MAGNETOHYDRODYNAMICS AND TURBULENCE
Alezander Schekochihin, Part III (CASM) Lent Term 2005

EXAMPLE SHEET I1

The problems in this Example Sheet are harder than in ES-I. They follow the topics I have covered
in my lectures (energy principle, waves, magnetic reconnection, tearing mode) and on each of these
topics you are offered an opportunity to work through a a fairly serious calculation of the type you
may encounter in your research work. I urge you to invest some of your time in these problems as
they represent bits of theory that, in a longer course, could have made into lectures. These
problems will be discussed in the 2nd Examples Class (2.03.05, 14:30 in MR5).

1. Convective instabilities in a gravitational field. In this problem, you will study the stability
of a straight-field equilibrium in a gravitational field: By = By(2)X, po = po(z), po = po(z), 8 = — 92,
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Consider displacements in the form & = £(2) exp(ikya + ikyy). The general expression for the per-
turbation of the potential energy is then
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where jo = (¢/4m)V x Bgand Q =B =V x ({ x Bg) = = - VBg + Bg - V& — BV - &.

1. First consider the case with no magnetic field: By = 0. Write W for this equilibrium. Observe
that it depends only on two scalar quantities: V-£ and £, (and their conjugates). By minimising
W with respect to V- (and V-£*), derive the Schwarzschild stability criterion for convection:
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If this is broken, you get the so-called interchange instability. Can you think of a physical
picture of this instability?

2. Now restore magnetic field. Consider a class of displacements with k, = 0 (show that these
displacements do not bend the field lines). Calculate W and again observe that it depends
only on V - £ and £, and their conjugates. Minimise with respect to V - & and V - £* and show

that
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is a sufficient condition for instability (magnetised interchange instability). Would you be
justified in claiming stability if this condition is not satisfied?



2. Ambipolar and Viscous Damping. Consider the incompressible MHD for a plasma with a
neutral component:

By +u;-Vu;, = p + I, fin (W —u,), V-u; =0, (5)
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where ion viscosity and magnetic diffusivity have been ignored, subscripts ¢ and n refer to ion and
neutral quantities, respectively, v, ~ v A is the neutral viscosity, ftin ~ Vgh/Amsp 1S the ion-neutral
collision rate, fn; = (pi/pn)thin = Hinx/(1 — X) is the neutral-ion collision rate, x = p;/(pn + pi) is
the degree of ionisation of the plasma.

Assume a straight-field static equilibrium, By = Byz. Write the ion and neutral velocities in
terms of ion and neutral displacements and work out the dispersion relation:
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Consider various asymptotic solutions of this dispersion relation. You will find that the following
are the interesting limits:

1. B < 1 (show that this implies v, k* < kﬁvi/,um)

(a) kAmep < 32 (show that this implies kjva < i)
— Alfvén waves plus ambipolar damping.

(b) BY2 < kAmgp < 1 (show that this implies v,k? < piy < kjva)
— Alfvén waves plus collisional damping.

(€) kdmep > 1 (Le., vpk? > i)
— Undamped Alfvén waves.

2. B> 1 (ie., v,k* > kﬁvi/,um)

(a) kA < 1/8'Y% (show that this implies v,k? < kjv4)
— Alfvén waves plus viscous damping.

(b) 1/8Y? < kAmgp < 1 (show that this implies kjva < v,k* < i)
— Viscous relaxation (non-oscillatory).

(¢) 1< kdmtp < B2 (Le., vnk? > pin > kyjva)
— Ambipolar relaxation (non-oscillatory).

For each of these cases, find all three solutions of the dispersion relation. Which solution has the
weakest damping? (meaning that it is the long-term solution) Do the verbal descriptions of these
solutions given above make sense to you? (if not, you might have made a mistake!)

Physically speaking, do you trust all of these results equally well?



3. X-Point Collapse. Let us set up the following initial magnetic-field configuration:

By(ro) = Boz + z x Vo(x0, Yo), (9)

where rg = (20, Yo, 20), Bo = const, and
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1. Draw the field lines in the (zg,yo) plane to see that this is an X-point.

2. Use Lagrangian MHD
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where r(t,rg) = (z,y, z) and J = | det Vr|, and seek solutions in the form

r=&)xo, y=nt)y, 2= z0. (12)

Show that £(t) and 7(t) satisfy the following equations
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. Consider the possibility that, as time goes on, 7(t) — 0 (becomes small) and £(t) = & + .. .,
where &, is some constant. Find solutions that satisfy this assumption. The answer is
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as t — t., where t. is some finite time constant. This is called the Syrovatskii solution for the
X-point collapse.

. Calculate the magnetic field as a function of time and convince yourself that the initial X-point
configuration collapses explosively (in a finite time) to a sheet along the z axis. What do you
think happens after ¢ reaches ¢.?

. Now do a similar calculation for incompressible Lagrangian MHD (J = 1). Remember that
total pressure is now determined by the condition J = 1. Show that the solution in this case is

) =0, n(t) = e, (1)

where S(t) is an arbitrary function of time. If. e.g., S(t) = At, show that this mean the
X-point collapses exponentially. This is called the Chapman-Kendall solution.



4. Tearing Mode with Viscosity. Work through my notes on the tearing mode. Now restore the
viscous term (vV4 @) in the ¢ equation. This introduces an extra time scale, Ty = (vk%)7!, and an
extra spacial scale, dyiee = (v/7)"/2. Assume that

YTise > 1 and  dyise < 1/k ~ system scale. (18)
Suppose that the viscous scale is larger than the resistive scale:
5ViSC > 0= (71/7)1/2 (19)

1. Work out the equation for the inner solution and find how ~, § and d,. scale with n and v.
The answer is
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(note that you do not need to calculate the exact solution in the inner region to get these
scalings!).

2. Show that, assuming a large Lundquist number S = vsL/n > 1 (here L ~ 1/k is the system
scale), assumptions (18) and (19), and, therefore, your scalings, hold provided

S7° <« Pm < S¥7, (21)

where Pm = v/n is called the magnetic Prandtl number.



