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In turbulent high-beta astrophysical plasmas (exemplified by the galaxy cluster plasmas), pressure-
anisotropy-driven firehose and mirror fluctuations grow nonlinearly to large amplitudes, �B=B� 1, on a
time scale comparable to the turnover time of the turbulent motions. The principle of their nonlinear
evolution is to generate secularly growing small-scale magnetic fluctuations that on average cancel the
temporal change in the large-scale magnetic field responsible for the pressure anisotropies. The presence
of small-scale magnetic fluctuations may dramatically affect the transport properties and, thereby, the
large-scale dynamics of the high-beta astrophysical plasmas.
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Introduction.—Many astrophysical plasmas are magne-
tized and weakly collisional, i.e., the cyclotron frequency
�i is much larger than the collision frequency �ii and the
Larmor radius �i is smaller than the mean free path �mfp. In
such plasmas, all transport properties, most importantly the
viscosity and thermal conductivity, become anisotropic
with respect to the local direction of the magnetic field
[1] — even if the field is dynamically weak.

A typical example where just such a physical situation is
present is galaxy clusters [2,3]. While parameters vary
significantly both within each cluster and between clusters,
the weakly collisional magnetized nature of the intracluster
medium (ICM) is well illustrated by the core of the Hydra
A cluster, where �i � 10�2 s�1, �ii � 10�12 s�1 and �i �
105 km, �mfp � 1015 km [4]. Modeling global properties
of clusters and physical processes inside them, such as
shocks, fronts, radiobubbles, or the heating of the ICM
[5], can only be successful if the viscosity and thermal
conductivity of the ICM are understood [6]. Another fun-
damental problem is the origin, the spatial structure, and
the global dynamical role of the magnetic fields in clusters.
Turbulent dynamo models again require knowledge of the
ICM viscosity [3,4,7], which itself depends on the field
structure, so the problem is highly nonlinear and is as yet
unsolved.

An additional complication is that in a turbulent plasma,
pressure anisotropies develop in a spontaneous way [2,3,8].
In high-beta plasmas, they trigger a number of instabilities,
most interestingly, firehose and mirror [9,10]. The insta-
bilities are very fast compared to the motions of the ICM
and give rise to magnetic fluctuations at scales as small as
�i. The spatial structure and the saturated amplitude of
these fluctuations must be understood before quantitative
models of transport can be constructed. In this Letter, we
demonstrate how the nonlinear kinetic theory of these
fluctuations can be constructed, elucidate the basic physi-
cal principle behind their nonlinear evolution, and show

that they do not saturate at small quasilinear levels [11], but
grow nonlinearly to large amplitudes (�B=B� 1).

The physical origin of pressure anisotropies.—A funda-
mental property of a magnetized plasma is the conserva-
tion of the first adiabatic invariant for each particle,
� � v2

?=2B (on time scales � ��1
i ). This implies that

any change in the field strength must be accompanied by a
corresponding change in the perpendicular pressure,
p?=B� const. In a heuristic way, we may write [2]

 

1

p?

dp?
dt
�

1

B
dB
dt
� �ii

p? � pk
p?

; (1)

where the last term represents collisions relaxing the pres-
sure anisotropy. On the other hand, the magnetic field is
frozen into the plasma flow velocity u, and the field
strength obeys [12]

 

1

B

dB
dt
� b̂ b̂ :ru� �0; (2)

where d=dt � @=@t� u � r, b̂ � B=B, and �0 is the turn-
over rate of the turbulent motions. Taking the two terms in
the right-hand side of Eq. (1) to be comparable and using
Eq. (2), we get � � �p? � pk	=p? � �0=�ii. This is the
anisotropy persistently driven by the turbulent motions,
which are excited at the large (system-size) scales by
various macroscopic mechanisms [7].

If the turbulence is Kolmogorov, the dominant con-
tribution to the turbulent stretching and, therefore, to the
pressure anisotropy, comes from the viscous scale l� �
Re�3=4L, where L is the outer scale. The viscous-scale
motions have the characteristic velocity u� Re�1=4U,
where U is the characteristic velocity at the outer scale.
The Reynolds number Re � UL=� is calculated using the
viscosity of an unmagnetized plasma �� vthi�mfp (vthi is
the ion thermal speed) because for the motions that change
the field strength, the viscosity is not reduced by the
magnetic field [1,3]. We now introduce a small parameter
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��MRe�1=4, where M � U=vthi is the Mach number [2].
Then we can order u=vthi � �mfp=l� � �, whence ��
�0=�ii � u�mfp=l�vthi � �2. Using again our fiducial pa-
rameters for the Hydra A cluster core, U� 250 km=s,
vthi � 700 km=s, L� 1017 km [4], we have �� 0:1. The
relatively small resulting typical anisotrophy due to turbu-
lence will have a dramatic effect on the magnetic field.

Qualitative derivation.—Consider first the firehose in-
stability. It is activated when, or in the regions where, �<
0 [9], i.e., the magnetic-field strength is decreasing. Such
events/regions will always exist in a turbulent plasma. The
growing fluctuations are polarized as Alfvén waves, with
magnetic perturbations perpendicular to the original field:
B � B0 � �B?. Using Eq. (1), we estimate

 ���
j�0j

�ii
�

�
�� �ii

�B2
?

B2
0

; (3)

where �0 � �1=B0	dB0=dt < 0, the instability growth rate
is � � �j�j � 2=�i	

1=2kkvthi � �0 (for k�i 
 1) [2,9],
�i � 4	minv

2
thi=B

2
0, and the overbar denotes averaging

over the fluctuation scales. Intuitively, the fluctuations are
averaged because the particles streaming along the field
lines traverse the field fluctuations faster than the fluctua-
tions grow (kkvthi � �). Initially, �� �ii; as �B? grows,
the instability is quenched because the negative anisotropy
associated with the large-scale turbulence is compen-
sated by a positive anisotropy due to the small-scale fluc-
tuations. The amplitude at which the quenching occurs is
�B?=B0 � �j�0j=�ii	

1=2 � �. This estimate can also be
obtained via a formal quasilinear calculation [11]. How-
ever, it does not, in fact, describe a steady state. Indeed, if
�B? stops changing while the unperturbed field B0 con-
tinues to decrease, the resulting negative pressure anisot-
ropy is again uncompensated, and the firehose instability
will be reignited. Since the anisotropy is reduced in the

nonlinear regime, the growth of the fluctuations eventually
slows down so that �
 �ii. Then Eq. (3) shows that the
anisotropy stays at the marginal level if �1=B2

0	d�B
2
?=dt�

j�0j, whence �B?=B0 � �j�0jt	
1=2. The physical principle

of this nonlinear evolution is that the total average field
strength does not change: d�B2

0 � �B
2
?	=dt � 0.

Thus, after an initial burst of exponential growth, the
firehose fluctuations grow secularly until the anisotropy-
driving fluid motion decorrelates. As this happens on the
time scale �j�0j

�1, the fluctuations will have time to
become large, �B?=B0 � 1. For Hydra A parameters
used above, the time needed for that is j�0j

�1 � 106 yrs.
Kinetic theory.— We now derive these results in a

systematic way. Although finite ion Larmor radius (FLR)
effects are important for the quantitative theory of the
firehose instability [14,15], the limit k�i 
 1 provides
the simplest possible analytical framework for elucidating
the key elements of the nonlinear physics, which persist
with FLR [16]. We start with the Kinetic MHD equations
[17], valid for k�i 
 1 and !
 �i:

 min
du
dt
� �r

�
p? �

B2

8	

�
� r �

�
b̂ b̂

�
p? � pk �

B2

4	

��
;

(4)

 

dB
dt
� B � ru: (5)

We set n � const andr � u � 0. This can be obtained self-
consistently, but to reduce the amount of formal deriva-
tions, we simply assume incompressibility at all scales (the
motions are subsonic). The pressure anisotropy is p? �
pk �

R
d3vmi�v

2
?=2� v2

k
	f�t; r; v	, where f is the ion

distribution function and v the ion velocity in the frame
moving with the mean velocity u. The electron contribu-
tion to p? � pk is smaller by �me=mi	

1=2. The ion distri-
bution function satisfies [17]
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�
; (6)

where v � jvj, 
 � vk=v, and the last term on the left-
hand side is the collision operator.

We take B � B0 � �B?, u � u0 � �u?, and Ek � 0,
where the slow fields B0, u0 (the background turbulence)
vary at the rate �0 on the scale l� of the viscous motions (or
larger) and the fast perturbations �B?, �u? have the
growth rate � and wave number k. We formally order all
scales and amplitudes with respect to the small parameter �
introduced above. As we see from Eq. (3), it is sensible to
let the fluctuation growth rate be (at least) the same or-
der as the collision rate: �� �kvthi � �ii, whence kk �
���mfp	

�1 [18]. For the fluid motions, u0=vthi � �, �0 �

�3kvthi, and l�1
� � �2k. The expected fluctuation level at

which the instability starts being nonlinearly quenched
tells us to order �B?=B0 � � and, using Eq. (5),
�u?=vthi � �2. From Eq. (4), we see that the pressure
anisotropy is destabilizing only if it is not overwhelmed
by the magnetic tension, so we order 1=�i ��� �2.

We seek the distribution function f � f0 � �f1 �
�f2 � � � � , where f0 only has slow variation in space
and time. To order � (the lowest nontrivial order), Eq. (6)
becomes 
vb̂0 � r�f1 � �@f0=@t	c � 0. Averaging along
the magnetic field, we get �@f0=@t	c � 0, whence f0 is a
Maxwellian: f0 � n0 exp��v2=v2

thi	=�	v
2
thi	

3=2. Then

vb̂0 � r�f1 � 0, i.e., �f1 has no fast variation along
the magnetic field. To order �2, we learn, in a similar
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fashion, that �f1 converges to a Maxwellian on the colli-
sion time scale (so it can be absorbed into f0) and that �f2

has no fast variation along the magnetic field. Finally, to
order �3, the kinetic equation averaged along b̂0 is

 

@�f2

@t
�

�
@�f2

@t

�
c
� b̂ b̂ :ru�1� 3
2	

v2

v2
thi

f0; (7)

where the overbar denotes spatial averaging along the field
line. In order to solve this equation, we assume, as a simple
model, a pitch-angle-scattering collision operator with a
constant collision rate: �@�f2=@t	c � ��ii=2	�@=@
	�
�1� 
2	@�f2=@
. While this is not quantitatively correct,
it is sufficient for our purposes. Solving for �f2 and
calculating the pressure anisotropy, we find
 

��t	�
p?�pk
p0

�3
Z t

0
dt0e�3�ii�t�t0	b̂b̂:ru�t0	

��
j�0j

�ii
�1�e�3�iit	�

3

2

Z t

0
dt0e�3�ii�t�t0	

d
dt0
�B2
?�t
0	

B2
0

;

(8)

where �0 � �1=B0	dB0=dt < 0, p0 � n0miv2
thi=2, and we

have used Eq. (2). Equation (8) is the quantitative form of
Eq. (3). Note that it generalizes the Braginskii [1] formula
p? � pk � �p0=�ii	b̂ b̂ :ru, which is only valid for fields
varying slowly in space in time (cf. [2]).

Applying our ordering to Eqs. (4) and (5), we get

 

@2�B?
@t2

�
1

2
v2

thi���t	 �
2

�i
r 2
k
�B?; (9)

where �i � 8	p0=B
2
0 and rk is the gradient along B0.

Equations (9) and (8) describe the evolution of
firehose perturbations both in the linear and nonlinear
regimes. Consider the evolution of a single Fourier
mode (Fig. 1). When �B?=B0 
 �, the first (linear)
term in Eq. (8) dominates and the perturbations
grow exponentially with the firehose growth rate ��
�j�0j=�ii�2=�i	

1=2kkvthi. Once the nonlinearity becomes
significant (at �B?=B0 � �), the anisotropy is grad-
ually suppressed and, for t�ii�1, �B2

?�t	=B
2
0 ’

�t � 2�ii=k
2
k
v2

thit � c1

������
�t
p R

t dt0e�3�iit0=2t0�1=4 �

sin�
������������
2�=3

p
kkvthit03=2 � c2	, where ��2�j�0j�2�ii=�i	

and c1 and c2 are integration constants. The dominant
behavior (the first term) is the secular growth we already
derived qualitatively above. The second term is the long-
time subdominant correction, and the third is an oscillatory
transient, which decays on the collision time scale.

Considering the nonlinear evolution from arbitrary ini-
tial conditions involving many Fourier modes requires
inclusion of the FLR terms that set the wave number of
maximum growth. While the spatial structure of the fluc-
tuations becomes more complex and a power-law energy
spectrum emerges [16], the key physical result derived
above persists: the fluctuation energy grows secularly
with time until finite amplitudes are reached.

The mirror instability.—The nonlinear evolution of the
mirror instability shares some of the features of the fire-
hose, but the full kinetic calculation is much more com-
plicated. Here we only present a qualitative discussion.

The mirror instability is triggered for �> 0 (increasing
B), has the growth rate �� �kkvthi for k�i 
 1, and gives
rise to growing perturbations of the magnetic-field
strength, �Bk [2,10]. The pressure anisotropy is, as before,
determined by the changing field strength seen on the
average by parallel-streaming particles:

 ��
�0

�ii
�

1

�� �ii

d
dt
�Bk
B0

: (10)

For particles traveling the full length of the field line,
�Bk � 0; the particles for which 
 < 
tr � j�Bk=B0j

1=2

are trapped by the fluctuations (‘‘mirrors’’) and play a
key role in the nonlinear dynamics [19]. Trapping becomes
important when the bounce frequency approaches the in-
stability growth rate: !b � kkvthi
tr � �� ��0=�ii	kkvthi,
or �Bk=B0 � ��0=�ii	2 � �4. For amplitudes above this
level, �Bk=B0 � 
tr�Bk=B0 ��j�Bk=B0j

3=2 (negative
because particles are trapped in the regions of weaker
field). We substitute this estimate into Eq. (10), assume
slow evolution (�
 �ii), and find that the marginal state is
achieved for �Bk=B0 � ��0t	2=3. This secular growth con-
tinues until the turbulent motion responsible for the pres-
sure anisotropy decorrelates, by which time �Bk=B0 � 1.
The FLR effects, while important [10,20], are ignored in
this qualitative argument, but are unlikely to change the
main result (secular growth).

Conclusion.—We have shown that, in high-beta tur-
bulent plasmas, small-scale magnetic fluctuations are
continually generated by plasma instabilities and grow
nonlinearly to large amplitudes, �B=B� 1, so strongly
‘‘wrinkled’’ magnetic structures emerge on the fluid time
scales. The main difference between our theory and most
others [11,15,19,20] is that they consider an initial pressure

FIG. 1. Evolution of �B2
?�t	=B

2
0 and ��t	 (inset) obtained by

numerically solving Eqs. (9) and (8) for a single Fourier mode.
Here �0=�ii � 0:01, �i � 1000, and kkvthi=

���
2
p
�ii � 10.
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anisotropy gradually cancelled by fluctuations in a colli-
sionless plasma, whereas in our calculation, the anisotropy
is continually driven by the turbulent motions and relaxed
by (weak) collisions; the evolution of the fluctuations is
followed over times longer than the collision time, up to
the fluid time scale. The underlying physical principle of
the nonlinear evolution is the tendency for the growing
fluctuations to compensate on the average the pressure
anisotropies generated by the turbulence.

This mechanism of making small-scale magnetic fields
is distinct from the fluctuation dynamo, which exponen-
tiates the magnetic energy at the turbulent stretching rate
(��0, much slower than the plasma instabilities) and pro-
duces long filamentary folded structures, so the parallel
correlation length of the field remains macroscopically
large (� outer scale) [13], in contrast to the instability-
produced wrinkles with parallel scales possibly as small as
the ion gyroscale. How the dynamo operates in the pres-
ence of the instabilities [3] is a subject of an ongoing
investigation motivated by the fundamental problem of
the origin of cosmic magnetism in general and of magnetic
fields in galaxy clusters, in particular.

To illustrate the potentially dramatic effect of firehose
and mirror fluctuations on the transport properties of
magnetical turbulent plasmas, consider the ICM ther-
mal conduction problem. The standard estimates of the
electron thermal conductivity in a tangled magnetic field
are [21] �e � vthe�mfp if �mfp 
 lB (collisional), �e �
vthe�mfplB=LRR if lB 
 �mfp 
 LRR (semicollisional),
and �e � vthelB if �mfp � LRR (collisionless), where lB
is the (parallel) correlation length of the magnetic field and
LRR � lB ln�lB=�e	 is the Rechester-Rosenbluth length. In
most MHD models [21] (including the fluctuation dynamo
[13]), lB is macroscopic and all three estimates yield an
effectively isothermal ICM (except at macroscopic scales).
However, if magnetic wrinkles with �B=B� 1 develop at
scales ��i, we have lB � �i and LRR � �i ln��i=�e	 

�mfp, so �e � vthe�i. For our fiducial Hydra A parameters,
this is 1010 times smaller than the collisional value, so there
is effectively no thermal conduction on macroscopic
scales. The ICM viscosity is similarly reduced, from
vthi�mfp to vthi�i because with lB � �i, the effective ion
mean free path is ��i. Curiously, in stronger-field regions
where 2=�i > � and the instabilities are suppressed, the
transport is more effective: the thermal conductivity and
viscosity remain large (although highly anisotropic).

Because of spatial resolution constraints, the firehose
and mirror structures are not directly detectable in clusters,
but the huge changes in the transport coefficients that they
may cause will have a potentially predictable effect on
observable large-scale fields and flows [5,6]. More direct
information is available from satellite measurements in
space plasmas. Mirror structures with �B=B� 1 have,
indeed, been found [22], and there is strong evidence that
the directly measured temperature anisotropies match the
firehose and mirror marginal stability conditions [23].
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