
Magnetohydrodynamics and Turbulence

Alexander Schekochihin, Part III (CASM) Michaelmas Term 2005

EXAMPLE SHEET I

These problems will be discussed in the 1st Examples Class (7.11.05, 14:00, room TBD).

1. Anisotropic k-Space Correlation Functions. Consider the correlation function of the velocity
field in k space:

〈ui(k)uj(k
′)〉 = (2π)3δ(k + k′)Cij(k). (1)

Suppose there is one special direction in space, defined by the unit vector b̂ (this can be the direction
of an imposed magnetic field or the axis of rotation or the direction of gravity). Then the general
form of the tensor Cij is

Cij(k) = C1δij + C2k̂ik̂j + C3b̂ib̂j + C4b̂ik̂j + C5k̂ib̂j , (2)

where k̂i = k/k and C1, ..., C5 are functions of k and of ξ = b̂ · k̂ = cos θ (θ is the angle between k

and b̂, so k‖ = ξk).

1. Assuming mirror symmetry, Cij(k) = Cij(−k), and incompressibility of the velocity field, show
that Cij can be written in the form

Cij(k) = C iso(k, ξ)
(

δij − k̂ik̂j

)

+ Caniso(k, ξ)
[

b̂ib̂j + ξ2k̂ik̂j − ξ
(

b̂ik̂j + k̂ib̂j

)]

. (3)

Express C iso and Caniso in terms of C1, ..., C5. Thus, second-order velocity correlator depends
on two scalar functions only. We can get back the isotropic result by setting Caniso = 0.

2. An alternative pair of scalar functions is often useful: the correlation function C‖(k, ξ) of the

velocities along b̂ and the correlation function C⊥(k, ξ) of the velocities in the plane perpen-
dicular to b̂. Give definitions for these functions that you think are appropriate and express
them in terms of C iso and Caniso.

3. Suppose all variation of the velocity along b̂ is suppressed. What happens to the tensor Cij?

2. Scalar Turbulence. Part I: Yaglom’s 4

3
Law. Consider the equation for the evolution of

passive scalar θ(t,x) (this can be temperature, or concentration of an admixture like a dye or salt,
or, in 2D hydrodynamics, the vorticity field, or, in RMHD, the magnetic flux function, etc.):

∂θ

∂t
+ u · ∇θ = κ∇2θ + f, (4)

where u is the (turbulent) velocity field, κ is the scalar diffusivity, and f is the source function (scalar
”forcing”). We will assume that f varies at some (large) scale Lθ < L (L is the outer scale of the
turbulence).

1. Define the scalar variance Eθ = 〈θ2〉/2 (”energy” of the scalar field), the scalar correlation
function C(y) = 〈θ(x1)θ(x2)〉, and the scalar structure function S(y) = 〈δθ2〉, where δθ =
θ(x2) − θ(x1) and y = x2 − x1. Express S(y) in terms of C(y) and E .
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2. Define a mixed 3d-order correlation function Fi(y) = 〈ui(x1)θ(x1)θ(x2)〉 = F (y)ŷi and the
corresponding structure function Gi(y) = 〈δuiδθ

2〉 = G(y)ŷi, where δui = ui(x2) − ui(x1) and
ŷ = y/y. Show that G(y) = 4F (y).
Hint. Any one-point average that is a first-rank tensor (vector) is zero by isotropy (why?).
Also, 〈u(x1)a(x2)〉 = 0 for any scalar field a (at which point in my lecture on the 4

5
Law did I

prove this?).

3. Now, proceeding analogously to the derivation of the 4

5
Law in my lectures, derive the analog

of the von Kármán–Howarth equation for the passive scalar:

∂S

∂t
= 4

dE

dt
− 4εθ(y) −

1

yd−1

∂

∂y
yd−1G(y) + 2κ

1

yd−1

∂

∂y
yd−1

∂S

∂y
, (5)

where εθ(y) = 〈θ(x1)f(x2)〉.

4. Consider the statistically steady state and show that for y � Lθ,

G(y) = −
4

d
ε̄θy + 2κS ′(y), (6)

where ε̄θ = εθ(0) = 〈θf〉 the input variance per unit time. Show from Eq. (4) that ε̄θ = κ〈|∇θ|2〉
(scalar dissipation per unit time). Equation (6) for d = 3 is Yaglom’s 4

3
Law.

5. Show that if f = 0 and we consider a self-similar decay of the scalar (∂S/∂t = 0), Eq. (6) is
still satisfied. What is ε̄θ in this case?

3. Scalar Turbulence. Part II: The Oboukhov-Corrsin Spectrum. Now you are going to
develop a dimensional theory of scalar turbulence à la the K41 theory I described in my lectures.

1. Let us figure out when the diffusive term in Eq. (6) is negligible. Assume that S(y) ∼ δθ2

l and
(dimensionally) ε̄θ ∼ δθ2

l /τl (flux of scalar variance), where δθ is the scalar variation across
scale l = y and τl is some cascade time. Show that the diffusive term is negligible if

κτl

l2
� 1. (7)

2. Assume that τl ∼ l/δul (why?) and show that, for δul satisfying the K41 scaling, Eq. (7)
reduces to l � lκ = Sc−3/4lν , where lν = (ν3/ε)1/4 is the viscous scale, ε is the Kolmogorov
flux, and Sc = ν/κ is called the Schmidt number.

Note that, since you have used K41 inertial-range scaling for the cascade time, your estimates
are only correct for Sc � 1 (why?).

3. Show that an equivalent expression for the diffusive scale is lκ ∼ Pe−3/4Lθ (provided the
characteristic scale of the scalar source is Lθ < L), where Pe = δuLθ

Lθ/κ is called the Péclet
number (analog of the Reynolds number for scalars).

The scale range of l such that L > Lθ � l � lθ � lν is called the inertial-convective range. It
is non-empty if Re � Pe � 1.

4. Using Yaglom’s law, show that, for l in the inertial-convective range,

δθ ∼ ε̄
1/2

θ ε−1/6l1/3, (8)

or, for the spectrum of scalar variance,

Eθ(k) ∼ ε̄θε
−1/3k−5/3 (9)

(the Oboukhov-Corrsin spectrum). Sketch the spectra of the kinetic energy and of the scalar
variance, indicating all relevant wavenumbers k ∼ 1/l and slopes.
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5. Show that Eq. (8) can be derived purely dimensionally (without recourse to Yaglom’s law) by
assuming that the flux of scalar variance ε̄θ is independent of l in the inertial-convective range.

4. Scalar Turbulence. Part III: The Batchelor Spectrum. What if Sc � 1? Then lκ we
calculated in Problem 3 is smaller than lν . Our dimensional theory only applies to l � lν . Let us
figure out what the scalar does at l � lν .

1. Use the scaling of τl ∼ l/δul in the viscous range (l < lν) derived in my lectures to show that
Eq. (7) reduces to l � lκ = Sc−1/2lν — the new expression for the diffusive scale in the limit
Sc � 1.

The scale range lν � l � lκ is called the viscous-convective range (or subviscous range).

2. In a manner analogous to what you did in Problem 3, use Yaglom’s law or the assumption that
ε̄θ is independent of l to show that, for l in the viscous-convective range,

δθ ∼ ε̄
1/2

θ ε−1/4ν1/4, (10)

(independent of scale!) or, for the spectrum of scalar variance,

Eθ(k) ∼ ε̄θε
−1/2ν1/2k−1 (11)

(the Batchelor spectrum). This spectrum is the result of these two properties of the viscous-
convective range: (i) flux of scalar variance is independent of l, (ii) cascade time is independent
of l (and equal to the turnover time of the viscous-scale eddies — confirm this is so!).

3. Thus, in the inertial-convective range, we have the Oboukhov-Corrsin spectrum, in the viscous-
convective range, we have the Batchelor spectrum. Sketch the spectra of the kinetic energy
and of the scalar variance in the case Sc � 1, indicating all relevant wavenumbers k ∼ 1/l and
slopes.
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