Magnetohydrodynamics and Turbulence Alexander Schekochihin, Part III (CASM) Michaelmas Term 2005

 EXAMPLE SHEET I

 EXAMPLE SHEET I}

These problems will be discussed in the 1st Examples Class (7.11.05, 14:00, room TBD).

1. Anisotropic k-Space Correlation Functions. Consider the correlation function of the velocity field in k space:

$$
\begin{equation*}
\left\langle u_{i}(\mathbf{k}) u_{j}\left(\mathbf{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}+\mathbf{k}^{\prime}\right) C_{i j}(\mathbf{k}) . \tag{1}
\end{equation*}
$$

Suppose there is one special direction in space, defined by the unit vector $\hat{\mathbf{b}}$ (this can be the direction of an imposed magnetic field or the axis of rotation or the direction of gravity). Then the general form of the tensor $C_{i j}$ is

$$
\begin{equation*}
C_{i j}(\mathbf{k})=C_{1} \delta_{i j}+C_{2} \hat{k}_{i} \hat{k}_{j}+C_{3} \hat{b}_{i} \hat{b}_{j}+C_{4} \hat{b}_{i} \hat{k}_{j}+C_{5} \hat{k}_{i} \hat{b}_{j} \tag{2}
\end{equation*}
$$

where $\hat{k}_{i}=\mathbf{k} / k$ and C_{1}, \ldots, C_{5} are functions of k and of $\xi=\hat{\mathbf{b}} \cdot \hat{\mathbf{k}}=\cos \theta(\theta$ is the angle between \mathbf{k} and $\hat{\mathbf{b}}$, so $k_{\|}=\xi k$).

1. Assuming mirror symmetry, $C_{i j}(\mathbf{k})=C_{i j}(-\mathbf{k})$, and incompressibility of the velocity field, show that $C_{i j}$ can be written in the form

$$
\begin{equation*}
C_{i j}(\mathbf{k})=C^{\text {iso }}(k, \xi)\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right)+C^{\text {aniso }}(k, \xi)\left[\hat{b}_{i} \hat{b}_{j}+\xi^{2} \hat{k}_{i} \hat{k}_{j}-\xi\left(\hat{b}_{i} \hat{k}_{j}+\hat{k}_{i} \hat{b}_{j}\right)\right] . \tag{3}
\end{equation*}
$$

Express $C^{\text {iso }}$ and $C^{\text {aniso }}$ in terms of C_{1}, \ldots, C_{5}. Thus, second-order velocity correlator depends on two scalar functions only. We can get back the isotropic result by setting $C^{\text {aniso }}=0$.
2. An alternative pair of scalar functions is often useful: the correlation function $C_{\|}(k, \xi)$ of the velocities along $\hat{\mathbf{b}}$ and the correlation function $C_{\perp}(k, \xi)$ of the velocities in the plane perpendicular to $\hat{\mathbf{b}}$. Give definitions for these functions that you think are appropriate and express them in terms of $C^{\text {iso }}$ and $C^{\text {aniso }}$.
3. Suppose all variation of the velocity along $\hat{\mathbf{b}}$ is suppressed. What happens to the tensor $C_{i j}$?
2. Scalar Turbulence. Part I: Yaglom's $\frac{4}{3}$ Law. Consider the equation for the evolution of passive scalar $\theta(t, \mathbf{x})$ (this can be temperature, or concentration of an admixture like a dye or salt, or, in 2D hydrodynamics, the vorticity field, or, in RMHD, the magnetic flux function, etc.):

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}+\mathbf{u} \cdot \nabla \theta=\kappa \nabla^{2} \theta+f \tag{4}
\end{equation*}
$$

where \mathbf{u} is the (turbulent) velocity field, κ is the scalar diffusivity, and f is the source function (scalar "forcing"). We will assume that f varies at some (large) scale $L_{\theta}<L$ (L is the outer scale of the turbulence).

1. Define the scalar variance $\mathcal{E}_{\theta}=\left\langle\theta^{2}\right\rangle / 2$ ("energy" of the scalar field), the scalar correlation function $C(y)=\left\langle\theta\left(\mathbf{x}_{1}\right) \theta\left(\mathbf{x}_{2}\right)\right\rangle$, and the scalar structure function $S(y)=\left\langle\delta \theta^{2}\right\rangle$, where $\delta \theta=$ $\theta\left(\mathbf{x}_{2}\right)-\theta\left(\mathbf{x}_{1}\right)$ and $\mathbf{y}=\mathbf{x}_{2}-\mathbf{x}_{1}$. Express $S(y)$ in terms of $C(y)$ and \mathcal{E}.
2. Define a mixed 3d-order correlation function $F_{i}(\mathbf{y})=\left\langle u_{i}\left(\mathbf{x}_{1}\right) \theta\left(\mathbf{x}_{1}\right) \theta\left(\mathbf{x}_{2}\right)\right\rangle=F(y) \hat{\mathbf{y}}_{i}$ and the corresponding structure function $G_{i}(\mathbf{y})=\left\langle\delta u_{i} \delta \theta^{2}\right\rangle=G(y) \hat{\mathbf{y}}_{i}$, where $\delta u_{i}=u_{i}\left(\mathbf{x}_{2}\right)-u_{i}\left(\mathbf{x}_{1}\right)$ and $\hat{\mathbf{y}}=\mathbf{y} / y$. Show that $G(y)=4 F(y)$.
Hint. Any one-point average that is a first-rank tensor (vector) is zero by isotropy (why?). Also, $\left\langle\mathbf{u}\left(\mathbf{x}_{1}\right) a\left(\mathbf{x}_{2}\right)\right\rangle=0$ for any scalar field a (at which point in my lecture on the $\frac{4}{5}$ Law did I prove this?).
3. Now, proceeding analogously to the derivation of the $\frac{4}{5}$ Law in my lectures, derive the analog of the von Kármán-Howarth equation for the passive scalar:

$$
\begin{equation*}
\frac{\partial S}{\partial t}=4 \frac{d \mathcal{E}}{d t}-4 \epsilon_{\theta}(y)-\frac{1}{y^{d-1}} \frac{\partial}{\partial y} y^{d-1} G(y)+2 \kappa \frac{1}{y^{d-1}} \frac{\partial}{\partial y} y^{d-1} \frac{\partial S}{\partial y} \tag{5}
\end{equation*}
$$

where $\epsilon_{\theta}(y)=\left\langle\theta\left(\mathbf{x}_{1}\right) f\left(\mathbf{x}_{2}\right)\right\rangle$.
4. Consider the statistically steady state and show that for $y \ll L_{\theta}$,

$$
\begin{equation*}
G(y)=-\frac{4}{d} \bar{\epsilon}_{\theta} y+2 \kappa S^{\prime}(y) \tag{6}
\end{equation*}
$$

where $\bar{\epsilon}_{\theta}=\epsilon_{\theta}(0)=\langle\theta f\rangle$ the input variance per unit time. Show from Eq. (4) that $\left.\bar{\epsilon}_{\theta}=\left.\kappa\langle | \nabla \theta\right|^{2}\right\rangle$ (scalar dissipation per unit time). Equation (6) for $d=3$ is Yaglom's $\frac{4}{3}$ Law.
5. Show that if $f=0$ and we consider a self-similar decay of the scalar $(\partial S / \partial t=0)$, Eq. (6) is still satisfied. What is $\bar{\epsilon}_{\theta}$ in this case?
3. Scalar Turbulence. Part II: The Oboukhov-Corrsin Spectrum. Now you are going to develop a dimensional theory of scalar turbulence \grave{a} la the K41 theory I described in my lectures.

1. Let us figure out when the diffusive term in Eq. (6) is negligible. Assume that $S(y) \sim \delta \theta_{l}^{2}$ and (dimensionally) $\bar{\epsilon}_{\theta} \sim \delta \theta_{l}^{2} / \tau_{l}$ (flux of scalar variance), where $\delta \theta$ is the scalar variation across scale $l=y$ and τ_{l} is some cascade time. Show that the diffusive term is negligible if

$$
\begin{equation*}
\frac{\kappa \tau_{l}}{l^{2}} \ll 1 \tag{7}
\end{equation*}
$$

2. Assume that $\tau_{l} \sim l / \delta u_{l}$ (why?) and show that, for δu_{l} satisfying the K41 scaling, Eq. (7) reduces to $l \gg l_{\kappa}=\mathrm{Sc}^{-3 / 4} l_{\nu}$, where $l_{\nu}=\left(\nu^{3} / \epsilon\right)^{1 / 4}$ is the viscous scale, ϵ is the Kolmogorov flux, and Sc $=\nu / \kappa$ is called the Schmidt number.
Note that, since you have used K41 inertial-range scaling for the cascade time, your estimates are only correct for $\mathrm{Sc} \ll 1$ (why?).
3. Show that an equivalent expression for the diffusive scale is $l_{\kappa} \sim \mathrm{Pe}^{-3 / 4} L_{\theta}$ (provided the characteristic scale of the scalar source is $L_{\theta}<L$), where $\mathrm{Pe}=\delta u_{L_{\theta}} L_{\theta} / \kappa$ is called the Péclet number (analog of the Reynolds number for scalars).
The scale range of l such that $L>L_{\theta} \gg l \gg l_{\theta} \gg l_{\nu}$ is called the inertial-convective range. It is non-empty if $\mathrm{Re} \gg \mathrm{Pe} \gg 1$.
4. Using Yaglom's law, show that, for l in the inertial-convective range,

$$
\begin{equation*}
\delta \theta \sim \bar{\epsilon}_{\theta}^{1 / 2} \epsilon^{-1 / 6} l^{1 / 3} \tag{8}
\end{equation*}
$$

or, for the spectrum of scalar variance,

$$
\begin{equation*}
E_{\theta}(k) \sim \bar{\epsilon}_{\theta} \epsilon^{-1 / 3} k^{-5 / 3} \tag{9}
\end{equation*}
$$

(the Oboukhov-Corrsin spectrum). Sketch the spectra of the kinetic energy and of the scalar variance, indicating all relevant wavenumbers $k \sim 1 / l$ and slopes.
5. Show that Eq. (8) can be derived purely dimensionally (without recourse to Yaglom's law) by assuming that the flux of scalar variance $\bar{\epsilon}_{\theta}$ is independent of l in the inertial-convective range.
4. Scalar Turbulence. Part III: The Batchelor Spectrum. What if Sc $\gg 1$? Then l_{κ} we calculated in Problem 3 is smaller than l_{ν}. Our dimensional theory only applies to $l>l_{\nu}$. Let us figure out what the scalar does at $l \ll l_{\nu}$.

1. Use the scaling of $\tau_{l} \sim l / \delta u_{l}$ in the viscous range ($l<l_{\nu}$) derived in my lectures to show that Eq. (7) reduces to $l \gg l_{\kappa}=\mathrm{Sc}^{-1 / 2} l_{\nu}$ - the new expression for the diffusive scale in the limit Sc $\gg 1$.

The scale range $l_{\nu} \gg l \gg l_{\kappa}$ is called the viscous-convective range (or subviscous range).
2. In a manner analogous to what you did in Problem 3, use Yaglom's law or the assumption that $\bar{\epsilon}_{\theta}$ is independent of l to show that, for l in the viscous-convective range,

$$
\begin{equation*}
\delta \theta \sim \bar{\epsilon}_{\theta}^{1 / 2} \epsilon^{-1 / 4} \nu^{1 / 4}, \tag{10}
\end{equation*}
$$

(independent of scale!) or, for the spectrum of scalar variance,

$$
\begin{equation*}
E_{\theta}(k) \sim \bar{\epsilon}_{\theta} \epsilon^{-1 / 2} \nu^{1 / 2} k^{-1} \tag{11}
\end{equation*}
$$

(the Batchelor spectrum). This spectrum is the result of these two properties of the viscousconvective range: (i) flux of scalar variance is independent of l, (ii) cascade time is independent of l (and equal to the turnover time of the viscous-scale eddies - confirm this is so!).
3. Thus, in the inertial-convective range, we have the Oboukhov-Corrsin spectrum, in the viscousconvective range, we have the Batchelor spectrum. Sketch the spectra of the kinetic energy and of the scalar variance in the case $\mathrm{Sc} \gg 1$, indicating all relevant wavenumbers $k \sim 1 / l$ and slopes.

