MAGNETOHYDRODYNAMICS AND TURBULENCE
Alexander Schekochihin, Part III (CASM) Michaelmas Term 2005

EXAMPLE SHEET 1

These problems will be discussed in the 1st Examples Class (7.11.05, 14:00, room TBD).

1. Anisotropic k-Space Correlation Functions. Consider the correlation function of the velocity
field in k space:

(ui(k)u;(K)) = (2m)°0(k + k') Ci; (k). (1)

Suppose there is one special direction in space, defined by the unit vector b (this can be the direction
of an imposed magnetic field or the axis of rotation or the direction of gravity). Then the general
form of the tensor Cj; is

Cii(k) = Cydi; + 02]%1‘]%]‘ + CSBiBj + 04?7@']27]‘ + 0572%131‘, (2)

where k; = k/k and (1, ..., C5 are functions of k and of £ = b -k =cosf (0 is the angle between k
and b, so k| = £k).

1. Assuming mirror symmetry, C;;(k) = C;;(—k), and incompressibility of the velocity field, show
that Cj; can be written in the form

Cij(k) = C™(k, &) (0 — kik;) + C™(k, €) [bib; + Ehik; — & (bik; + kb )| (3)

Express C° and C*° in terms of C}, ..., C5. Thus, second-order velocity correlator depends
on two scalar functions only. We can get back the isotropic result by setting Ca1s° = ().

2. An alternative pair of scalar functions is often useful: the correlation function Cj(k,§) of the
velocities along b and the correlation function C' 1 (k, &) of the velocities in the plane perpen-
dicular to b. Give definitions for these functions that you think are appropriate and express
them in terms of C'° and C2%is,

3. Suppose all variation of the velocity along b is suppressed. What happens to the tensor Cj;?

2. Scalar Turbulence. Part I: Yaglom’s % Law. Consider the equation for the evolution of
passive scalar O(t,x) (this can be temperature, or concentration of an admixture like a dye or salt,
or, in 2D hydrodynamics, the vorticity field, or, in RMHD, the magnetic flux function, etc.):

00

— +u-V0=rV¥+f, (4)
ot

where u is the (turbulent) velocity field, & is the scalar diffusivity, and f is the source function (scalar

"forcing”). We will assume that f varies at some (large) scale Ly < L (L is the outer scale of the

turbulence).

1. Define the scalar variance & = (0?)/2 ("energy” of the scalar field), the scalar correlation
function C(y) = (0(x1)0(x2)), and the scalar structure function S(y) = (§0?), where 50 =
0(x2) — 0(x1) and y = x5 — x7. Express S(y) in terms of C(y) and £.
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2. Define a mixed 3d-order correlation function Fi(y) = (u;(x1)0(x1)0(x2)) = F(y)y; and the
corresponding structure function G;(y) = (0u;60%) = G(y)¥:, where du; = u;(x2) — u;(x;) and
¥y =y/y. Show that G(y) = 4F (y).
Hint. Any one-point average that is a first-rank tensor (vector) is zero by isotropy (why?).
Also, (u(x1)a(xz)) = 0 for any scalar field a (at which point in my lecture on the # Law did I
prove this?).

3. Now, proceeding analogously to the derivation of the % Law in my lectures, derive the analog
of the von Karman—Howarth equation for the passive scalar:

oS d€ 1 0 1 0 oS
=31 = g - ¥ d-1 Qg d—1>*~
ot dt €€<y) ydil &yy G<y) + Kydfl ayy 8y7 (5)

where €(y) = (6(x1) f(x2))-
4. Consider the statistically steady state and show that for y < Ly,

Cly) =~ ey +265'(y), ()

where € = ¢4(0) = (0 f) the input variance per unit time. Show from Eq. (4) that ¢y = x(|V0]?)
(scalar dissipation per unit time). Equation (6) for d = 3 is Yaglom’s 5 Law.

5. Show that if f = 0 and we consider a self-similar decay of the scalar (0S/0t = 0), Eq. (6) is
still satisfied. What is € in this case?

3. Scalar Turbulence. Part II: The Oboukhov-Corrsin Spectrum. Now you are going to
develop a dimensional theory of scalar turbulence a la the K41 theory I described in my lectures.

1. Let us figure out when the diffusive term in Eq. (6) is negligible. Assume that S(y) ~ §67 and
(dimensionally) & ~ 067/7 (flux of scalar variance), where 6 is the scalar variation across
scale | = y and 7; is some cascade time. Show that the diffusive term is negligible if

KTy

7 < 1. (7)

2. Assume that 7, ~ [/0w; (why?) and show that, for du; satisfying the K41 scaling, Eq. (7)
reduces to [ > I, = Sc™*/*1,, where I, = (13/€)'/* is the viscous scale, € is the Kolmogorov
flux, and Sc = v/k is called the Schmidt number.

Note that, since you have used K41 inertial-range scaling for the cascade time, your estimates

are only correct for Sc < 1 (why?).

3. Show that an equivalent expression for the diffusive scale is I, ~ Pe /L, (provided the
characteristic scale of the scalar source is Ly < L), where Pe = duy,Ly/k is called the Péclet
number (analog of the Reynolds number for scalars).

The scale range of [ such that L > Ly > 1> ly > 1, is called the inertial-convective range. It
is non-empty if Re > Pe > 1.

4. Using Yaglom’s law, show that, for [ in the inertial-convective range,

80 ~ &2 15113, (8)
or, for the spectrum of scalar variance,
Eg(k’) ~ €0€—1/3k—5/3 (9)

(the Oboukhov-Corrsin spectrum). Sketch the spectra of the kinetic energy and of the scalar
variance, indicating all relevant wavenumbers k ~ 1/1 and slopes.
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5. Show that Eq. (8) can be derived purely dimensionally (without recourse to Yaglom’s law) by
assuming that the flux of scalar variance € is independent of [ in the inertial-convective range.

4. Scalar Turbulence. Part III: The Batchelor Spectrum. What if Sc > 17 Then [, we
calculated in Problem 3 is smaller than /,. Our dimensional theory only applies to [ > [,. Let us
figure out what the scalar does at [ < [,,.

1. Use the scaling of 7; ~ [/du; in the viscous range (I < [,) derived in my lectures to show that
Eq. (7) reduces to I 3> I, = Sc™ /%, — the new expression for the diffusive scale in the limit
Sc> 1.

The scale range [, > [ > [, is called the viscous-convective range (or subviscous range).

2. In a manner analogous to what you did in Problem 3, use Yaglom’s law or the assumption that
€g is independent of [ to show that, for [ in the viscous-convective range,

80 ~ gy 2 VA, (10)
(independent of scale!) or, for the spectrum of scalar variance,
Ey(k) ~ ege V227! (11)

(the Batchelor spectrum). This spectrum is the result of these two properties of the viscous-
convective range: (i) flux of scalar variance is independent of [, (ii) cascade time is independent
of [ (and equal to the turnover time of the viscous-scale eddies — confirm this is so!).

3. Thus, in the inertial-convective range, we have the Oboukhov-Corrsin spectrum, in the viscous-
convective range, we have the Batchelor spectrum. Sketch the spectra of the kinetic energy
and of the scalar variance in the case Sc > 1, indicating all relevant wavenumbers k£ ~ 1/ and
slopes.



