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ASYMPTOTOLOGY ™

M. KRUSKAL
PLASMA PHYSICS LABORATCRY, PRINCETON UNIVERSITY,
PRINCETON, NEW JERSEY, UNITED STATES OF AMERICA

Asymptotics is the science which deals with such guestions as the
asymptotic evaluation of integrals, of solutions of differential equations,
ete., in various limiting cases. Elements of this sclence may belearned
from the works of VAN DER CORPUT [2], ERDELYI [3] and DE BRUIJN [4]
and advanced aspects from the numerous references in FRIEDRICHS's ar-
ticle [1]. By asympiotology I mean something much broader than asymp-—
totics, but including it; pending further elaboration, I would briefly define
asymptoiology as the art of dealing with applied mathematical systems in
limiting cases.

The first point to note here is that asymptotology is an art, at best a
quasi-scisnce, but not a science. Indeed, this explains much of my diffi-
culty both in expounding my material and in finding an appropriate occasion
to do so. It explains, too, why I am unable to support the corpus of my
dissertaticn with the hard bones of theerems but must be content with a car—
tilage of principles, into seven of which I have distilled whatever of
asymptotclogy I have been able to formulate appropriately and sufficiently
succinctly.

The aspect of the definition of asymptotology just given which is most in
need of explanation is the concept of applied mathematical system. An
applied mathematical system is merely the mathematical description of a
physical (or occasionally biological or other) system in which the variables
expressing the state of the system are complete. The importance of for-
mulating problems in terms of complete state variables constituies a pre-
liminary principle, not particularly of asymptotology but of applied mathe-
matics in general, the Principle of Classification {or, perhaps better, of
Determinism). It is illustrated by the overpowering tendency, in treating
classical mechanical problems, to eniarge the configuration space to a phase
space, since the phase (configuration together with its rate of change),
but not the configuration alone, constitutes a complete description of a classi-
cal mechanical system. Consider also the tendency, intreating probabilistic
mechanical problems, to switch over from this original description, which
is incomplate because, for instance, the mechanical "state' at one timedoes
not determine the "'state'’ at another time, to a new description in terms of
a probability distribution function of the old ''states’, which function evolves
"deterministically' in time and is therefore preferable as a state description.
This Principle is obviously closely related to the notien of a well posed prob-
lem emphasized by Hadamard. Its particular relevance to asymptotology
comes about because only after one has singled out ("determined™) anindi-

* Thiswork wassupported under Contract AT(30-1)-1238 with the U.5. Atomic Energy Commission,
Thispaper s published in the originalin Mathematical Models fn Physical Sciences (DROBOT Stefan, Ed. ),
Prentice-Hall, Englewocd Cﬁliff. N.J., USA (1963).
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reasonably inquire into its asymptoiic bahaviour.

Asymptotology is imporiani because {he examinaticn of limiting cases
seems to be the only satisfactory effective method of proceeding with the
: ical meathods

fonpabaee gl our

analysis of complicated problems \systsms) Wi
are of no (further) avail {and is ofien prefsrable even whan they ars).
of value hoth for obizining qualitative information {insight) sbout the behaviour
of a system and its soluticns and forobtaining detailed guantitative (rumerical)
regults. Thus it is hardly surprising that examples, from trivial ones to
the most profound, are found everywhers throughout the fields to whichana-
lysis (in the technical sense as a hranch of mathemaiices) is applisd.

An excellent example of asymptotology is the familiar HILBERT {5}
or CHAPMAN-ENSKOG [§] ("HCE" from now on) theory of 2 gas described

by the Boltzmann eguation

4=
Ii is

gf - 9f - of A = S
a—tfv-a—sé—fa-a—iflj davdﬂ!v—v‘lc_[::‘—fz‘] n

in the limit of high density (f- ) or equivalently of fr‘equeﬁt collisions (A= =).
Another example is the CHEW~-GOLDBERGER-LOW [7] theory of the so-
called VLASOV™[8] system of equations governing an ideal collisionless
plasma and its electromagnatic field in what is often called the strong mag-—
netic field (or small gyration radius) limit but is formally best treated [9]
as the limit of large particle charges. In the general theory of relativity
there is the fundamental EINSTEIN-INFELD-HOFFMAN [10] derivation
of the equation of motion of a "test particle" (one not influencing the space-
time metric, i.e., one of negligible mass) by treating it (its world-line,
rather) as an appropriate singularity in the metric and letting the strength
of the singularity approach zero. Hydrodynamics is rich in asymptotology
{theory of shocks as arising in the limit of small viscesity and heat conduc~
tivity, theories of strong shoeks and of wealk shocks, shallow water theory,
and so on) and so is elasticity. Kirchoff's laws for electrical circuits can
be properly derived from Maxwell!ls squations cnly by going to the limit of
infinitely thin conductors (wires). Simple examples also abound and are
encountered daily by the practising applied mathematician and theoretical
physicist. Naturally it is not praciical to discuss deep examples in detail
here, so I shall have to confine myself to brisf remarks about them, relying
for illustration mainly on simple and often trivial instances.

It should now be apparent, 1 hope, that whatever features such im-
portant, wide-spread, and diverse examplas may have in common, and
whatever lessons for fuiure application may be gleaned from studying them,
are well worth formulating and eventually standardizing. Even the many
(most? far from all, as I know from my acquaintance) applied mathe=
maticians {etc.) who have become familiar by experience with asymptoto—
logical principles — =i least in the sense of knowing how to apply them in
practice — must inevitably benafit from the introduction of a standard ter—
minclogy and of the clarity of expression it permits. Implicit knowledge,
no matier how widely distributed, deserves explicit formulation, butl am
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aware of no effortz in this direction which attempt to go anything like 50 far
ags I z2m doing here, though there ars soms reslated suggestions in
Friedrichs's article.

The final pessible cbscurity in our previous teniative definition of
agympiotology is whatit means to deal with a system. To clarify this we
might aliernatively define asympictology as the art of describing the be-
haviour of a specified sclution {or family of solutions) of a system in a limit-
ing case. And the answer quiie generally has the form of 2 new system (well
posed problem) for the solution to satisfy, although this is sometimes obs-—
cured because the new system is so =asily solved that one is led directly
to the solution without noticing the intermediate step..

To illustrate first by a frivial sxampls: suppose it.is desired to follow
the (algebraically) largest roct x of the simple polynomial equation

3e2x% e —ex-a=0 (2)

in the limit € +0. There is one root of order -2 obtained by treating the
first two terms as dominant, x= -3¢ %, for which indeed the other twoterms
are relatively negligible (even though one of them is absolutely large, of
the order €1}, but which is negative. The other two roots are {inite, ob-
tained by neglecting the terms with € faciors, x = +3, the cne sought having
the plus sign. If we desire it to higher order, incidentally, we may put (2)
for this root in the "recursion" form

4
3
x=2<1—§-€2x3+:§-ex> ; (3)

expand out the right side in powers of ¢, and generate better and better ap-
proximations for x by continually substifuting the previously best approxi-
mation into the right side, But this is irrelevant to the present point, which
is that (the problem of the algebraically largest root of) the original cubie
Eq.(2) has been replaced by (the problem of the algebraically largest root
of) the quadratic equation x2 -4~ 0, or more exactly x? - (4-3e%x? +ex) = 0,
the guantity in parentheses being treated as known.,

In the HCE ireaiment of svstem (1) in the limit A— w, the original
integro-differential equation in the seven independent variables t, %, ¥ gets
replaced by the set of coupled partial differential {hydrodynamie) equations

B — __a ( —r}
5t | om  \Puk
_@_ﬁ_ e i :-.._léﬂ
at 4 3*3 g 9% (4)

in the four independent variables t, ¥; here, p, U, p are of course the usual
velocity-space moments of f.
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These examples clearly illusirate the first asymptotological principie,
which is in fact largely the raison d'8ire of asymptotelogy. This Principls
of Simplification states that an asymptetological (limiting) analysis tends to
simplify the sysiem considered. This can occur in =i least three general
ways.

The basic way systems simplify is merely by the neglect of terms (or,
in higher order analyses, at least ireatment of small ferms as if known,
as in the case of the cubic eguation earlier). Thus the polynomial equations
x5 ~ex+1=0and xf +ax? +ex®+1 =0, without getting lower in degree as the
cubic did, nevertheless become simple enough in the limit -0 to be ex—
plicitly solvzble algebraically. Differential equations in irregular domains
approximating regular ones may in the limit become solvable by separation
of variables. In other cases the ccefficients may become so simple in the
limit as to permit solution by Fourier or other iransform. These are typical
instances of perturbation theory; there are of cocurse also many instances
where the simplification which occurs deoes not appreciably facilitate the
further analysis of the system.

A derivative way in which systems simplify, sometimes striking in ei-
fact, is the decompesition of the sysiem into two or more independent
systems among which the solutions are divided, so that the particular so-
lution of interest satisfies a system with fewer solutions and hence usually
in some sense of lower order. Thus the cubiec polynomial equaticon con-
sidered earlier split up into a quadratic equation and what is effectively a
linear equation. That is, the root of order €2 was obtained by neglecting
the two last terms and writing 3¢2x? +32 ~0, and although this is cubic it
has two trivial unacceptable roots x=0 {corresponding to the solutions of
the quadratic for finite roots) and is therefore equivalent fo the linear
equation obtained by dividing through by x2.

The third (also derivative) way sysiems simplify, often spectacularly,
is through the gplitting off of autonomous subsystems. DBy an autonomous
subsystem of a system is meant a part of the system {part of the conditions
together with part of the unknowns) which is compleie in itself, i.e., forms
an applied mathematical system in its own right, so that it can (in principle,
at least) be solved Belore the rest of the system is considered. The quali-
fier "autenormous' is by no means superfluous. Thus the system f(x,y) =0,
glx) =0 for the two vdriables x, y has the autonomous subsystem g{x) =0.
It has also the non—autonomous subsystem f(x, v) =0 for ¥, non-autonomous
hecause it is not definite (well-posed) until x has been determined, which
requires the other part of the system:.

Sysiems with autonomous subsystems occur much more often than one
may at first realize, since there is an instinciive fendency to concentrate
attention on the subsystem and forget that it is part of a larger problem.
A particularly contemporaneous illusiration of this is provided by the gravi-
tationally determined motion of the sun, a planet, and an artificial satellite;
the subsystem of the sun and planet alone is autonomous, since their motions
are unaffected by the satellite and are naturally considered to be given and
definiie when its motion is under consideration., But thereisavery com=—
mon special kind of system having autonomous subsysiems which do not get
overloocked just because there are too many of them for any one to be singled
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out naturally. Such are the initial value problems, which, if well posad for
tp< t=t; with initial eonditions at fg, ars also wall peosed for ip <t <ty
for any tz between tp and {1, so that the autonomous subsystems consiiiute
a continuous cne—parameter family,

For an illustration of the third way of simplif ing, note that in ECE
theory the five moments p, U, o satisiy (in the limii, of course) the auto-
nomous subsystem (4), which is vastly simplar than (1) in having only four
independent variables instead of seven. Similarly the "general” (for finite €)
pair of simultaneous equations f{x, ¥) =0, g(x)+eh(x, ¥) =0 reduces for e =+ 0
to the system with an autonomous subsystem considered earlier. The sun-
planet subsystem split off only by virtus of the implied limit of (relatively)
small satellite mass, as is apparent from the less extreme case of the earth
and its natural (rather than artificial) satellite.

The second and third ways both invelve a reduction in the numbear of
solutions from which the desired one must be singled out. This is a charac-
teristically asymptotic simplification and, as Frisdrichs [1] has affirmed,
it justifies the limiting process even though complications arise in other
respects. Ior instance, a linear second order differential equation may
reduce to one of first order but non-linear., The "number" of solutions must
be counted in whatever way is appropriate to the instance: as an integer
(e.g., for the polynomial equation); as the dimensionality or number of para-
meters of a family of solutions (as for an ordinary differential equation);
as the dimensionality of a pazrameter space, or number of independent
variables of a function characterizing a solution (as with HCE, where seven
reduces to four); ete.

In carrying out asymptotic approximations to higher order terms we
are aided by the (second) Principle of Recursion, which advises us to treat
the non-dominant terms as if they were known (even though they involve the
unknown solution). The simplified system then determines the unknown in
terms of itself, but in an insensitive way suitable (in principle at least) for
iterative generation of an asymptotic representation of the solution. This
has already been illustrated for one of the finite roots of our cubic equation
example. TFor the numerically large root of (2) we may obtain the recursion
formula x=-(x2-ex-4)/(3¢2x?). However, this is far from unique; by
grouping the terms differently we obtain x =~ (x% =4)/(3¢2 22 - ¢), which is
equally suitable, since x has still been solved for from the dominant terms. .
It would be folly to solve for x from a small term such as ex: iteration on
x=(3€?x? +x? ~4)/e merely produces wilder and wilder € behaviour. If one
solves from the dominant terms inappropriately, namely in a way which does
not give the solution explicitly outright when the small terms are neglected,
then one has a scheme which may or may not converge, but which, even
if it does, converges at a 'finite' rate, not improving the asymptotic order
of the solution in each iteration. This is illustrated by putting (2} in the
convergent butasymptotically inappropriate recursion formx=—[-(x2 - ex - 4)/
(3€2x)]1/2, which is quité usable, however, for numerical computation.

This trivial example is so irivial that the emphasis on recursion for—
mulas seems forced. It is true that here and in many, many other cases
one can simply write down an obvious power series in € and determine the
terms order by order. This approach fails, however, whenever a more
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he limiting cases we ¥esep relerring o are convaniionally, in asymp-
toties, formulated sc as to be cases where a parameter (cfien denoted by X)

approaches infinity.

Since I intend asymptotclogy to embrace also situations

where the limit system itself {not merely arbitrarily near cnes) is meaning-
ful {perturbation problems), it is preferabls now instsad to use a small par-
ameter, conventionally dencted by e(=1/X for conversion). Infact, it may
not be known in advance whether tha limit case is meaningful, and, whether
or not it is meaningful physically, mathematically it may or may not be so
depending on the description employed. This brings us to our third asymp-
totological principle, the Principle of interpretation: it is a major task of
asymptotological analysis o find variables in which the given problem be-

comes a perturbation problem (has a meaningful limit situation).

This may

involve nothing more than recognizing that the original variables are such,
as is the case for two roots of the cubie;
formal limit of (2) is meaningless, but if transformation to the new variable
v =e? x is effected first, the squation obtained for ¥ may be solved by per-

turbation analysis.

for the third root, however, the

The characteristic feature of asymptotic analyses proper, as cpposed

to perturbation analyses,

determinism.

is the appearance (in both senses) of over—
Thus the cubic Eq. (2} with thrse roots apparently reduces

in the limit to a quadratic with only two; the well behaved (for € #0) pair of
simuliansous linear equations x+y =1, x+(1+&iy =0 formally raduces to a
mutually contradictory pair for e€=0;
e(d/dtyz+z=0 (t > 0), =z(0) =1, for the continuous function z{l), we seemingly

have z{t) =0 in the limit, contradicting the initial condition;

in the initial wvalue problem

and the same

thing happens in many less trivial cases (such as the thecries cf shocks,

of boundary layesrs,

Friedrichs [1].

and of fast oscillations),
In this connection we have the (fourth) Prineciple of Wild

as described in detail by

Behaviour, which tells us that apparent overdeterminism arises because
{at lzast some of) the solutions bshave wildly in the limit - wildly, that is,
compared to our preconceptions, as embodied in the mathematical form of

the expressions employed for representing the solutions.

Thus in neglecting

the cubic (in addition to the linear) term cof (3) we have obviously made the
implicit assumption that x is not too large (say bounded), which is correct
for only two of the roots, while the third behaves ''wildly' in becoming in-
finite (like €-2); the soclution of the simultaneous equations is similarly wild
(like €-1); the sclution of the initial velue problem, z =exp(-t/e), is wild
in having a derivative which, though converging to zero for every fixed po-

gitive i, does so non-uniformly and acinally becomes infinits for t aporoach-




Hor instance
to be supple-
ominant nor
rates all ths
of terms by
from leading
:al advanizge
d, eince the
tathematical

, in asymp-
lenoiad by A)
30 situations
is meaning~
a small par-
fact, it may
nd, whethar
ay not be so
aird asymp-
ajor *ogk of
irok be=
. This may
25 are such,
wever, the
ew variable
ved by per—

as opposed
) of over—
tly reduces
£ 0) pair of
educes to a
: problem
: seemingly
d the sams
of shocks,
1 detail by
sle of Wild
38 because
ly, that is,
sal foo -y of
1ne, iing
7 made the
1s correct
:oming in-
ilarly wild
), is wild
7 fixed po-

approach-

3
o overdeterminism occurs, if the solution we want is among those

;
mittad by the formal limit sysiem, well and good: the loss of other
solutions i3 cur gain in simplicity (2

1 in the second way), If the solution we
want Is among thoss lost, then according io the Principle of Wild Behaviour
wa should allow for more general asymptoiic behaviour of the solution, It
is one of the most troublesome difficulties of asymptotological practice to
find an appropriate asymptotic form. It is impossible {0 prescribe a priori
all asymptotic representations that RAY eVer prove usesful, but among more
general representations to try are two worth specific mention as irequently
successful. The first is to supplement ths originally expecied series with
new terms, such as smaller (more negative) powers, as in the case of the
cubic equation, or logarithmic ones, The second, effective in many of the
deeper problems, including those just referred to (ses also 2 detziled

example from my own experience [11), and illustrated by the initial value .

problem just exhihited (which may in fact be viewed 2s an slementary hound-
ary layer problem), is to write the unknown as the exponential of = new un-
known represented by a seriss, the dominant term of which must become
infinite (at least somewhere) in the limit if anything is to be gained by so
doing. .

If there can he overdelerminism there can also be underdeterminism,
which means that the original well posed problem reduces formally in the
limit to a problem with mora than cne solution. For instance, let A be a
known j~by-jmatrix, letband x be j=by-lmatrices [vectors},respectively known
and unknown, and econsider the matrix equation Ax =h. Suppose that A and
b depend on € and that the determinant of A is zero if and only if € =0. Then
the formal lowest order system A(0) x(0) =p(®) is certainly not well posed.
Since AD is a singular matrix, there exists a 1-by—f matrix n(#0) such that
na 0 =0; for simplicity assume that n is unique (up to a constant factor).
If nb £0 the limit system obvicusly has no sclution (overdsterminism, as
in the previous example of simultaneous linear equations), so assume nh(0=g,
Then x(% is not completely determined by the limit system, and w2 have an
example of underdeterminism,

Another excellent and rather typical example of underdeterminism is
again the HCE problem, Letiing X = w0 in (1) (after dividing through by A)
leads to the information that £(0) ig invariant under collisions, i.e. locally
Maxwellian in some {local Galilean) co-ordinate system, which is very far
from determining £(9), since there are five parameters {p, d, p) needed to
specify such a distribution and we are left unprovided with information on
how the parameters at diffarent points of space—time are related. (The
CHEW-GCLDBERGER-LOW [7] theory is another such example [9].

In such straits we are rescued by the (fifth) Principle of Annihilation,
which instructs us to find a complete set of annihilators of the terms which
persist in the limit, apply them to the original system, and then g0 to the
limit after multiplying by an appropriate function of € so that the now domi-
nant terms persist in the limit, By an annihilator of a mathematical entity
is meant an operator which results in zerc when applied to the entity, (Of
course there are complicated cases in which this produces only some of the
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missing infermation, and the same procedure must be re—applisd, perhaps
repeatediy.)

Tn the matrix example, the terms A®) (¥ ard b(® which persist in the
1imit are annihilated by muliiplicaiion on the left by n. Applying this an-
nihilator to the original equation, dividing by €, and faking the limit gives
what may be written

Lm{ein[aA-A0 ] x® =lim {<'n[b -p0, (5)
e=10 e=0

or nA) x(0) =nb™ if A and b are expandable in integral powers of €. Inthe
normal case this provides just the one exira condition needed to determine
x(0, which by the condition A® x(® =" was determined only up to a so~
Iution p of A®p=0. Inthe 2bnormal case that (3) is not an independent con-
dition, there is a linear combination of A @ =59 and (5) which gives 0 =10,
The formation of this linsar combination is then our new annihilator, the
application of which to Ax =5 and e ln[A-~AM]x=e"1n[b ~1(9) ] leads to a
new extra condition which will normally be independent and provide the mis-
sing piece of information.

In the HCE problem there are five scalars (mass, three components
of momentum, and energy) which are preserved by collisions, so that taking
the corresponding moments of (1) annihilates the right side. Thesge are
therefore annihilators of the dominant terms, which is why they are applied
to (1) to obtain the five hydrodynamic equations relating the values of p, U,
p (and therefore f which is expressed in terms of them) at different points
of space—time.

It is through the application of the Principle of Annihilation that the
Principle of Simplification is maintained. The loss of solutions in a limit
while the gain of solutions, or loss of information®,

simplifies a system,
we were not able to recover sufficient additional

would "complicate' it if
conditions to make up for the information lost.

The basic way systems simplify is by the neglect of terms, as stated
sarlier., But it commonly happens that the relative asymptotic magnitude
of two terms to be compared depends upon some knowledge not yet available
or on some assumption or decision not yet made. According to the (sixth)
Principle of Maximal Balance {or of Maximal Complication®%*), for maximal
flexibility and generality we should keep both terms, L.e., we should allow
for the possibility or assume that they are comparable. 'In the case of in-
complete knowledge this is mere prudence; any term in an equation definite—
1y smaller in order of magnitude than another term may be considered
negligible, but no term should be neglected without'a good reason. In the
case of a panding assumption or decision, the desire to balance two such
competing terms helps to determine the choica.

The most widely applicable and hence most informative ordering is that
which simplifies the least, maintaining a maximal set of comparable terms.
Quite often there is more than one possible maximel set of terms, with no

is justified even from the technical viewpoint of information theory,

¥ Use of this terminology
the decrease in the number of solutions occuriag in a

suggesting the possibility of assigning a4 measurs to

limit.
%% | now feel that "Minimal Simplification” is more appropriate here,
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set including all terms of any other. (Seis of terms form = lattice ordared
by inclusicn.) Each maximal se: corrasponds to different asympiotic be—
naviour. The solutions may split up according to which dehavicur they hava
{second way of simplifying), as with *he cubic, or each solution may exhibit
a variety of different behavicurs, in different regions, zs with a boundary
layer phenomencn.

For instance in the case of the cubic equation, how could we know that
two solutions are finite and one of order €2? Put another way, why did we
not assume the first and third terms to be the dominant ones, or the second
and third, or so on? In this particular case there is an ezsy answer: if we
had, we would have obtained a "solution' for which the neglected terms were
not in fact negligible comparsad to the supposed dominant terms, i. e., the
"solution" found would not have been self-consistent. But suppose there
wers several more terms, would we have had o try every pair? (Or suppose
there were two independent small parameters § and € instsad of only one.)
Clearly, no matter which terms ars dominant x will behave predominantly
as some power of €. We therefore assume the general representation x =aet
and wonder what value of g to take, One might in fact choose arbitrarily
any value for q but will then generally find that for finite a only cne term
of (2) dominates, which is nonsensical, so that a = = (if it was the constant
term), which is not legitimate, or else a =0 (if it was one of the others},
which, if more legitimate, is ceriainly no more useful. A value of q will
only be ""proper' if we end up with a representation which is "maximally
complicated" in that it really consists of one term aed instead of "no terms'
such as 0 or w. [f we put x ~aed into {2) the successive terms vary as €
to the respective powers 3q+2, 2g, g+1, 0, and it is easy to sse that only
q =0 or q =-2 makes iwo (or more) powers equal minima.

"~ On the side it might be of interest to mention a graphical method of find~
ing the proper values of q which apparently goes back to Newton. It is hard-
ly needed in the present simple i{llustration but can be a great time-saver in
more involved examples (also those of higher dimensionality). We plot each
term of (2) as a point on a graph, the abscissa being the exponant of x and
the ordinate that of € (sse four heavy points in Fig.1); the coefficient
is ignored so long as it is not zero. The specification of a definite relation-
ship between x and ¢ (l.e. of a definite value of q) leads to the identification
of the asymptotic behaviour of all terms (present or not) corresponding to
points which are on a commeon line with a definite slope. Thus, forx~e¢
all points on the same down-slanting (from left to right) 45° line correspond
to a commeon asymptotic behaviour, while for x ~¢e-1 the same holds for
up-slanting 43¢ lines (see light dashed lines). Since the smaller the powerof €
the larger the term, we seek lines passing through (at least) two graphed
points and having no graphed points below them. We may think of finding

the lower convex support lines of the set of graphed points, perhaps kin-
© esthetically by imagining pushing a linz up from below until it first hits a

graphed point and then rotating it around that point until it next hits a second
graphed point. It is immediately apparent from Fig.1 that there are just
two such lines and that they correspond to g =0 and q=-2 (ses heawvy dashed
lines). Ii is also clear that the point (1, 1), like all points in & semi-infinite
vertical strip (see horizontally ‘shaded area), are "shielded" by the points
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Graphical metheds of finding the praper values

(0, 0) and (2, 0) and can never be on a support line; itis indeed ohvious that
ex is negligible with respect to either x? or 4 no matter how x varies with
€. Similarly there is a semi-infinite vertical strip shielded by the points
(2,0) and (3,.2) (see diagenally-shaded area). In more complicated cases

we can thus exclude terms wholesale from competition.
To return to our proper business, illustration of the Principle of

Maximal Complication, consider the problem of Tinding the lowest frequency
of vibration and the corresponding form of vibration of a uniform membrane
stretched between two close wires lying in a plene, one of which we take
straight for simplicity. The e'quation for the standing vibration of & mem-

brane is

azu i Bgu 2
—_— ==+ =
ax2 | oy? veu =0, (8}

whers u is the displacement normal to the (x, y) plane, whichis the restplane
of the membrane (the plane containing the wires), and v is the frequency
of vibration of the mode. Let the equations of the wires in the (x,y) plane
bey=0andy-= €Y(x), where € of course is the small parameter of clese-
ness. We may suppose Y(x 1) =¥{x2) =0 so as o have to conzider only the
finite region x; < x<xg, 0<y<eY(x). Imposing the condition U= 0 on the
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beundary of this regicn and (8) insi
problem for the lows

Thizs is cne common t problem,
"merturbational' in t}'at thers is no limit problem
terest dizsappears in the lmit,
re-gcals the varizbles zpprop
that the region in the (x, ) plans bescomes :
becomes

st sigsnvalus

F*u Fu | g
+et g+ 73
%2 B viu=0. {7}

Taking the asymptotic behaviour of sach term at its face value (but remem-
bering that v 1s not yet determined), we deem the first term negligitle com-
pared to the sscond, and (by the Principle} assume 12 ~ -2 {o balance the
second and third terms. Intreducing w= ev we write (7) as

2 2

3 2 251.1
— = - i
o wha==€ gy, (8}

To lowest order we neglect the right side of (8}, whereupon x degenerates
from an independent variable to a mere paramster, The really propertreat-
ment at this point, by the Principle of Recursion, would be to treat the right
side of (8) as known, solve for u on the laft in the form of an integral re-
presentation {involving the simple, well known, explicit Green's function),
and iry to obiain u iteratively. Instead we shall do something similar but
simpler, more or less parallelling the lowest order version of the proper
treatment. For each x we have, to lowest order, a2 simple eigenvalue
problem with the lowest eigenstate u=Asin(an /Y) and eigenvalue w=7/Y.
But w so defined depends on x, which is impermissible, so we take Alx)
tc be a Dirac deélta function, the location of whose singularity we take to be
at the maximum of ¥(x) in order to have the smallest w; for simplicity we
assume the maximum of ¥ to be unique and to cccur at x =0, In a sense we
have now solved the problem originally posed, but since our answer is sin-
gular it is not entirely satisfactory (see the next and final Principle to be
formulated}. Indeed, since our 'sclutien' is singular in its x dependencs,
we ought to worry whether our earlier neglect of €2 (82u/8x2) was justified,
and we might well be curicus anyway about the true detailed x dependence
which we have cavalierly expressed as a delta function. Since the significant
behaviour cccurs near x =0 we introduce £=&"1x, where § is a small para-—
meter te be determined (related to €). We also write w=w +O, where
we =7/Y(0) and & is small. Since 8%u/8n%~ -2 ¥(x)2u, from (8) we obtain

2 2 .2
T e e M 2]
[_E-Y(:SE)' .M}A 52 dsz . { )

Let Y(68) = V(0)+5 YY" (0)622%+ ... with Y"(0)<0, whereupon this becomes

Fvrg i 2 d?A
{-%(0)3—1 g ~augh| an S BB (10)

| et
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According to the Principle of Maximsal Complication we chooss the as vet
undetermined asymptotic behaviours so as toc keep all the terms in the
equation ard are thus led to teke § =12 and T =e71g, obtaining

d?a  _a [ad "(9) . i .
af® Ty ¥ § T Ao, e

On the £ distance scale A must vanish at 'infinity”, and ws have a well known
eigenvalue problem arising in the quantum theory of the harmenic oscilla..o*

The lowest sigenfunction is the Gaussian A =exp 4’-" Y(0)8/2[—yu(0y)/2 g2 j—

with real eigenvalue =3[~ Y"(0)/¥(0)]¥/2

Incidentally, if we should be interested in the behaviour of u ‘or !xi
not very small, where u decreases rapidly, a different procedure must be
used. The right side of (8) cannot be neglected there, since wa 7/ Y(0) does
not even approximate the local eigenvalue 7/¥{x) for which the left side can
vanish with u# 0. The device mentioned earlier of representing the unknown
asz an exponential works here; with u=exp v, {8) becomes

v (v}, 2__2]_5‘\’ ¥}

We may assume that v is expandable as a seriesine, v=e 1[v(D) +ev(l+, . ],
where the leading term has been taken large of order ! to permit the right
side of (12) to contribute. We must have 9v(9)/8n=0 or the left side will
dominate again, so v(» is a function of x only, and to dominant terms (12)

becomes
Pt v{ll fav( 1) 8 (0
an? \ on

Viewed as an equation for v(D this can be linearized and "homogenized" by
reversing the e‘cponentlatlon procedure, namely by introducing w = expvi(l),

whence
P [ av“”
a 0

Together with the boundary conditicns on w (that it vanish at n =10, ¥(x)) this
is an eigenvalue problem which determines the variation of v (9),

of+ (22 ) st/vear,

as well as the n dependence of w (sinusoidal). All that the device has
amounted to in this case, of course, is factoring out (from uj a fast varying
function of x, but the use of the exponential representation has led to that
procedure in a natural and systematic way.

We complete our list with the simple (seventh) Principle of Mathematical
Nonsense: if, in the course of an asymptotological analysis, a mathemati-

e e
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f')

cally nonsensical expression appears, this indicates that the asympiotclogy
has net been done correcily or at least not carried out fully (although even
incomplete it may be satisfactory for cne's purpozes). One may come upen
expressions such as 0/0, divergent sums or integrals, singular functions,
etc., and whether they are o be considerzsd nonsensical sometimes depends
on the use they are to be put to. In the membrane vibration problem just
discussed fthe first instance of mathematiczl nonsense was the disappearance
in the limit of the region over which the partial differential equation was to
be solved, the second was perhaps the dependence of w on x, and the third
was the response to this, the use of a singular (deltz) funciion.

Frequeni in asymptotological analyses is the occurrence of pheno-
mena on different scales of distance or time. The HCE problem is a
well-known case, since if if is not prescribed Maxwellian at the initial
instant, there is a relatively short period of time (the order of a col-
lision time) during which f becomes Maxwellian, while the five moments
remain eapproximately censtant, and a relatively long period {(of order
A times as long) during which the five moments (hydrodynamic vari-
ables) vary but { maintains its Maxwellian form. For an exiremely simple
example of the same type, consider the familiar electric circuit equation
V =RI+Li, where the voltage Vi) is an imposed function of time, the current
I(t) is to be found, the resistance R and the inductance L are positive con=
stants, and we choose to examine the limit L» 0. Treating LI as if it were
known, we immediately obtain a recursion formula for I,

(13)
=—1§[v v+ )t‘f /L>v ]

which is fine except for not in general satisfying the arbitrary initial con-

dition on [ natural for the original first order differential equation. For

short times (of order 1.} I is large and V approximately constant, so that

the difference of I from its quasi-equilibrium value V/R decays like

exp(-Rt/L); after this transient has died out {13) holds. Incidentally, the

expression in brackets in (13) is just like the Taylor expansion in powers
of L of V evaluated at the argument t~L /R except for a factor of (n—1)! in
the denominator of the n~th term, which shows that the asymptotic series

(13) for [ cannot be expected to converge even if V is analytic {which does

not stop it from being very useful).

In phenomena with behavicur on two different time scales there is a
widely pertinent distinction to be observed between finite conservative
systems on the one hand and infinite or dissipative systems on the other.
For instance, the well-known problem of the harmonic oscillator with slowly
varying coelflcient of restitution [12], ¥+k{et)x =0, is an example of the first
kind; on the short (finite) time scale k is approximately constant and the
oscillator simply oscillates steadily, while on the long (~€-1) time scale
the frequency and amplitude of the oscillation vary in response to the
variaticn in k. Contrast with this the behaviour of the dissipative electric
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circuil, where only initially the curreni I variss cn
swocping toeward ifs quasi-stsady value. The HCE
conservative system can act the same way =0 long a

2

case the decay comes about by 2 process of 'phass mixin
because ihe Polncaré recurrsnce time iz infinits,

The asympiotic separation of {lme scales iz the hasis for an sxciling
recent approach in statisilcal mechanies [13]. Typically one cbtains

eguations for the one-particle and ihe two-particle distribution functions f;
and fg for a gas of appropriate characteristics, and finds that f; can vary
only slowly, but that f; ean vary quickly so as to phase-mix towards a quasi-
steady disiribution as © gets large on the short time scale while remaining
small on the long time scale., The limiting distribution 75 is a functional of

f;, which when substituted into ikhe equationfor{, leads tocan autonomous ""kinstic
12 q i

equation' for £,. The irreversibility (timewiss) of this kinetic eguation
comes about in a natural way, in that the limiting f; depends on which di-
rection t is taken to the limit (on the short time secale), whether to plus or
to minus infinity. It is 2 major triumph of this approach that the "Stoss-
zahlansatz' can for the first time be actually derived (under modsrate
smoothness assumptiicns).

To return to the finite case, I am glad to take the opporiunity of ad~
vertising a recent paper [14] in which I have elaborately worked out the
asymptotic theory of finite systems of ordinary differential equations de-~
pending on a small parameter € which to lowest crder have 21l solutions
periodic. Applied to Hamiltonlan systems the theory leads to the existence
of adiabatic invariants which are constant {intsgrals) to all orders in €.

We are all familiar with those rather unsatisfactory research papers

_in which the author makes a series of largely arbitrary ad hoc approxim=
ations throughout, often dubious without (sometimes even with) the author's
intuitive grasp of the situation. These "ad-hoaxes'' have their place and
utility, but how much more desirable and convineing is 2 properly worked
out and elegant asymptotological treatment, with any arbifrary assumptions
(like remarkable coincidences in a well constructed mystery story) made
openly and above board right at the beginning where anyone can assess their
merits for himself, and with the later development unfolding naturally and
inezecrably once a definite problem and the limit in which it is to be con-—
sidered have been settled upon.

The art of asymptotology lies partly in cheosing fruitful limiting cases
to examine - fruitful first in that the system is significantly simplified and
second in that the results are qualitatively enlightening or quantitatively
descriptive. It is also an art to construct an appropriate generic description
for the asymptotic behaviour of the scolution desired. The scientific element
in asymptotology resides in the non-arbitrariness of the asymptotic be-
havicur and of its description, once the limiting case has been decided upon.

One of Melitre's characters observes that for more than forty years
he has been talking prose without knowing it. Ii is douhtful that he benefited
from the discovery, but I hope that you will be more fortunate and not dis-
appointed in having by now discovered that asymptotology is what you have
been practising all along.
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