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EXAMPLE SHEET II

The problems in this Example Sheet are harder than in ES-I. They follow the topics I have covered
in my lectures (energy principle, waves, magnetic reconnection, tearing mode) and on each of these
topics you are offered an opportunity to work through a a fairly serious calculation of the type you
may encounter in your research work. I urge you to invest some of your time in these problems as

they represent bits of theory that, in a longer course, could have made into lectures. These
problems will be discussed in the 2nd Examples Class (2.03.05, 14:30 in MR5).

1. Convective instabilities in a gravitational field. In this problem, you will study the stability
of a straight-field equilibrium in a gravitational field: B0 = B0(z)x̂, p0 = p0(z), ρ0 = ρ0(z), g = −gẑ,
where

d

dz

(

p0 +
B2

0

8π

)

= −ρ0g. (1)

Consider displacements in the form ξ = ξ̂(z) exp(ikxx + ikyy). The general expression for the per-
turbation of the potential energy is then

δW =
1

2

∫

dz

[

γp0|∇ · ξ|2 +
|Q|2

4π
+ (∇ · ξ∗) ξ · ∇p0 +

j0 · (ξ
∗ × Q)

c
+ (ξ∗ · g)∇ · (ρ0ξ)

]

, (2)

where j0 = (c/4π)∇×B0 and Q = δB = ∇× (ξ × B0) = −ξ · ∇B0 + B0 · ∇ξ −B0∇ · ξ.

1. First consider the case with no magnetic field: B0 = 0. Write δW for this equilibrium. Observe
that it depends only on two scalar quantities: ∇·ξ and ξz (and their conjugates). By minimising
δW with respect to ∇·ξ (and ∇·ξ∗), derive the Schwarzschild stability criterion for convection:

Stability ⇔
d

dz
ln

(

p0

ργ
0

)

> 0 (3)

If this is broken, you get the so-called interchange instability. Can you think of a physical
picture of this instability?

2. Now restore magnetic field. Consider a class of displacements with kx = 0 (show that these
displacements do not bend the field lines). Calculate δW and again observe that it depends
only on ∇ · ξ and ξz and their conjugates. Minimise with respect to ∇ · ξ and ∇ · ξ∗ and show
that

d

dz
ln

(

p0

ργ
0

)

+
B2

0

4πp0

d

dz
ln

(

B0

ρ0

)

< 0, (4)

is a sufficient condition for instability (magnetised interchange instability). Would you be
justified in claiming stability if this condition is not satisfied?
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2. Ambipolar and Viscous Damping. Consider the incompressible MHD for a plasma with a
neutral component:

∂ui

∂t
+ ui · ∇ui = −

∇pi

ρi

+
B · ∇B

4πρi

− µin (ui − un) , ∇ · ui = 0, (5)

∂un

∂t
+ un · ∇un = −

∇pn

ρn
+ νn∇

2un − µni (un − ui) , ∇ · un = 0, (6)

∂B

∂t
+ ui · ∇B = B · ∇ui, (7)

where ion viscosity and magnetic diffusivity have been ignored, subscripts i and n refer to ion and
neutral quantities, respectively, νn ∼ vthλmfp is the neutral viscosity, µin ∼ vth/λmfp is the ion-neutral
collision rate, µni = (ρi/ρn)µin = µinχ/(1 − χ) is the neutral-ion collision rate, χ = ρi/(ρn + ρi) is
the degree of ionisation of the plasma.

Assume a straight-field static equilibrium, B0 = B0ẑ. Write the ion and neutral velocities in
terms of ion and neutral displacements and work out the dispersion relation:

iω3 − ω2

(

νnk
2 +

µin

1 − χ

)

− iω
(

k2
‖v

2
A + µinνnk

2
)

+ k2
‖v

2
A

(

νnk
2 +

χ

1 − χ
µin

)

= 0. (8)

Consider various asymptotic solutions of this dispersion relation. You will find that the following
are the interesting limits:

1. β � 1 (show that this implies νnk
2 � k2

‖v
2
A/µin)

(a) kλmfp � β1/2 (show that this implies k‖vA � µin)
— Alfvén waves plus ambipolar damping.

(b) β1/2 � kλmfp � 1 (show that this implies νnk
2 � µin � k‖vA)

— Alfvén waves plus collisional damping.

(c) kλmfp � 1 (i.e., νnk
2 � µin)

— Undamped Alfvén waves.

2. β � 1 (i.e., νnk
2 � k2

‖v
2
A/µin)

(a) kλmfp � 1/β1/2 (show that this implies νnk
2 � k‖vA)

— Alfvén waves plus viscous damping.

(b) 1/β1/2 � kλmfp � 1 (show that this implies k‖vA � νnk
2 � µin)

— Viscous relaxation (non-oscillatory).

(c) 1 � kλmfp � β1/2 (i.e., νnk
2 � µin � k‖vA)

— Ambipolar relaxation (non-oscillatory).

For each of these cases, find all three solutions of the dispersion relation. Which solution has the
weakest damping? (meaning that it is the long-term solution) Do the verbal descriptions of these
solutions given above make sense to you? (if not, you might have made a mistake!)

Physically speaking, do you trust all of these results equally well?
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3. X-Point Collapse. Let us set up the following initial magnetic-field configuration:

B0(r0) = B0ẑ + ẑ ×∇0ψ(x0, y0), (9)

where r0 = (x0, y0, z0), B0 = const, and

ψ(x0, y0) =
1

2

(

x2
0 − y2

0

)

. (10)

1. Draw the field lines in the (x0, y0) plane to see that this is an X-point.

2. Use Lagrangian MHD

ρ0
∂2r

∂t2
= −J (∇0r)

−1 · ∇0

(

p0

Jγ
+

|B0 · ∇0r|
2

8πJ2

)

+
1

4π
B0 · ∇0

(

B0

J
· ∇0r

)

, (11)

where r(t, r0) = (x, y, z) and J = | det∇0r|, and seek solutions in the form

x = ξ(t)x0, y = η(t)y0, z = z0. (12)

Show that ξ(t) and η(t) satisfy the following equations

d2ξ

dt2
= η

(

1

η2
−

1

ξ2

)

, (13)

d2η

dt2
= ξ

(

1

ξ2
−

1

η2

)

. (14)

3. Consider the possibility that, as time goes on, η(t) → 0 (becomes small) and ξ(t) = ξc + . . .,
where ξc is some constant. Find solutions that satisfy this assumption. The answer is

ξ(t) ≈ ξc +
9

4

(

2

9ξc

)1/3

(tc − t)4/3 , (15)

η(t) ≈

(

9ξc
2

)1/3

(tc − t)2/3 (16)

as t → tc, where tc is some finite time constant. This is called the Syrovatskii solution for the
X-point collapse.

4. Calculate the magnetic field as a function of time and convince yourself that the initial X-point
configuration collapses explosively (in a finite time) to a sheet along the x axis. What do you
think happens after t reaches tc?

5. Now do a similar calculation for incompressible Lagrangian MHD (J = 1). Remember that
total pressure is now determined by the condition J = 1. Show that the solution in this case is

ξ(t) = eS(t), η(t) = e−S(t), (17)

where S(t) is an arbitrary function of time. If. e.g., S(t) = Λt, show that this mean the
X-point collapses exponentially. This is called the Chapman-Kendall solution.
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4. Tearing Mode with Viscosity. Work through my notes on the tearing mode. Now restore the
viscous term (ν∇4

⊥φ) in the φ equation. This introduces an extra time scale, τvisc = (νk2)−1, and an
extra spacial scale, δvisc = (ν/γ)1/2. Assume that

γτvisc � 1 and δvisc � 1/k ∼ system scale. (18)

Suppose that the viscous scale is larger than the resistive scale:

δvisc � δ = (η/γ)1/2. (19)

1. Work out the equation for the inner solution and find how γ, δ and δvisc scale with η and ν.
The answer is

γ ∼ η5/6ν−1/6, δ ∼ (ην)1/6, δvisc ∼ ν7/12η−5/12 (20)

(note that you do not need to calculate the exact solution in the inner region to get these
scalings!).

2. Show that, assuming a large Lundquist number S = vAL/η � 1 (here L ∼ 1/k is the system
scale), assumptions (18) and (19), and, therefore, your scalings, hold provided

S−2/5 � Pm � S2/7, (21)

where Pm = ν/η is called the magnetic Prandtl number.
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