagnet, with energy levels ±µBB. Suppose that we have N spin-1
2 particles within

our system. Then the partition function for the entire system is given by

Z(β) = 2N coshN (βµBB) (3.13)
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The quantity we are most often interested in with the spin-1
2 paramagnet is its heat capacity

CV . Using (3.9):

U = −NµBB tanh(βµBB) = −1

2
NkBΘB tanh

(
ΘB

2T

)
where we have de�ned ΘB = 2µBB

kB
, which is the excitation temperature for the paramag-

netic e�ects. From the de�nition of heat capacity, we �nd that

CB =

(
∂U

∂T

)
B

= NkB

(
ΘB

T

)2 eΘB/T(
eΘB/T + 1

)2
Let us look at some limits of this expression.

• High Temperature Limit (T � ΘB):

eΘB/T v 1 −→ cB ∝
1

T 2

• High Temperature Limit (T � ΘB):

eΘB/T � 1 −→ cB ∝
1

T 2
e−Θ/T

As CB tends to zero in both limits, this means that there must be some maximum tem-
perature for which the magnetic heat capacity of the system is maximised. This turns out
to be around v 5.6K.

For the magnetisation, we need our expression for the Helmholtz free energy as

F = U − TS −m ·B

where m = MV is the magnetic moment. This means that the magnetisation can be easily
obtained as

M = − 1

V

(
∂F

∂B

)
T

=
NµB
V

tanh

(
µBB

kBT

)
This once again behaves sensibly; we re-obtain Curie's Law in the high temperature limit,
and �nd that the magnetisation is constant in the low temperature limit.

The Harmonic Oscillator

We know from Quantum Mechanics that the energy levels of a 1-D harmonic oscillator are

En =

(
n+

1

2

)
~ω

This means that the partition function is given by

Z1(β) =
∑
α

e−βEα =

∞∑
n=0

e−(n+ 1
2)β~ω = e−

1
2
β~ω

∞∑
n=0

e−nβ~ω

We can sum the last term as an in�nite geometric series to obtain

Z1(β) =
e−

1
2
β~ω

1− e−β~ω
(3.14)
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This expression is actually used within the Einstein model of the heat capacity of solids. All
atoms are considered to be independent simple harmonic oscillators all vibrating in three
dimensions at the same angular frequency ω. Note that there is some constant energy U0

in the Hamiltonian of the system, but we are going to ignore this as it does not e�ect the
properties of the solid (apart from the mean energy). The result Z1 above is for a single
oscillator in 1-D. For N particles in a 3-D lattice, it follows that

Z(β) = (Z1D)3 = (ZN1 )3 = Z3N
1

Recalling (3.10), we �nd that

CV = 3NkB(β~ω)2 eβ~ω

(eβ~ω − 1)2

At high temperatures, β~ω � 1, such that eβ~ω v 1 + β~ω. This means that we obtain
CV = 3NkB in the high temperature limit.
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3.3 The Grand Canonical Ensemble

We are now going to make N (the number of particles) a variable parameter within our
formalism, such that we can treat systems where numbers of particles are exchanged, or
where there are various inhomogeneities. This means that we have to introduce a further
constraint of

−βµ

(∑
α

pαNα − N̄

)
= 0 (3.15)

where N̄ is the mean particle number for the system. Following the familiar maximisation
process, we �nd that

pα =
e−β(Eα−µNα)

Z(β, µ)
for Z(β, µ) =

∑
α

e−β(Eα−µNα) (3.16)

This is known as the grand canonical ensemble, with Z(β, µ) being the grand partition
function. We can re-obtain the canonical ensemble by letting Nα = N (all energy levels
have equal numbers of particles).

3.3.1 Chemical Potential

In a similar fashion to Section (3.2), we want to give some meaning to our new Lagrange
multiplier µ. Substitute (3.16) into the normal expression for SG.

SG = −
∑
α

pα [−β(Eα − µNα)− log(Z)] = βU − βµN̄ + log(Z)

Taking the total derivative:

dSG = βdU − βµdN̄ −����βN̄dµ+
hhhhhhh(U − µN̄)dβ +

dZ
Z

dZ
Z

=
∑
α

pα [−β(dEα −���Nαdµ)−hhhhhhhh(Eα − µNα)dβ]

where we have restricted dNα = 0. Cancelling terms as shown,

dSG = β(dU − µdN̄)− β
∑
α

pαdEα

Again, letting dS = kBdSG, and using (3.2), we arrive at the equation

TdS = dU + pdV − µN̄ (3.17)

This is the fundamental equation of thermodynamics for open systems. This means that
we can write µ as

µ = −T
(
∂S

∂N̄

)
U,V

We can thus interpret −µ as the heat from adding an extra particle to the system at con-
stant U and V . This means that µ is normally a negative quantity, as it is often thought
of as a "cost-per-particle". It is known as the chemical potential of a system. Note that
we often �nd µ as the implicit solution to an equation for N̄ , which we see in later sections.
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Let us now consider the Gibbs Free Energy. Using (1.28) and (3.17), we know that

dG = −SdT + V dp+ µdN̄ −→ µ =

(
∂G

∂N̄

)
p,T

Now, G and N̄ are both extensive quantities; that is, they depend on the size of the system.
This means that if we scale N̄ by some constant λ, G must also scale in the same way.

G(p, T, λN̄) = λ G(p, T, N̄)

Di�erentiating with respect to λ and using the chain rule:(
∂G

∂(λN̄)

)
p,T

N̄ = G

However, as our choice of λ is arbitrary, this equation must hold for all λ. If we set λ = 1,
we �nd that

µ =
G

N̄
(3.18)

This means that the chemical potential can also be thought of as the Gibbs Free Energy per
particle for a system. This means that it is an intensive quantity, and so that µ = µ(p, T )
(as it cannot depend on system size, and thus N̄).

Particle Equilibrium

Suppose that we have two systems of total energy U = U1 +U2, total mean particle number
N̄ = N̄1 + N̄2 and total entropy S = S1 + S2 (that we wish to maximise). Then:

dS =
∂S1

∂U1
dU1 +

∂S1

∂N̄1
dN̄1 +

∂S2

∂U2
dU2 +

∂S2

∂N̄2
dN̄2

=

(
∂S1

∂U1
− ∂S2

∂U2

)
+

(
∂S1

∂N̄1
− ∂S2

∂N̄2

)
dN̄1

=

(
1

T1
− 1

T2

)
dU1 +

(
−µ1

T1
+
µ2

T2

)
dN̄1

Setting dS = 0, we �nd that when a system is in equilibrium T1 = T2 (as before) and
µ1 = µ2. That latter of these two is known as chemical equilibrium. Suppose now that the
system is in thermal equilibrium, but not chemical equilibrium.

dS = −(µ1 − µ2)
dN̄1

T
> 0

This means that dN̄1 > 0 for µ2 = µ1. This means that matter moves from large to
small µ. Evidently, the chemical potential is related to the exchange of particles between
systems.

3.3.2 The Grand Potential

For open systems, we de�ne a new thermodynamic quantity known as The Grand Potential,
de�ned as

Φ = F − µN̄ = −kBT log(Z) = −pV (3.19)

The last equality comes from considering (3.18), and simplifying the resultant expression.
This is always true, meaning that the equation of state for the system can be found trivially
from the Grand Potential. Taking the total derivative:

dΦ = −SdT − pdV − N̄dµ
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This results in the relations:

S = −
(
∂Φ

∂T

)
µ,V

p = −
(
∂Φ

∂V

)
µ,T

N̄ = −
(
∂Φ

∂µ

)
T,V

(3.20)

(3.21)

(3.22)

Once again, the thermodynamics can simply be extracted from the Grand Potential, which
is essentially just the logarithm of the partition function.

3.3.3 Multi-species Systems

Now that we have set up our apparatus for dealing with multiple component systems, let
us put this into practise. Suppose that we have a system that consists ofm di�erent species
that are free to exchange particles and energy with one another. For each microstate of
the system α, let us associate an energy Eα, and particle numbers

N1α, N2α, . . . , Nmα with µ1, µ2, . . . , µm

We are again going to consider the Gibbs Free Energy of the system, and scale by an
arbitrary factor λ.

G(p, T, λN̄1, . . . , λN̄m) = λ G(p, T, N̄1, . . . , N̄m)

Taking the derivative as before and setting λ = 1:∑
s

∂G

∂(λN̄s)
N̄s = G︸ ︷︷ ︸

sum over species

−→
∑
s

∂G

∂N̄s
= G

Then, it follows that

G =
∑
s

µSN̄s

Now consider a chemical reaction between various species. All such reactions can be written
as ∑

s

νsas = 0 (3.23)

where as denote the various species, and νs denote their coe�cients in the chemical equa-
tion. Conventionally, the products are de�ned to have negative µs. For example, the
formation of water

2H2 +O2 
 2H2O

can be written in this form for a1 = H2, ν1 = 2, a2 = O2, ν2 = 1, a3 = H2O, and ν3 = −2.
In the �rst chapter, we learnt that equilibrium was reached for a system held at a given p
and T when the Gibbs Free Energy was minimised.

dG =
∑
s

µsdN̄s = 0
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This, along with (3.23), implies that as the chemical reaction progresses

dN̄1 : dN̄2 : · · · : dN̄m = ν1 : ν2 : · · · : νm

That is, the particle numbers and the coe�cients νs will be in the same ratio. This leads
to the very important equation of ∑

s

νsµs = 0 (3.24)

This is one statement of what is known as The Law of Mass Action, which determines the
behaviour of chemical reactions. We can use this to �nd the equilibrium concentration of
the various components in a multi-species system.

Given that the chemical potential of a non-relativistic electron/positron gas can be written
as

µ = −kBT log
(

(2s+ 1)
nQ
n

)
where nQ =

(
mekBT

2π~2

)3/2

�nd the density of positrons created from spontaneous pair-production de�ned by the equa-
tion

e− + e+ 
 photon(s)

Remember to take into account the relative concentration of the positron and electron pairs
with respect to the density of normal electrons in matter (without pair production) n0. Con-
sider brie�y the relativistic case.

Now, we will see the expressions for µ and nQ in later sections, so do not be too worried
about their signi�cance here. If readers �nd this example a little confusing at this stage,
it is recommended that they come back to this when they are familiar with the results
of Section (3.4) and (3.5.3). The condition for chemical equilibrium (in both the non-
relativistic and relativistic cases) is

µ− + µ+ = µ photon = 0

Let us actually consider the relativistic case. In this limit, the energy of the system is
so high that the number of the electron-positron pairs dominates in comparison to the
number of electrons in normal matter, and so we can neglect n0 as it is very small. This
means that the entire system is symmetric, and so that µ− = µ+ = 0. The equilibrium
concentrations can thus be calculated using the results of Section (3.5.3), though this is
left as an exercise for the reader once they have covered Quantum Gases.

In the non-relativistic limit, the energy of the system is much lower, and so we cannot
assume that the equilibrium density of the pairs is much greater than n0; in fact, it is
most likely going to be much less that n0. We now need to take into account the chemical
potential that results from the rest mass. Letting s = 1

2 for electrons and positrons (as
these are spin-1

2 particles), their chemical potentials are

µ− = −kBT log

(
2nQ
n−

)
+mec

2

µ+ = −kBT log

(
2nQ
n+

)
+mec

2
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If we now apply the condition for chemical equilibrium for the system from above, we �nd
that

kBT log

(
4n2

Q

n−n+

)
= 2mec

2

4n2
Q

n−n+
= e−(2mec2)/(kBT )

As n0 � n+, we can write n− = n+ + n0 v n0 (this equality comes from the fact that
the density of pairs must be the same, taking into account the concentration in normal
matter). This means that the equilibrium concentration of the positrons is given by

n+ v
4

n0

(
mekBT

2π~2

)3

e−(2mec2)/(kBT )

This author tried calculating this value (estimating n0 v a
−3
0 , where a0 is the Bohr radius),

but it came out to be zero. This is because the factor in the exponential is on the order of
107, which dominates the cubic expression.
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3.4 The Ideal Gas

We will �rst treat the Ideal Gas using the Canonical Ensemble. If we treat the ideal gas
classically, it's energy levels are given by

εk =
~2k2

2m

Theoretically, we could just plug this expression into (3.7) and obtain the partition function.
However, the problem that we encounter is that sums of this type are very di�cult to
calculate; it is much easier to calculate an equivalent integral. Suppose that our system
is a box with side lengths Lx, Ly, Lz. Then, we are restricted to the wavenumbers that
satisfy

k =

(
2π

Lx
ix,

2π

Ly
iy,

2π

Lz
iz

)
for integers ix, iy, iz in order to ful�l appropriate (periodic) boundary conditions at the
extremities of the box. This means that ∆kx,y,z = (2π)/(Lx,y,z) represents the mesh-size
(spacing between discrete grid points) in phase-space. Then, we can approximate the
desired sum by an integral:

Z1 =
∑
k

e−βεk =
∑
k

LxLyLz
(2π)3︸ ︷︷ ︸
V

(2π)3

2π

Lx︸︷︷︸
∆kx

2π

Ly︸︷︷︸
∆ky

2π

Lz︸︷︷︸
∆kz

e−βεk v
V

(2π)3

∫
d3k e−β~

2k2/2m

Assuming that the system is isotropic, we can transform to polar coordinates:

V

(2π)3

∫
d3k e−β~

2k2/2m =
V

(2π)3

∫ ∞
0

dk 4πk2 e−β~
2k2/2m =

∫ ∞
0

dk g(k) e−β~
2k2/2m

The quantity g(k) = (V k2)/(2π2) is known as the density of states, which tells us the num-
ber of microstates α per k or (with appropriate substitution) per ε. From the calculation
above, it is clear that the density of states depends on the dimensionality of the space; this
means that the behaviour of the 3-D Ideal Gas (as described in the following sections) will
be altered if we assume di�erent dimensions for the space.

Evaluating this integral, we obtain the single particle partition function

Z1 =
V

λ3
th

for λth = ~
√

2π

mkBT
(3.25)

It is clear that λth has dimensions of length in order to allow Z1 to remain dimensionless.
This means that this expression must hold in the relativistic case, except with a di�erent
de�nition of λth (it is left as an exercise to the reader to �nd out exactly the de�nition is
modi�ed).

3.4.1 Distinguishability

If we were to assume that the particles were distinguishable, we could use (3.12) to cal-
culate the partition function for the entire system. However, if we were to calculate the
entropy, we would �nd that it is not additive, even though it has to be additive by de�ni-
tion. This is a result of the fact that we have determinate momenta for the particles, but
indeterminate position; this essentially means that every particle is everywhere, and so we
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cannot distinguish between them. The way to get around this is by letting the occupation
numbers nk of each state εk take the values 0 or 1. This means that we can write the N
particle partition function as

Z =
ZN1
N !

(3.26)

This assumption will only hold if we assume that the number of single particle states is
very much greater than N , as otherwise there will be a non-negligible probability that
any particular state is occupied by more than one particle. But how much greater? The
number of single particle states can be roughly approximated by the single particle partition
function, as only the dominant terms remain in the sum. This means that our condition
for this assumption to be valid is

V

λ3
th

� N −→ n

nQ
� 1

where we have introduced the quantum concentration nQ = 1/λ3
th. It is very easy to show

quantitatively that at room temperatures that this condition is indeed satis�ed.

3.4.2 Thermodynamic Quantities

Now that we have calculated the partition function, it is a simple matter of taking deriva-
tives to �nd thermodynamic quantities of the gas. First, the Helmholtz Free Energy:

F = −kBT log(Z) = −NkBT
[
1− log

(
n

nQ

)]
where we have used Stirling's Formula. This means that the entropy is given by

S = −
(
∂F

∂T

)
V

= kBN

[
5

2
− log

(
n

nQ

)]
(3.27)

This is known as the Sackur-Tetrode equation. Interestingly, this is the �rst time that we
have obtained an explicit expression for the entropy of a system; up until this point, we
have simply been calculating entropy changes. We can also use this equation to �nd the
adiabatic equations (see (3.41)) for an ideal gas by recalling that ∆S = 0 in an adiabatic
process. Next, the heat capacity:

U = F + TS =
3

2
NkBT −→ CV =

3

2
NkB

Thankfully, this is the same expression that we have derived via both Thermodynamics
and Kinetic Theory. Lastly, the pressure:

p = −
(
∂F

∂V

)
T

= nkBT

This is also the familiar result. The dependence of F on the volume comes from the
dependence Z ∝ V N , and so the equation of state only depends on the factor of volume in
the partition function. This in fact means that both non-relativistic and relativistic gases
obey the same equation of state.

72



Toby Adkins A1

3.4.3 Internal Degrees of Freedom

Thus far, we have only taken into account the translational degree of freedom for the ideal
gas, as we have implicitly assumed that it is monatomic gas. We can now extend our
theory to diatomic gases, and consider the new degrees of freedom that this brings. If we
model a diatomic molecule as two hard spheres connected by a weak spring that are free to
rotate around their centre of mass, then evidently we also have vibrational and rotational
degrees of freedom. This means that we can write the entire partition function as

Z = Ztrans. Zvib. Zrot. (3.28)

Of course, we already have an expression for Ztrans.. We now simply have to �nd expressions
for the remaining two terms.

Vibrational Freedom

This case is particularly simple; we can just model the molecule as a 1-D harmonic oscil-
lator. Using (3.14), it is easy to show that

Zvib. =
e−

1
2

Θvib./T

1− e−Θvib./T
(3.29)

where we have de�ned the vibrational temperature Θvib. = ~ω/kB, which is the temperature
at which the vibrational modes get excited. Typically, this temperature is on the order of
T v 3000K, as so only contributes to the heat capacity at very high thermal energies.

Rotational Freedom

For the rotational degrees of freedom, we treat the molecule as a rigid rotor. From Quantum
Mechanics (see A3 notes), it can be shown that the energy levels of such a system are given
by

ε` =
~2

2I
`(`+ 1)

for I = µr2
0, where mu is the reduced mass, and r0 is the average distance between the

atomic centres. The degeneracy of each energy level is (2` + 1). This means that the
partition function becomes

Zrot. =

∞∑
`=0

(2`+ 1)e−βε` =

∞∑
`=0

(2`+ 1)e−`(`+1)Θrot./T

where we have introduced the rotational temperature Θrot. = ~2/(2IkB). This is typically
on the order of v 10K, meaning that for most scenarios, we can approximate the sum as
an integral. Performing the integration, we �nd that

Zrot. =
T

2Θrot.
(3.30)

This result proves very accurate, except for at lower temperatures.

Total Heat Capacity

As we calculate the Helmholtz Free Energy by taking the log of the partition function,
it is simply the sum of the separate Helmholtz Free energies for each degree of freedom.
Due to the linearity of di�erentiation, this means that the total heat capacity is simply the
sum of the heat capacities that result from the translational, and rotational modes, with
the latter two adding NkB to the total. Evidently, which modes are excited depends on
temperature, and so the resultant heat capacity takes the form:
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Figure 3.1: The variation of the heat capacity of a diatomic gas with temperature

3.4.4 The Equipartition Theorem

The Equipartition Theorem states that

If the energy of a classical system is the sum of q quadratic modes, and
the system is in contact with a heat reservoir at temperature T , then the
mean energy of the system is given by U = 1

2qkBT .

Assume that the energy of the system is given by the sum of quadratic modes

E =

q∑
i=1

αix
2
i

Assuming the probabilities to be Gibbsian, the mean energy can be calculated as follows:

U =

∫
. . .
∫
dx1 . . . dxn

(∑q
i=1 αix

2
i

)
exp

(
−β
∑q

i=1 αix
2
i

)∫
. . .
∫
dx1 . . . dxn exp

(
−β
∑q

j=1 αjx
2
j

)
=

q∑
i=1

∫∞
−∞ dxi αix

2
i exp

(
−βαix2

i

)∫∞
−∞ dxi exp

(
−βαix2

i

)
=

q∑
i=1

αi
〈
x2
i

〉
=

1

2
qkBT

Note that this is only valid at high temperatures. However, this does mean that any re-
sults we derive using more complicated theories must reduce to the results predicted by
equipartition in the high temperature limit.

One particular application of the equipartition theorem is in the prediction of the heat
capacity of gases. It follows directly from the equipartition theorem that for ideal gases
with a number of degrees of freedom f :

CV =
f

2
R and Cp =

(
f

2
+ 1

)
R (3.31)

Evidently, the value of f will depend on whether the translational (3), rotational (2) or
vibrational (2) modes are excited, as we saw in the previous section.
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3.4.5 With the Grand Canonical Ensemble

Suppose that for each microstate α we now have possible occupation numbers αN =
{nk1 , nk2 , . . . } such that

∑
k nk = N . The grand partition function is therefore:

Z =
∑
N

∑
αN

eβµNe−βEαN =
∑
N

eβµN
1

N !

(
V

λ3
th

)N
=
∑
N

1

N !

(
Z1e

βµ
)N

Recognising that this is the series de�nition of the exponential, we arrive at

Z = eZ1eβµ (3.32)

where Z1 is the single-particle canonical partition function. Note that all the results for
an ideal gas with �xed N are still valid under this ensemble, except now we replace N by
N̄ . However, now we can �nd the chemical potential of an ideal gas. This is most easily
done as the solution to an equation for N̄ .

Φ = −kBT log(Z) = −kBTZ1e
βµ

Then, the mean particle number is given by (3.22)

N̄ = Z1e
βµ −→ µ = −kBT log

(
Z1

N

)
However, recall that Z1 = Z trans.

1 Z internal
1 . This means that we can write the chemical

potential in the useful form

µ = kBT log

(
nλ3

th

Z internal
1

)
(3.33)

As a sanity check, let us examine whether µ is large and negative (as it should be in the
classical limit). By de�nition, we require that Z internal

1 ≥ 1, and we know that nλ3
th � 1

in this limit. This means that it is indeed large and negative.

Consider a volume V of classical ideal gas with mean number density n = N̄/V , where N̄ is
the mean number of particles in this volume. Starting from the grand canonical distribution,
show that the probability to �nd exactly N particles in this volume is a Poisson distribution.

We are considering a particular set of microstates of the system for which the particle
number is N . Letting α = αN such that Nα = N :

pN =
eβµN

Z
∑
N

e−βEαN︸ ︷︷ ︸
sum of energies in N

=
eβµN

Z
ZN =

eβµN

Z
ZN1
N !

It follows directly from (3.33) that the grand partition function can be written in the form
Z = eN̄ . Then:

pN =
ZN1
N !

e−N̄e
βN
[

1
β

log
(
N̄
Z1

)]
=
ZN1
N !

e−N̄e
log

[(
N̄
Z1

)N]
=
N̄Ne−N̄

N !

which is indeed a Poisson distribution with mean N̄ . This result can also be proven by
considering a limiting case of a Binomial distribution for particles being in a volume V .
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Equilibria of Inhomogeneous Systems

Thus far, we have considered the entire system of the ideal gas to be homogeneous. Now,
let us introduce some potential per particle φ(r) into the system, and ask how this changes
the equilibrium state of the system. We are going to make use of the fact that in equilib-
rium, the only parameter that is allowed to vary in space is n; we showed that the other
parameters must be �xed in Section (3.2.2).

Suppose that our potential φ(r) behaves in a way such that φ(0) = 0, and results in some
energy shift εφ for the system. This means that we can write the partition function as

Z1 = Z1(0) Zφ1 = Z1(0) e−βεφ

where Z1(0) is the partition function of the system in the absence of the potential. Then,
we can write the chemical potential as

µ = −kBT log

(
Z1(0)e−βεφ

N̄

)
= kBT log

(
nλ3

th

Z internal
1

)
+ εφ

By de�nition, µ and T must be constant in equilibrium, and so the only parameter that
is allowed to vary is n, as stated above. We can thus arbitrarily set µ = 0, as we are only
looking at changes in the system, meaning that:

log

(
nλ3

th

Z internal
1

)
= −

εφ
kBT

So that in general the density distribution is given by

n(r) = n(0)e−βεφ (3.34)

An ideal gas is placed inside a cylinder of radius R and height h that is rotating at angular
frequency Ω. Find the density distribution of the gas in equilibrium.

The number density pro�le of a gas should not change under frame transformation, meaning
that we can arbitrarily transform to the rotating frame of the gas. In this frame, the
particles will be subject to a "centrifugal potential" given by

φ(r) = −1

2
(Ωr)2 −→ εφ = −1

2
m(Ωr)2

Using (3.34):

n(r) = n(0)eAr
2

for A = 1/2βmΩ2. Now, we have to �nd our normalisation constant n(0). Evidently, we
require that the total number of particles is equal to the number density integrated over
the volume of the cylinder. Thus:

N
!

=

∫
dV n(r) = 2πh n(0)

∫
dr reAr

2
= 2πh n(0)

eAR2 − 1

2A

Re-arranging, we can write that

n(r) = n̄
AR2eAr

2

eAR2 − 1

for n̄ = N/(πR2h). We can now look at some limits to ascertain whether our expression
makes any sense. To make things easier, consider the value of n at r = R.
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• High temperature limit (T →∞) - In this limit, β becomes very small. This means
that we can Taylor expand the exponential factor in A:

n(R) v n̄
AR2

1 +AR2 − 1
= n̄

This makes sense, as at very high temperatures, the thermal energy will be so high
that the gas does not care about the e�ects of the rotation

• Low temperature limit (T → 0) - In this limit, β becomes very large, and so the
exponential factor will dominate.

n(R) v n̄AR2 =
1

2

mn̄(ΩR)2

kBT

This is a large factor due to T being small. This we would also expect as the
molecules would be dominated by the e�ect of the rotation, and would cluster in a
small cylindrical shell around the rim of the cylinder.
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3.5 Quantum Gases

Before jumping into the very interesting world of quantum gases, we �rst have to look at
a particularly important property of the sorts of particles that we will be considering. Let
|1, 2〉 be the ket representing the state of two particles; the �rst particle on the left (in state
1) and the second particle on the right (in state 2). Let us now 'swap' the two particles.
Assuming that they are indistinguishable, this should not change the modulus of the state
vector:

| |1, 2〉 |2 = | |2, 1〉 |2

|2, 1〉 = eiφ |1, 2〉

If we now swap the particles in the second ket, we obtain

|2, 1〉 = e2iφ︸︷︷︸
eiφ=±1

|2, 1〉

This means that there are two possible exchange symmetries:

1. |1, 2〉 = |2, 1〉 for bosons that have integer spin

2. |1, 2〉 = − |2, 1〉 for fermions that have half integer spin

Suppose now that that the states "1" and "2" are in fact the same state. This means that
for fermions |1, 1〉 = − |1, 1〉 = 0; that is, no two fermions can occupy the same quantum
state. This is known, quite famously, as the Pauli Exclusion Principle.

This actually has an important e�ect on the behaviour of quantum gases. Unlike with the
states of real gases, those of quantum gases are collective states; the system appears to
"know" about what the rest of the system is doing. As such, the occupation numbers (the
amount in said state) of particular energy states are bounded for fermions (ni = 0, 1) by
the Pauli Exclusion Principle, but in principle unbounded for bosons (ni = 0, 1, . . . , N).
This crucial di�erence between Fermi and Bose gases leads to quite di�erent behaviours
under certain conditions, as we will soon see.

3.5.1 Occupation Number Statistics

Consider a the set of occupation numbers {ni} that correspond to the set of energy states
{i}. Let εi be the single particle energy levels. This means that we can write the Grand
Partition Function as

Z =
∑
{ni}

e−β
∑
i ni(εi−µ) =

∑
{ni}

∏
i

e−βni(εi−µ) =
∏
i

∑
{ni}

[
e−β(εi−µ)

]ni
Now for fermions, ni can take the values 0 and 1, and so the partition function simpli�es
to

Z fermions =
∏
i

(
1 + e−β(εi−µ)

)
For bosons, n̄i is unbounded, meaning that we obtain an in�nite geometric series that we
can sum to

Z bosons =
∏
i

1

1− e−β(εi−µ)
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Taking the logarithm of the partition functions (which, after all, is what we usually want),
we �nd the surprisingly simple expression

logZ = ±
∑
i

log
(

1± e−β(εi−µ)
)

(3.35)

where the "+" sign corresponds to fermions, and the "−" sign corresponds to bosons. This
will remain the case throughout the remainder of this section unless otherwise stated.

Let us now go back to considering our microstates {α}. The probability to be in a particular
microstate α will be a function of the occupation numbers {ni}, as these will determine
the amount of particles in each of the energy levels, and thus the energy of the particular
state. Let us calculate the mean occupation numbers for each of these states. Using the
de�nition of pα in the Grand Canonical Ensemble:

n̄i =
∑
{nj}

ni p(n1, n2, . . . , nj , . . . )

= − 1

Z
1

β

∂

∂εi

∑
{nj}

e−β
∑
j nj(εi−µ)

= − 1

β

∂

∂εi
logZ

Substituting in (3.35), we arrive at the very important results for the mean occupation
numbers of

n̄i =
1

eβ(εi−µ) ± 1
(3.36)

where "+" corresponds to Fermi-Dirac statistics (fermions), and "−" corresponding to
Bose-Einstein statistics (bosons). If you are going to memorize any result in the Statistical
Mechanics of quantum gases, it would be this one, as it allows you go calculate everything
else.

3.5.2 Density of States

Now that we have the mean occupation numbers for each of the energy levels, we can start
calculating various quantities, such as

N =
∑
i

n̄i or U =
∑
i

n̄iεi

As we known, sums tend to be hard to evaluate, while integrals are typically much easier.
As we saw in Section (3.4), we can turn these sums into integrals.∑

i

= (2s+ 1)︸ ︷︷ ︸
spin components

∑
k

= (2s+ 1)
V

(2π)3︸ ︷︷ ︸
from mesh size

∫
d3k =

(2s+ 1)V

2π2

∫ ∞
0

dk k2︸ ︷︷ ︸
moving to polar coordinates

This means that the density of states is

g(k) =
(2s+ 1)V

2π2
k2

This is essentially the same as we found before, except we are now taking into account the
spin of the particles, which is an intrinsically quantum mechanical e�ect.
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Now, how we calculate the density of states, as before, depends on the regime in which we
are working, as this will determine the corresponding relationship between k and ε.

• Non-relativistic limit (kBT � mc2) - In this case, the energy relation is clearly

ε =
p2

2m
=

~2k2

2m
→ dk =

√
2m

~
1

2
√
ε
dε

Recalling that g(k) dk = g(ε) dε, we �nd that the density of states is clearly

g(ε) =
(2s+ 1)V m3/2

√
2π2~3

√
ε (3.37)

• Ultra-Relativistic Limit (kBT � mc2) - We know that the energy for a relativistic
particle is ε =

√
m2c4 + ~2k2c2. In the ultra-relativistic case, ε v ~kc. Through a

similar calculation, the density of states can be obtained as

g(ε) =
(2s+ 1)V

2π2(~c)3
ε2 (3.38)

Numerical constants aside, we can see that the energy component of these states di�ers by
a factor of ε3/2, which means that we will observe di�erent sorts of behaviour for Quantum
Gases that are in the non-relativistic and ultra-relativistic limits. The reason why we
usually work in one of these two limits is that the calculations using the exact form of
the energy become horrendously complicated, and thus is not worth considering; we can
extrapolate backwards from these two limits to determine the behaviour in the exact case.

3.5.3 Standard Calculations

This section will simply cover some of the standard calculations that students need to
be familiar with when it comes to quantum gases. Everything will remain in complete
generality, so the results derived will be valid for both fermion and boson gases, though
using the density of states expression (3.37), but results will be included for both cases
where convenient.

Chemical Potential

Let us begin by calculating the chemical potential. We will have to do this implicitly; that
is, we will have to determine µ as the analytic solution to some equation for N(µ, T ).

N =
∑
i

n̄i =

∫ ∞
0

dε
g(ε)

eβ(ε−µ) ± 1
=

(2s+ 1)V

λ3
th

∫ ∞
0

dε
2√
π

√
ε β3/2

eβ(ε−µ) ± 1

Making the substitution x = βε:

n =
(2s+ 1)

λ3
th︸ ︷︷ ︸

quantum concentraton, nQ

2√
π

∫ ∞
0

dx

√
x

ex−βµ ± 1︸ ︷︷ ︸
f(β,µ)

This reduced to the quite simple expression

n

nQ
= f(β, µ) (3.39)

A similar one can be obtained for the relativistic gas, except that nQ and f(β, µ) will have
di�erent de�nitions (watch out for this when doing calculations!). We can obtain a solution
to this equation for µ for given values of T and n.
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Mean Energy

Again, we are going to have to convert our sum into an integral.

U =
∑
i

n̄iεi =

∫ ∞
0

dε g(ε)
ε

eβ(ε−µ) ± 1
= NkBT

(
nQ
n

2√
π

∫ ∞
0

dx
x3/2

ex−βµ ± 1

)
This equation does not any particular meaning at this stage. However, when it is written
in this form, we can see that we require the quantity in brackets to reduce to 3/2 in the
classical limit, that we will examine in Section (3.5.3).

The Grand Potential

Let us now calculate the Grand Potential, as this will allow us to �nd the equation of state.

Φ = −kBT logZ = ∓ kBT
∫ ∞

0
dε g(ε) log

(
1± e−β(ε−µ)

)
= ∓NkBT

nQ
n

2√
π

∫ ∞
0

dx
√
x︸︷︷︸

= 2
3
d
dx

(x3/2)

log
(

1± e−β(ε−µ)
)

Integrating by parts:

Φ = −2

3
NkBT

(
nQ
n

2√
π

∫ ∞
0

dx
x3/2

ex−βµ ± 1

)
= −2

3
U

from above. This means that we can use (??) to �nd the equation of state as

p = ξ
U

V
where ξ =

{
2
3 for non-relativistic
1
3 for relativistic

(3.40)

Note these equations of state are valid regardless of whether the gas is in the classical
limit, degenerate limit or in between, as the derivation has been done without evaluating
any of the expressions. We are starting to see that the di�erences in the density of states
between non-relativistic and ultra-relativistic gases leads to a di�erence in coe�cients in
the common expressions.

Entropy

Using the results of Section (??), it follows that

S =
U − Φ− µN

T
=

(1 + ξ)U − µN
T

where ξ has the de�nition as above. Now consider an adiabatic process; we know that in
such a process that both S and N must remain constant. This means that

S

N
= (1 + ξ)

U

NT︸ ︷︷ ︸
only depends on βµ

−µ
T

= function of
µ

T
only

meaning that as the left-hand side of the above equation is constant, µ/T must also be a
constant in an adiabatic process. This means that

n

nQ
= constant

for the appropriate de�nition of nQ. Using (3.40), we arrive at the result of

pV 1+ξ = constant (3.41)
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Classical Limit

The Correspondence Principle tells us that any results we derive in a quantum mechanical
system must hold in the classical limit. We now ask the question what is the classical limit
for quantum gases? In general, the classical limit will occur where the gas is hot (T →∞)
and dilute (n→ 0). In this limit, e−βµ � 1. Then:

f(β, µ) =
2√
π

∫ ∞
0

dx

√
x

ex−βµ ± 1
v

2√
π

∫ ∞
0

dx
√
x e−xeβµ = eβµ

Using the de�nition of f(β, µ), this means that the condition for the classical limit of a
quantum gas is

n

nQ
� 1 (3.42)

again for appropriate de�nitions of nQ. This is in fact the same condition that we found
in Section (3.4.1). This result can be used to show that the mean occupation numbers n̄i
for Fermi-Dirac and Bose-Einstein statistics reduce to a Maxwellian concentration in the
classical limit.

Degeneration

In this context, degeneration occurs when the number of quantum states available to a
single particle becomes comparable to the number of particles in the system. Physically,
we can interpret our quantum concentration nQ as 'concentration' of quantum states for the
system, coming from the density of states. This means that we would expect degeneration
appear when n is on the order of nQ, namely that

n

nQ
& 1

By writing nQ explicitly and n in terms of the pressure p, we can show that air at STP is
safely non-degenerate (n/nQ v 10−6), where as electrons in metals are very much degen-
erate (n/nQ v 104) under everyday conditions. This means that we cannot describe the
properties of electrons in metals via classical models; we require Fermi-Dirac statistics in
the degenerate limit. The following two sections will examine how Fermi and Bose gases
behave when they become degenerate.

3.5.4 Degenerate Fermi Gas

Consider a Fermi gas for which T → 0 so β → 0. Then, considering carefully the behaviour
of the exponential factor, the mean occupation numbers will behave according to

n̄i =
1

eβ(ε−µ) + 1
→

{
1 for ε < µ(T = 0)

0 for ε > µ(T = 0)

This is shown in Figure (3.2). The consequence of this is that when Fermi gases become
degenerate, the electrons will begin to 'stack up' and occupy all the available single-particle
states from the lowest-energy one to maximum energy equal to the value of the chemical
potential at T = 0

εF = µ(T = 0)

This quantity εF is known as the Fermi energy, and tells us what the maximum energy
per particle is at T = 0. Let us �nd an expression for the Fermi energy, remembering that
in this state the occupation number has become a step-function.
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Figure 3.2: The occupation numbers for T = 0 and some �nite correction

As the Fermi energy is merely the chemical potential at T = 0, we use the same method
as we usually use to calculate the chemical potential.

N =

∫ εF

0
dε g(ε)︸ ︷︷ ︸

as step function

= nQV β
3/2 2√

π

∫ εF

0
dε
√
ε = nQV β

3/2 2√
π

(
2

3
ε

3/2
F

)

Rearranging, we �nd that the Fermi energy is given by

εF =

(
6π2n

2s+ 1

)2/3 ~2

2m
(3.43)

This actually allows us to �nd a criterion for treating Fermi gases as quantum gases at
zero temperature. Looking at Figure (3.2), it is clear that this is limited by the width of
the curve, kBT , and so this treatment is valid for temperatures satisfying

T � TF =
εF
kB
v

~2n2/3

mkB

where TF is known as the Fermi temperature. This can be interpreted as roughly the
temperature at which the gas becomes degenerate.

Sommerfeld Expansion

It is very easy to show (have a go yourself!) that to �rst order the mean energy for a Fermi
gas is given by

U ∝ NεF

However, this poses a problem for calculating further quantities, such as the heat capacity,
as this expression is independent of temperature. This does make sense; at absolute zero,
it would require a vanishingly small amount of energy to increase the temperature of the
system. We thus need to �nd another way of evaluating our integrals for �nite T v 0; that
is, to take into account the curve shown in Figure (3.2).

It can be shown that integrals of the form

I =

∫ ∞
0

dε
f(ε)

eβ(ε−µ) + 1
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where f(ε) is an arbitrary function, can be expanded around T = 0 as

I v
∫ µ

0
dε f(ε) +

π2

6
f ′(µ)(kBT )2 + . . . (3.44)

This expansion proves to be quite accurate, as it is already to second order. This a result
that is worth remembering for Fermi gases, as it allows us to calculate quantities to greater
precision.

Thermodynamic Quantities

Let us now use the Sommerfeld to calculate some of the thermodynamic quantities of a
degenerate Fermi gas. It is a useful exercise to check that the results match those predicted
by �rst order theory. The density of stats can be written as

g(ε) =
N

(2/3)ε
3/2
F

√
ε

This is useful as we are interested in how these quantities scale relative to εF . Let us begin
by calculating the chemical potential from N :

N =
N

(2/3)ε
3/2
F

[
2

3
µ3/2 +

π2

6

1

2
√
µ

(kBT )2 + . . .

]
Observing that µ v εF + . . . , we can re-arrange this expression to obtain the equation

µ = εF

[
1− π2

12

(
kBT

εF

)2

+ . . .

]
(3.45)

Evidently, this expression is well-behaved; it reduces to µ = εF at T = 0, which it has to
by the de�nition of εF . This is plotted in the �gure below. We see that it becomes very
large and negative at high temperatures, as anticipated by (3.33).

Figure 3.3: The chemical potential of a degenerate Fermi gas

The next step is to consider the mean energy U with the aim of �nding the chemical
potential.

U =
N

(2/3)ε
3/2
F

[
2

5
µ5/2 +

π2

6

3

2

√
µ (kBT )2 + . . .

]
=

3

5
NεF

[
1 +

5π2

12

(
kBT

εF

)2

+ . . .

]
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where we have again used that µ v εF + . . . , and (3.45). It then follows from the de�nition
of heat capacity that

CV =
π2

2
NkB

kBT

εF
(3.46)

Thus, the correction to our zero-temperature result is initially linear in T for T . εF /kB,
as can be seen in the �gure below.

Figure 3.4: The heat capacity of a degenerate Fermi gas

We could also have anticipated this result qualitatively. As we increase the temperature
above T = 0, we get some excited particles. For small corrections, the number of excited
particles ∆Nexc. is given roughly by

∆Nexc. v g(εF )∆ε

Looking at Figure (3.2), we can see that ∆ε v kBT . This means that the change in the
energy of the system scales roughly as

∆U v ∆Nexc.∆ε v g(εF )(kBT )2 v
N

εF
(kBT )2

We thus obtain the same dependence for CV upon di�erentiation, where we have simply
considered the width of the distribution around T = 0; this is more of 'hand-wavey' way
of deriving the dependence.

All that remains is to calculate the equation of state. We can simply use (3.40) and our
expression for U from above.

p = ξ
U

V
= ξ

3

5
nεF

[
1 +

5π2

12

(
kBT

εF

)2

+ . . .

]
(3.47)

We observe, interestingly, that the pressure of a degenerate Fermi gas is actually non-zero
at T = 0, and at this point it is proportional to n5/3 (from the de�nition of εF ).

Derive the Chandrasekhar mass limit for white dwarfs. Consider the star to be a relativistic
degenerate Fermi gas, and �nd the stable mass by extremising the total energy (gravitational
and from the electrons).

85



Toby Adkins A1

Figure 3.5: The pressure of a degenerate Fermi gas

The immediate question that we need to ask ourselves is as to why we can neglect the
energy of the protons; after all, there are equal numbers of electrons and protons for the
star to be electro-statically neutral. The answer lies in degeneracy. Looking at (3.43), and
recalling that TF v Tdeg, we can see that the degeneration temperature scales inversely
with mass. This means that the electrons will become degenerate before the protons. But
why does this matter? Looking at the �gure above, it is clear that the pressure of a de-
generate gas is much more than that of a non-degenerate gas, and at the density in stars,
we can essentially treat the electron gas as being at T = 0 as TF is very large. This is the
reason for neglecting the contribution of the protons.

Now that this is understood, we can now begin with the derivation. We are going to work
on the simplifying assumption that the star has a constant density cross-section; this is of
course not the case, but still allows us to obtain relatively sensible results. First, let us
�nd the potential energy of the system by building the star out of spherical shells.

dUg = −GM
r

dM = −G
r

(
4

3
πr3ρ

)(
4πr2ρ dr

)
= −16π2

3
Gρ3r4 dr

Integrating:

Ug = −16π2

3
Gρ2

∫ R

0
dr r4 = −16π2Gρ2

15

R5

5
= −3GM2

5R
= −B

R

Now for �nding the energy due to the electron gas. It is easy to show that the Fermi energy
for an ultra-relativistic gas is given by

εF = ~c
(

6π2n

2s+ 1

)1/3

−→ g(ε) =
N

(1/3)ε3
F

ε2

where we have re-written the density of states(3.38). Then:

Ue =
N

(1/3)ε3
F

∫ εF

0
dε ε3 =

3

4
NεF =

~c
4π2

(3π2)4/3

(
4

3
π

)−1/3

N4/3 R−1 =
A

R

where we have used the fact that V = (4/3)πR3. The total energy of the system is thus

UT = Ue + Ug =
A

R
− B

R

86



Toby Adkins A1

The critical point clearly occurs when A = B. Re-arranging this equality, we �nd the
expression for the mass as

M =
3
√
π

m2
p

(
5

16

)3/2(~c
G

)3/2

v 1.7M}

This is actually a little larger than the actual Chandrasekhar limit, but this is due to
the fact that we have approximated the density as being constant. We can do similar
calculations for non-relativistic white-dwarfs, and we obtain a stable radius R that scales
with M−1/3. This is an interesting result, as it means that if mass is added to the star, it
will shrink. It is not immediately obvious, or intuitive, that this should be the case!

3.5.5 Degenerate Bose Gas

We are now going to consider the behaviour of a degenerate Bose gas. We know that for
such a gas, the occupation numbers are given by

n̄i =
1

eβ(εi−µ) − 1

Now, it is clear that in order to avoid negative occupation numbers (which have no physical
meaning), we required that µ < εi. This means that µ < εmin = ε0 = 0, where we have
arbitrarily chosen the lowest energy state to be that of zero energy. As T → 0, there is
nothing to stop the bosons occupying the same energy state, and so the lowest energy level
becomes macroscopically occupied. In this limit:

n̄0 =
1

e−βµ − 1
= N −→ µ(T → 0) = −kBT log

(
1 +

1

N

)
v −kBT

N
v 0

This means that the chemical potential for a Bose gas is vanishingly small for these low
temperatures, as seen below.

Figure 3.6: The chemical potential of a degenerate Bose gas

We know that the density of states g(ε) ∝ εp for some power p (not necessarily an integer).
This means that the particles in the lowest energy states ε0 = 0 of our system are invisible
to our continuous approximation, as they make no contribution to the integrals. This is
not surprising, seeing as the use of continuous approximation for a sum implicitly assumed
that there were a small number of particles in each state. Our theory thus begins to break
down for T v 0 as we get a very signi�cant fraction of particles occupying the groundstate.
We thus must come up with another way of describing the system.
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Bose-Einstein Condensation

Recall that the �rst step when calculating quantitative for quantum gases was to calculate
the chemical potential from the transcendental equation (3.39). For Bose gases, this is of
the form

f(βµ) =
2√
π

∫ ∞
0

dx

√
x

ex−βµ − 1
=

n

nQ
∝ n

T 3/2

We have already found that we required µ ≤ 0 for the occupation numbers to remain
de�ned, and so we will only obtain a solution for this equation assuming that n/nQ ≤
f(0) = ζ(3/2), as shown in the following �gure.

Figure 3.7: Determining N for a degenerate Bose gas

Evidently, there is only a solution to this equation if n/nQ < f(0). This means that there
is some critical temperature Tc above which our original theory is valid; that is, some
temperature that satis�es n/nQ = f(0). Then:

Tc =
2π~2

mkB

[
n

ζ(3/2)(2s+ 1)

]3/2

(3.48)

For all T < Tc, we thus set µ = 0. This means that we can calculate the number of
particles that are excited above the groundstate as

N

V nQ
= f(0) −→ Nexc. = N

(
T

Tc

)3/2

Thus, the number of particles that remain in the groundstate is given by

n̄0 = N

[
1−

(
T

Tc

)3/2
]

(3.49)

This macroscopic occupation of the groundstate is known as Bose-Einstein Condensation.
As Tc is very small, this e�ect can only really be observed at very low temperatures, and
complete condensation can only occur at absolute zero. A �gure showing the relevant
occupation numbers can be found on the next page.

Astute readers may now be asking the question, what about the occupation number of
the �rst excited state? Will that not be quite large as well, and change the behaviour of
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Figure 3.8: The number of particles in excited states in a degenerate Bose gas

the condensate? To answer this question, we �rst need to estimate the energy of the �rst
excited state. The smallest possible wave-number allowed in our system of volume V is
given by

kmin =
2π

L
=

2π

V 1/3

Using our classical expression for energy:

ε1 =
~2k2

2m
=

2π2~2n2/3

m

1

N2/3
v
kBTc

N2/3

At low temperatures, 1� βε1 � βµ. Using (3.36),

n̄1 v
1

eβε1 − 1
v

1

βε1
∝ N2/3

This means that n̄1/n̄0 v 1/N1/3. However, in the Thermodynamic limit, N � 1, meaning
that this fraction is very small. As a result, we do not need to give special consideration to
particles in the �rst excited state as a being a condensate, as they are only a small fraction
in comparison to those in the groundstate.

Show that Bose-Einstein condensation cannot occur in two dimensions.

This example will demonstrate the signi�cance of having a di�erent density of states for
the system; it can completely change the way it behaves. In two dimensions:∑

i

= (2s+ 1)
∑
k

= (2s+ 1)
A

(2π)2

∫
d2k = (2s+ 1)

A

2π

∫ ∞
0

dk k

Using our classical expression for the energy, it is easy to show that the density of states
is given by

g(ε) =
(2s+ 1)Am

2π~2

Then, de�ning nQ appropriately:

n

nQ
=

∫ ∞
0

dx
1

ex−βµ − 1
=

∫ ∞
0

dx
eβµe−x

1− e−xeβµ
= log

(
1

1− eβµ

)
This means that it cannot form a condensate because there is no upper bound to n, meaning
that the states of zero momentum can accommodate any n, resulting in no condensation.
Putting it another way, there is no unique critical temperature Tc de�ned by this equation.
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Figure 3.9: The pressure of a degenerate
Bose gas

Figure 3.10: The heat capacity of a degener-
ate Bose gas

Thermodynamic Quantities

Let us begin by calculating the mean energy of a degenerate Bose gas. Assuming T < Tc,
we can set mu = 0. Then

U = nQ kBT
2√
π

∫ ∞
0

dx
x3/2

ex − 1︸ ︷︷ ︸
3
2
ζ( 5

2)

Writing this expression in terms of Tc, it becomes

U v 0.72NkBTc

(
T

Tc

)5/2

(3.50)

Interestingly, we observe that this depends on both T and V , but not on the number of
particles; this is hidden by the de�nition of Tc. Using (3.40), it very quickly follows that

p v 0.51nkBTc

(
T

Tc

)5/2

(3.51)

This means that unlike with a degenerate Fermi gas, the pressure of a degenerate Bose gas
is zero at T = 0. In fact, careful calculation reveals that this equation is asymptotic to the
classical limit from below, as shown in the following �gure above

Lastly, the heat capacity also follows very quickly from the de�nition of (3.50):

CV v 1.93NkB

(
T

Tc

)5/2

(3.52)

We note that CV is discontinuous around T = Tc, meaning that Bose-Einstein conden-
sation represents a third order phase transition. Evidently, all of these quantities have
been calculated assuming the non-relativistic case, but all that changes are the numerical
factors, rather than the dependences on Tc.

Consider bosons with spin 1 in a weak magnetic �eld, with energy levels

ε(k) =
~2k2

2m
− 2µBszB for sz = −1, 0, 1
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Find an expression for the magnetic susceptibility of the system χm for small B, and ex-
amine the magnetisation of the system as B → 0 .

The easiest way to tackle this question is via the Grand Potential, and take derivatives to
�nd χm. Let Φ be the Grand Potential of the system, and Φ0 be the Grand Potential in
the un-magnetised case. Writing the former in terms of the latter, we �nd that

Φ =
1

3
Φ0(µ− 2µBs1B) +

1

3
Φ0(µ− 2µBs2B) +

1

3
Φ0(µ− 2µBs3B)

=
1

3
Φ0(µ) +

1

3
Φ(µ− 2µBB) +

1

3
Φ0(µ+ 2µBB)

Evidently, we obtain the trivial equality that Φ = Φ0 when we set B = 0, as expected. We
can now Taylor expand this expression for small B to obtain:

Φ v Φ0(µ)︸ ︷︷ ︸
indep. of B

+
1

3
(2µBB)2∂

2Φ0

∂µ2

The magnetisation of the system is de�ned as

M =
1

V

(
∂Φ

∂B

)
T,V

=
8µ2

B

3

B

V

∂2Φ0

∂µ2
= −

8µ2
B

3

B

V

(
∂N̄

∂µ

)
T,V

Calculating an expression for N̄ for a degenerate Bose gas for all T , and setting s = 1, we
arrive at the expression

χm =

(
∂M

∂B

)
T,V

=
8µ2

B

λ3
th

2√
π

∂

∂µ

(∫ ∞
0

dx

√
x

ex−βµ − 1

)
In the classical limit, eβµ v nλ3

th � 1, and so∫ ∞
0

dx

√
x

ex−βµ − 1
v eβµ

∫ ∞
0

dx
√
xe−x = eβµ

√
π

2

Substituting this into the expression for χm, we �nd that the magnetic susceptibility re-
duces to Curie's Law in the classical limit, as it should. In the other limit as T → T+0

c ,
βµ→ 0, and the integral in our expression for χm does not converge. This means that the
system must have in�nite magnetic susceptibility at T = Tc.

For T < Tc, the gas will form a condensate, meaning that the groundstate occupation
number is given by (3.49). Then, to a very good approximation, the magnetisation will be
given by

M0 =
2µBn̄0

V
= 2µBn

[
1−

(
T

Tc

)3/2
]

Evidently, for B = 0, there is no magnetisation, as the spins are su�ciently randomly
distributed that they do not produce a net magnetisation in the material. However, as
soon as B is non-zero, this makes a particular alignment energetically favourable, and so
all the particles in the groundstate will align as such. This means that there will be a large
magnetisation even for B → 0+.
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3.6 The Photon Gas

Thermal radiation can be modelled as a gas of photons with energy per particle ~ω, with
chemical potential µ = 0, and which has an energy density pro�le that is only dependent
on temperature (black body radiation). It follows that for a gas of N particles that the
energy density is given by

u = u(T ) = n~ω

From Kinetic Theory, we know that the particle �ux is Φ = nc/4, meaning that the energy
�ux is given by P = uc/4. lastly, by analogy to (2.8), we can write the pressure of the
photon as as p = u/3. With this set-up, let us derive some further properties of the gas
from both Thermodynamics, and the theory of Quantum Gases.

3.6.1 Thermodynamically

Starting from (3.17), it quickly follows that for a gas with the above properties

dU = TdS − u

3
dV −→

(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− u

3

However, we know that(
∂U

∂V

)
T

=
∂

∂V
(uV )T = u+ V

(
∂u

∂V

)
T

= u

as u cannot depend on the size of the system by the de�nition of energy density. Recalling
(1.31): (

∂S

∂V

)
T

=

(
∂p

∂T

)
V

=
1

3

du

dT

We thus obtain the di�erential equation

u =
1

3
T
du

dT
− u

3
−→ 4u = T

du

dT

that we can solve to obtain u ∝ T 4. This means that incident power per unit area is given
by

P =
1

4
uc = σT 4 (3.53)

for some constant of proportionality σ that is known as the Stefan-Boltzmann constant.
However, to �nd the actual value of the constant, we have to treat the photon gas using
the theory of Section (3.5).

3.6.2 As a Quantum Gas

Photons are bosons, where their spin can take the values s = ±1. We want to calculate
the number density of photons with frequencies in the range [ω, ω + dω]. The density of
states for such a system is given by

g(k) dk = 2︸︷︷︸
polarisation states

V

(2π)3
4πk2 dk =

V k2

π2
dk
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Using the dispersion relation ω = ck, this can be written as

g(ω) dω =
V

π2c3
ω2 dω

Assuming that there are a large enough number of photons to approximate them as having
a continuous spectrum, we can use (3.36) with µ = 0 and ε = ~ω to write that

ni =
1

eβ~ω − 1

Thus, the number density of the photons is given by

n(ω) =
V

π2c3

ω2

eβ~ω − 1

This means that the spectral energy density is given by

uω(ω) =
~

π2c3

ω3

eβ~ω − 1
(3.54)

When integrated, this will give the energy density of the photon gas. We can use this to
�nd an expression for the Stefan-Boltzmann constant:

u =

∫
dω uω(ω) =

~
π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
=

~
π2c3

1

(~β)4

∫ ∞
0

dx
x3

ex − 1︸ ︷︷ ︸
π4/15

where we have made the substitution x = β~ω. By comparison with (3.53), it is clear that
the Stefan Boltzmann can be expressed as

σ =
π2k4

B

15(~c)3
= 5.67× 10−8 Wm−2K−4 (3.55)

By letting ω = (2πc)/λ, we can also write the spectral energy density in the form

uλ(λ) =
8πhc

λ5

1

eβhc/λ − 1
(3.56)

In the classical limit, β becomes very small, so we can Taylor expand, yielding the Rayleigh-
Jeans law :

uλ(λ) =
8πkBT

λ4

This evidently diverges for low λ, giving in�nite energy density, which is known as the
ultraviolet catastrophe. We thus need the quantisation that is implicitly included in (3.56).
This distribution has a maximum that can be found numerically as λmax v (hc)/(5kBT ).
This gives rise to Wien's Law which states that

λmax T = constant (3.57)

That is, the product of the maximum wavelength emitted by a black-body and it's tem-
perature will yield a constant value. This can be used to �nd the temperature of stars, for
example.
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4. Further Thermodynamics

This chapter aims to extend the readers knowledge of Thermodynamics, covering

• Real Gases

• Phase Transitions

This quite short chapter builds on the ideas outlined in the �rst three chapters to look
at some more accurate descriptions of gas behaviour, as well as look at some further
concepts about phase transitions between solids, liquids and gases. As is often the case
with Thermodynamics, it is not particularly complicated, just time consuming to learn!
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4.1 Real Gases

For most of the Thermodynamics that we have been doing with gases, we have merely
dealt with the Ideal Gas, as this is the simplest way to model gases. However, evidently
most gases are non-ideal, and so it would be useful to develop other ways of describing the
behaviour of gases, as we will do so in the following sections. Before we do so, let us derive
a useful result for the energy of a gas. Consider U = U(T, V ):

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV

From (3.17), assuming a closed system (dN = 0):(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− p = T

(
∂p

∂T

)
V

− p

where we have made us of (1.31). Putting these together, this gives

dU = CV dT +

[
T

(
∂p

∂T

)
V

− p
]
dV (4.1)

This can be used to show, for example, that U is only a function of temperature for certain
gases (the second term is zero for an ideal gas, and certain other equations of state). It
is also a relation that one is commonly asked to derive, so it is well worth having in the
memory bank.

Let us also recap some important notation. We will use nm = N/NA to refer to the number
of moles of a substance. Recall the gas constant R = NAkB. This means that we can write
the simple relation

NkB = nmR (4.2)

that allows us to convert between (typically) Statistical Mechanics and Kinetic Theory
expressions (involving kB), and Thermodynamic expressions (involving R), though they
are of course equivalent.

4.1.1 Virial Expansion

The equations describing real gases include some corrections for the fact that intermolecular
forces, that we have neglected with the Ideal Gas, exist. This often means that they will
reduce to the case of the Ideal Gas in some limit, and so we can write them as a virial
expansion in their density:

pV

nmRT
= 1 +

nmB

V
+
n2
mC

V 2
+ . . . (4.3)

where B and C are the (possibly) temperature dependent coe�cients, and nm is the num-
ber of moles of the gas.

The Boyle temperature is de�ned as the temperature that satis�es B(Tb) = 0; that is, the
temperature that means that the gas behaves like an ideal gas to �rst order in nm. It is
so called because it will thus obey Boyle's empirical law.
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4.1.2 Van-der-Waals Gas

This is the one of the most common real gas approximations. The equation of state can be
derived through a Statistical Mechanics approach by making a mean-�eld approximation,
but it is much easier to quote the equation and explain the origin of the various terms.
The Van-der-Waals equation of state is as follows:(

p+
a n2

m

V 2

)
(V − bnm) = nmRT (4.4)

where a and b are coe�cients that depend on the nature of the gas being examined. This
has been written in molar form as this allows easier comparison with (4.3), but it can also
be written in terms of particle number N . There are some key features to note:

• The number of nearest neighbours to a particular particle is proportional to nm/V
, and so attractive intermolecular interactions lower the total potential energy by
an amount proportional the number of atoms multiplied by the number of nearest
neighbours. This means that we can write the potential change as (anm)/V which
gives rise to an energy change −(an2

m dV )/V 2. This can be thought of as an e�ective
pressure causing the energy change, giving rise to the extra term shown

• The term bnm comes from considering the particles to have a �nite size (instead of
point particles), meaning that we must exclude this volume in the equation of state

It is evident that this equation reduces to the Ideal Gas equation in the low density limit
nm/V � 1. It is also under this limit that we can write this equation as a virial expansion:

pV

nmRT
=

(
1− bnm

V

)−1

− anm
RTV

v 1 +
(
b− a

RT

) nm
V

+

(
bnm
V

)2

+ . . .

This means that the Boyle temperature for a Van der Waals gas is Tb = a/(bR).

4.1.3 Dieterici Gas

An alternative equation of state is that of the Dieterici gas, which is as follows:

p(V − bnm) = nmRT exp
(
− anm
RTV

)
(4.5)

Once again, the bnm comes from the requirement of excluding the �nite volume of the
particles from the calculation, and the exponential term regulates the strength of the
inter-particle interaction. This description of real gases can prove more accurate than that
of the Van der Waals model, but not by a signi�cant margin. Once again, this can also be
written as a virial expansion in the low density limit:

pV

nmRT
=
e−(anm)/(RTV )

1− (bnm)/V
v 1 +

(
b− a

RT

) nm
V

+

(
b2 +

a2

2R2T 2
− ab

RT

)(nm
V

)2
+ . . .

This means that the Boyle temperature for a Dieterici gas is actually the same as that of
the Van der Waals gas.

4.1.4 Critical Points

In Thermodynamics, phases are regions of a system throughout which all physical properties
of a material are essentially uniform; this is often used to refer to di�erent states of a
particular substance that exist within the one system, such as a 'liquid phase' and 'gas
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Figure 4.1: Isotherms of the Van der Waals gas (temperature increasing towards the top
right), with dashed liquid-vapour equilibrium curve, critical isotherm and critical point

phase'. With that in mind, consider the isotherms (lines of constant temperature) for the
Van der Waals gas. These are plotted in the �gure above.

We remark how for a particular range of values of pressure (for a given isotherm), that
there are two possible values of volume that we shall call V1 and V2. For a given pressure pi,
the two phases associated with these di�erent volumes are in equilibrium. We know from
Sections (3.2.2) and (3.3.1) that can only have equilibrium when temperature, pressure
and chemical potential are equal in both phases. As we know that the pressure and
the temperature are both equal (we are sitting on an isotherm at a given pressure), the
condition for these phases being in equilibrium must then be∫ 2

1
dµ =

∫ 2

1
V dp = 0 (4.6)

That is, the shaded areas under the curves must be equal. Note that the �rst equal-
ity follows from the results of the next section. The region of the curve marked in red
in the diagram represents a region of instability; here, the isothermal compressibility

κT = − 1
V

(
∂V
∂p

)
T
is negative, meaning that the more pressure you apply, the more the

gas is allowed to expand. This means that phase transitions that occur between our two
volumes V1 and V2 tend to be very 'sharp'.

Now, there is a particular critical point for which there is no point of in�exion. This means
that the two phases can no longer co-exist in equilibrium, and one dominates (usually the
gas). This causes the equilibrium curve in the p-T plane to terminate at this critical point,
meaning that we can actually avoid 'sharp' phase transitions by going 'around' this point.
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We can characterise a critical point by a pressure pc, temperature Tc and volume Vc. As a
critical point is a point of in�exion by de�nition, we can �nd it by applying(

∂p

∂V

)
T

= 0 and
(
∂2p

∂V 2

)
T

= 0 (4.7)

in conjunction with the equation of state of the gas to solve for these three unknowns. We
can then use these 'critical coordinates' to de�ne the compressibility factor

Z =
pcVc
nkBTc

This leads to what is known as the Law of Corresponding States; that many di�erent gases
all have the same compressibility factor. We then de�ne reduced coordinates p̃ = p/pc,
Ṽ = V/Vc and T̃ = T/Tc. Writing the equation of state in terms of these reduced co-
ordinates, according the the law of corresponding states, should give the same equation
regardless of the gas, with only the critical units changing from gas to gas.

Find the critical point coordinates for the Dieterici equation of state, and write it in reduced
coordinates.

We can re-arrange (4.5) to give

p =
nmRT

V − bnm
e−(anm)/(RTV )

Performing the di�erentiation:(
∂p

∂V

)
T

= 0 −→ V 2

V − bnm
=
anm
RT

De�ning u = V/(bnm), we can write

f(u) =
u2

u− 1
=

a

bRT

Applying the second derivative condition (f ′(u) = 0), we �nd that u = 2 → Vc = 2bnm.
Then, it is just a few simple steps of algebra to show that

Tc =
a

4bR
and pc =

a

4e2b2

Writing T = T̃ Tc, and similarly for p and V , it is again a step of relatively simple algebra
to show that

p̃(2Ṽ − 1) = T̃ exp

[
2

(
1− 1

T̃ Ṽ

)]

4.1.5 Expansions of Real Gases

We can use the results derived in the previous sections to now look at some of the deviations
from Ideal Gas behaviour that can be observed in practise; this often involves the expansion
of gases. We shall look at two expansions in particular.
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The Joule Expansion

We have already met this expansion in Section (1.4.5). To recap,this involves two chambers
with adiathermal walls, so no heat is exchanged with the surroundings â�� the gas is
allowed to expand freely when the piston is drawn back, so no work is done. The change in
internal energy is therefore zero. We are thus interested in whether this results in a change
in temperature, and so we de�ne the Joule coe�cient µJ as

µJ =

(
∂T

∂V

)
U

= −
(
∂T

∂U

)
V

(
∂U

∂V

)
T

= − 1

CV

[
T

(
∂S

∂V

)
T

− p
]

Making use of (1.31), this becomes

µJ = − 1

CV

[
T

(
∂p

∂T

)
V

− p
]

(4.8)

We can �nd the change in temperature by the simple integration of this coe�cient over
the change in volume. As we have seen, µJ = 0 for an Ideal Gas, meaning that we
observe no change in temperature. However, for a Van der Waals gas, we �nd that µJ =
−(an2

m)/(CV V
2), meaning that there is in fact cooling of the gas upon expansion. This

we would expect, as for real gases the potential energy is raised by forcing the molecules
apart against intermolecular forces upon expansion, which lowers the kinetic energy, and
thus temperature.

The Joule-Kelvin Expansion

The Joule-Kelvin expansion involves the steady �ow of gas through a porous plug that
imposes the condition of quasi-stasis. The gradient between the two chambers, as well as
the rate of �ow, are kept constant using pistons. The chambers one again have adiathermal
walls, and so there is no heat exchange with the surroundings.

Figure 4.2: A schematic of the Joule-Kelvin Expansion

Suppose that after some time, the gas occupies a volume V1 in the higher pressure chamber,
and a volume V2 in the lower pressure. This means that we can write the energy change
as

U2 − U1 = p1V1︸︷︷︸
work done by p1

− p2V2︸︷︷︸
work against p2

−→ U1 + p1V1︸ ︷︷ ︸
H1

= U2 + p2V2︸ ︷︷ ︸
H2
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It is clear that the the enthalpy H is conserved in the process. This means that we are
interested in temperature changes at constant H. We thus de�ne (you guessed it), the
Joule-Kelvin coe�cient

µJK =

(
∂T

∂p

)
H

= −
(
∂T

∂H

)
p

(
∂H

∂p

)
T

Recalling that dH = TdS + V dp, we have that(
∂H

∂T

)
p

= T

(
∂S

∂T

)
p

= Cp and
(
∂H

∂p

)
T

= T

(
∂S

∂p

)
T

+ V

Putting this together, we can write the Joule-Kelvin coe�cient as

µJK =
1

Cp

[
T

(
∂V

∂T

)
p

− V

]
(4.9)

We can thus �nd the change in temperature by integrating µJK over the change in pressure.
This is evidently again zero for the ideal gas. However, for real gases, µJK can either be
positive (cooling) or negative (heating), meaning that we have a cross-over inversion curve
that is de�ned by the equation µJK = 0, or rather(

∂V

∂T

)
p

=
V

T

Using the reciprocity relation (1.22), this can be written in the more convenient form

T

(
∂p

∂T

)
V

+ V

(
∂p

∂V

)
T

= 0 (4.10)

From this, we can also de�ne the maximum inversion temperature below which the Joule-
Kelvin process results in cooling.
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4.2 Phase Transitions and Equilibria

We are now going to look at the details of phase transitions; that is, the Thermodynamic
processes where-by a substance changes from one phase to another. A very typical example
is that of the boiling of water; the phase transition is quite rapid, as it is only when the
boiling point is reached that the liquid phase becomes thermodynamically unstable, and
the gas phase thermodynamically stable.

4.2.1 Latent Heat

Usually to change from one phase, at entropy S1, to another phase at entropy S2, we
require some additional heat supply. This is known as the latent heat (of evaporation,
melting, etc.) given by

L = ∆Qrev = T (S2 − S1) (4.11)

where T is used to refer to the temperature at which the phase transition occurs; the
change in entropy occurs instantaneously at this temperature. As we are interested in
changes at constant temperature, we will be making use of the Gibbs Free Energy.

Ehrenfest's method of classifying phase transitions is that the order of a phase transition
is the order of the derivative of G or µ that is discontinuous. First-order phase transitions
have discontinuous entropy and volume, and so they exhibit a latent heat. Second-order
phase transitions have no latent heat but may have discontinuous heat capacities or com-
pressibility (2nd derivatives of G). When no latent heat is exhibited (continuous entropy),
we have a continuous phase change. In Van der Waals gas, we can have either continuous
or discontinuous phase changes depending on whether we go 'directly across' the phase
boundary or around the critical point, as outlined in Section (4.1.4).

4.2.2 The Clausius-Clapeyron Equation

Recall from (3.18) that G = µN . This means that we obtain the two di�erential forms for
G of

dG = V dp− SdT and dG = µdN +Ndµ

Assuming that total particle number is conserved, we �nd that the di�erential form of µ
can be written as

dµ = − S
N
dT +

V

N
dp = −sdT + vdp

where s and v are the entropy per particle and volume per particle respectively. From
Section (3.3.1), we know that mu1 = µ2 for the phases to coexist in equilibrium, and so
we know that along the p-T boundary for the two phases

dµ1 = dµ2

−s1 + v1
dp

dT
= −s2 + v2

dp

dT
dp

dT
=
s1 − s2

v1 − v2

Substituting in our expression for latent heat, we obtain the Clausius-Clapeyron equation

dp

dT
=

L

T (V2 − V1)
(4.12)

Depending on the type of transition, we can use this to derive di�erent p-T curves for the
phase boundaries.
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Solid-Liquid Boundary

The Clausius-Clapeyron equation can be simply re-arranged to give

dp =
LdT

T∆V

where ∆V = V2 − V1. Assuming that both ∆V and L are temperature independent, then
this equation can be integrated to yield

p = p0 +
L

∆V
log

(
T

T0

)
(4.13)

The constants p0 and T0 are chosen such that p = p0 and T = T0 on the boundary. The
volume change ∆V on melting is relatively small, so that the gradient of the phase bound-
ary in the p-T plane is very steep.

When lead is melted at atmospheric pressure the melting point is 327.0 ◦C, the density de-
creases from 11.01×103 to 10.65×103 kgm3 and the latent heat is 24.5 kJkg−1 . Estimate
the melting point of lead at a pressure of 100 atm.

We can use the above equation to write that

∆p =
L

∆V
log

(
T2

T1

)
−→ T2 = T1 e

∆p∆V
L

We are already given that ∆p = 99 atm. Suppose that there is a mass M of lead. Then
the change in the speci�c volume (volume per unit mass) is given by

∆V = v liquid − v solid =
1

ρ liquid
− 1

ρ solid
v 3.07× 10−6 m3 kg−1

Recalling that L is a speci�c, per unit mass quantity, we can then simply plug everything
into our expression for T2 yieldingv 327.75◦C, which is a very small change in temperature.

Liquid-Gas Boundary

Let us initially treat this boundary assuming that V gas = V � Vliquid, the resultant
gas is ideal, and L is temperature independent. The former of these assumptions is not
particularly assumptive, as most incompressible �uids undergo a large expansion when
moving to their gaseous phase. Then, according to the Clausius-Clapeyron equation:

dp

dT
=

L

TV
=

pL

nmRT 2

where we have used the ideal gas equation in the second equality. This equation can be
integrated to give

p = p0 exp

(
− L

nmRT

)
(4.14)

As R = NAkB, the exponential factor is roughly Boltzmann. This equation can be used to
solve that annoyingly typical example about boiling a cup of tea on the top of a mountain;
it is evident that the British simply cannot get away from their tea.
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Suppose now that we do not make any assumptions about the temperature dependence of
latent heat. At the phase boundary, we can write that ∆S = L/T . Noting that we can
write the total derivative with respect to temperature as

d

dT
=

(
∂

∂T

)
p

+
dp

dT

(
∂

∂p

)
T

we can �nd the change in ∆S as

d

dT

(
L

T

)
=

(
∂∆S

∂T

)
p

+
dp

dT

(
∂∆S

∂p

)
T

1

T

dL

dT
− L

T 2
=

∆Cp
T

+
dp

dT

[(
∂Sg
∂p

)
T

−
(
∂S`
∂p

)
T

]
dL

dT
=
L

T
+ ∆Cp − T

dp

dT

[
∂

∂T
(Vg − V`)p

]
where the subscripts ` and g are used to refer to the liquid and the gas respectively, and
∆Cp = Cpg − Cp`. Using the assumption about the relative volumes of the liquid and the
gas, and substituting the Clausius-Clapeyron equation, we �nd that

dL

dT
=
L

T
+ ∆Cp −

L

Vg

(
∂Vg
∂T

)
p

Assuming that the gas produced is ideal, then this equation simpli�es to

dL

dT
= ∆Cp −→ L = L0 + ∆Cp

Substituting this result back into the Clausius-Clapeyron equation, and solving, yields:

p = p0 exp

(
− L0

nmRT
+

∆Cp log(T )

nmR

)
(4.15)

p-T Curves

Figure 4.3: The adiabatic compression of
a gas

We are now going to consider a short example
to illustrate how to think about phase transi-
tions with respect to p-T curves. Suppose that
a saturated gas expands adiabatically. What is
the condition on the gradient of the p-T curve
for some gas to condense? Looking at the �g-
ure on the right, it is clear that the gas has
to 'cross' the transition curve with gradient
dp/dT in order to condense. This means that
when moving left (lower pressure and tempera-
ture associated with expansion) along the adi-
abatic curve, we need to be able to cross the
transition curve. From this, it is clear that the
condition on the gradients of the two curves is(

∂p

∂S

)
S

<
dp

dT
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