
Magnetohydrodynamics and Turbulence

Alexander Schekochihin, Part III (CASM) Michaelmas Term 2005

EXAMPLE SHEET III

These problems will be discussed in the 3rd Examples Class (to be scheduled).

1. Kinetic Alfvén Waves. There is an approximation, often used at very small scales, in which
one assumes that magnetic field lines are frozen not into the mass flow ui (ion velocity) but into the
electron flow velocity ue, which can be expressed in terms the ion velocity ui and the current density
j = en(ui −ue), where e is electron charge and n = ni = ne is the ion/electron density. This is called
the Electron (or Hall) MHD.

1. Under the above assumption, write a closed system of equations for B and ui, assuming in-
compressibility and neglecting viscosity and Ohmic diffusion.

2. Consider the static equilibrium with a straight uniform magnetic field B0 = B0ẑ = const.
Derive the dispersion relation for waves in this system. You will find the following definitions
useful: vA = B0/(4πnmi)

1/2 is the Alfvén speed (mi is the ion mass), ωpi = (4πe2n/mi)
1/2 is

the plasma frequency.

3. Obtain an explicit formula for the frequency ω = ω(k) from your dispersion relation. Under
what conditions do you recover the Alfvén waves?

4. The quantity di = c/ωpi is called the plasma skin depth. Assume kdi � 1 (k is the absolute
value of the wave vector) and find the corresponding limiting form of the dispersion relation.
The waves you have obtained are called the kinetic Alfvén waves (KAW).

2. Reduced Electron MHD. In Problem 1, if we had assumed from the outset that the charac-
teristic scale of all fields l � di and the charateristic time is τ � l/vA, we would have found that
the equation for the magnetic field in this limit is

∂B

∂t
= −

c

4πen
∇× [(∇× B) ×B] . (1)

Again let us consider perturbations about a straight-field equilibrium, B = B0ẑ + δB. For in-
finitesimal perturbations, the linearised Eq. (1) again gives KAW. In this Problem, you will consider
perturbations that are small, but not infinitesimally so. In a way similar to my derivation of the
Reduced MHD equations, let us assume that the perturbations are highly anisotropic, k‖ � k⊥ (this
is confirmed by numerical simulations of EMHD turbulence). Let us further assume that the wave
frequency and the nonlinear interaction time are same order.

1. Show that this implies

δB

B0

∼
k‖

k⊥

. (2)

This is the ordering you will now use to derive a reduced version of EMHD.

2. Show that the magnetic field can be represented as follows:

δB

B0
=

1

vA
ẑ ×∇⊥Ψ + ẑ

δB‖

B0
. (3)
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3. Show that the evolution equations for Ψ and δB‖ are

∂Ψ

∂t
= v2

Adi
B

B0
· ∇

δB‖

B0
, (4)

∂

∂t

δB‖

B0
= −di

B

B0
· ∇∇2

⊥Ψ, (5)

where

B

B0
· ∇ =

∂

∂z
+

δB⊥

B0
· ∇⊥ =

∂

∂z
+

1

vA
{Ψ, · · ·} . (6)

The algebra here is quite unpleasant. You will probably need the NRL Plasma Formulary to
deal with some of the multiple vector products.

4. Check that these equations give the right dispersion relation for KAW.

3. Conservation Laws in Reduced MHD. In class, I derived evolution equations for 5 scalar
quantities in anisotropic MHD: Ψ, Φ, δB‖, u‖ and δρ. These equations have 5 quadratic conserved
quantities (5 cascades that do not exchage energy). Work them out.

4. Advection of Magnetic Field in Ideal MHD. If Ohmic diffusion is ignored, the randomly
advected magnetic field B̃(t) satifies the following equation (in the Lagrangian frame):

∂B̃i

∂t
= σi

mB̃m, (7)

where σi
m(t) = ∂ui/∂xm is the gradient of the velocity field. Note that there is no explicit dependence

on the space variable anywhere. Take the velocity field to be a Gaussian random field white in time,
three-dimensional and isotropic, and

〈σi
m(t)σj

n(t′)〉 = δ(t − t′)κ2T
ij
mn, T ij

mn =
[

δijδmn −
1

4

(

δi
mδj

n + δi
nδj

m

)

]

. (8)

1. Let P̃ (B, t) = δ(B − B̃(t)). Define the PDF of the magnetic field P (B, t) = 〈P̃ (B, t)〉. Derive
a closed equation for this PDF using the Furutsu-Novikov formula

〈σi
m(t)P̃ (t)〉 =

∫

dt′〈σi
m(t)σj

n(t′)〉

〈

δP̃ (t)

δσj
n(t′)

〉

. (9)

2. Because of isotropy, P only depends on the absolute value B = |B|, so the normalisation rule is

1 =
∫

d3BP (B) = 4π
∫

dB B2P (B). (10)

Define F (B) = 4πB2P (B) and derive an equation for F (B). The result should be

∂F

∂t
=

γ

5

∂

∂B

(

B2 ∂F

∂B
− 2BF

)

, (11)

where γ = (5/4)κ2.

3. What is the expression for magnetic energy 〈B2〉(t)/8π in terms of the function F (B, t)? Derive
an equation for 〈B2〉(t) and show that 〈B2〉(t) grows exponentially at the rate 2γ.
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4. Now derive the growth rates of higher moments of the magnetic field: let 〈Bn〉 ∝ eγnt. Calculate
γn in terms of γ and n. From this, find how the quantity 〈B4〉/〈B2〉2 changes with time. How
would you interpret this quantity? What does the time evolution you have determined tell you
about the volume-filling properties of the field?

5. By a simple change of variables, convert Eq. (11) into an equation with constant coefficients.
Assuming that at t = 0, F (B, 0) = δ(B − B0), show that the solution of the equation is

F (B, t) =
e−(9/20)γt

B0

√

(4/5)πγt

(

B

B0

)1/2

exp

{

−
[ln(B/B0)]

2

(4/5)γt

}

, (12)

so the PDF is a lognormal spreading with time. In your solution, you can use the fact that the
diffusion equation

∂f

∂t
= D

∂2f

∂x2
(13)

has the following Green’s function solution

f(t, x) =
∫

dx′ f(t′, x′)
√

4πD(t− t′)
exp

[

−
(x − x′)2

4D(t − t′)

]

, t′ < t. (14)

5. Scalar Turbulence. Part IV: Spectrum of Scalar Variance in the Viscous-Convective

Range. Consider the equation for the evolution of passive scalar θ(t,x)

∂θ

∂t
+ u · ∇θ = η∇2θ. (15)

where η is the scalar diffusivity (sorry about change of notation! — I need κ for velocity correlators).
Consider scalar decay in a linear velocity field:

ui = σi
m(t)xm. (16)

(When is is this a reasonable model?) and take the velocity field to be a Gaussian white noise:

〈σi
m(t)σj

n(t′)〉 = δ(t − t′)κ2

[

δijδmn −
1

d + 1

(

δi
mδj

n + δi
nδj

m

)

]

. (17)

1. Construct a calculation leading to the equation for the passive scalar spectrum in the way
exactly analogous to my calculation for the dynamo (see my lecture notes):

(a) Write the solution of Eq. (15) as a superposition of plane waves. Find evolution equations
for the amplitudes and wavevectors of these waves.

(b) Define the joint PDF of the amplitudes and wavevectors. Derive a closed equation for
this PDF using Furutsu-Novikov formula. Note that, because of isotropy, the PDF only
depends on the absolute value of the wavevector — this will simplify your equation.

(c) Show that the spectrum of the scalar variance is a superposition of spectra of the plane
waves. Derive the equation for the spectrum T (t, k):

∂T

∂t
+ 2ηk2T = −

∂

∂k
F(k) = D

∂

∂k

[

k2∂T

∂k
− (d − 1)kT

]

, (18)

where D = κ2(d − 1)/2(d + 1) and F(k) is the flux of scalar variance. This equation was
first derived by Kraichnan in 1968 (in a different way).
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(d) Seek eigenfunction solutions of this equation, T (t, k) = e−λDtΦ(k/kη), where kη = (D/2η)1/2.
Solve for Φ.

If we introduce some cut-off wavenumber k∗ � kη, λ is determined by the boundary
condition on the flux F(k∗).

2. Let us consider a forced scalar problem for a moment (as in Problem 4 of Example Sheet I).
The forcing is pumping a constant flux ε̄θ at some large scale. All this flux must be dissipated,
so we must have F(k∗) = ε̄θ. Find the solution that satisfies this boundary condition and show
that it has the Batchelor k−1 scaling at k∗ < k � kη.

3. Now consider the decaying case. As in the dynamo case, we might think a zero-flux boundary
condition should be imposed: F(k∗) = 0. Calculate λ in this case. What is the slope of the
spectrum at k∗ < k � kη? Argue that your prediction for the decay rate means it is of the
order of the turnover time of the viscous eddies.

4. These results had been thought to describe the scalar decay correctly until numerical experi-
mental evidence showed the decay to be much slower: this effect is called the strange mode. In
fact, the decay rate of the scalar is set by the decay rate of the slowest-decaying mode, which
is a box-scale mode not described by the viscous-convective-range theory. It decays at the rate
of turbulent diffusion associated with the box size Lbox, so we have, in fact,

λ ∼
decay rate of the box mode

viscous eddy turnover rate
∼

δuLL/L2
box

δulν/lν
∼
(

L

Lbox

)2

Re−1/2 � 1, (19)

where L ≤ Lbox is the outer scale of the turbulence. Do you understand this estimate? Derive
the last expression.

Assuming that λ is set by Eq. (19) and is equal to some small number, show from your solution
that the scalar variance spectrum at k∗ < k � kη scales as k−1+λ/d — only slightly shallower
than Batchelor’s spectrum.

These results are due to Fereday & Haynes, Phys. Fluids 16, 4359 (2004) and Schekochihin,
Haynes & Cowley, Phys. Rev. E 70, 046304 (2004), but do try to derive them youself before
you look!
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