Magnetohydrodynamics and Turbulence

Alexander Schekochihin, Part III (CASM) Lent Term 2005

EXAMPLE SHEET I: Problems 8-9

These problems will be discussed in the 1st Examples Class (9.02.05, 14:30 in MR5).
8. Conservation Laws for RMHD. In Problem 3, you derived the RMHD equations. Show that these equations conserve the following three integral invariants.

$$
\begin{align*}
\text { Energy } \quad E & =\int d^{2} x\left(\frac{\rho u^{2}}{2}+\frac{B^{2}}{8 \pi}\right)=\int d^{2} x\left(\frac{\rho|\nabla \phi|^{2}}{2}+\frac{|\nabla \psi|^{2}}{8 \pi}\right), \tag{1}\\
\text { Cross - helicity } \quad C & =\int d^{2} x \mathbf{u} \cdot \mathbf{B}=\int d^{2} x(\nabla \phi) \cdot(\nabla \psi), \tag{2}\\
\text { 2D magnetic invariant } I & =\int d^{2} x \psi^{2} . \tag{3}
\end{align*}
$$

Write the evolution equations for all three of these quantities, including viscous and resistive terms. Show that energy and the " ψ^{2}-stuff" always decay with time (in the absence of sources).
9. The Grad-Shafranov Equation. Consider MHD equilibrium in cylindrical coordinates (r, θ, z). Assume axial symmetry: $\partial / \partial \theta=0$.

1. Use solenoidality of the magnetic field to show that

$$
\begin{equation*}
B_{r}=-\frac{1}{r} \frac{\partial \psi}{\partial z}, \quad B_{z}=\frac{1}{r} \frac{\partial \psi}{\partial z} \tag{4}
\end{equation*}
$$

ψ is called the poloidal flux function.
2. Use Ampère's law to express the components of the current $\mathbf{j}=\left(j_{r}, j_{\theta}, j_{z}\right)$ in terms of ψ and of $F=r B_{\theta}$. The latter is called the poloidal current function.
3. Write the θ component of the force balance $(1 / c) \mathbf{j} \times \mathbf{B}=\nabla p$. Show that it is equivalent to $\nabla F \times \nabla \psi=0$. Argue that this implies $F=F(\psi)(F$ is a function of ψ only $)$.
4. Note that you can now express any derivatives of F in terms of its derivative with respect to ψ, e.g.,

$$
\begin{equation*}
\frac{\partial F}{\partial r}=\frac{d F}{d \psi} \frac{\partial \psi}{\partial r} \tag{5}
\end{equation*}
$$

Now write the r and z components of the force balance. From the two resulting expressions, obtain $\nabla p \times \nabla \psi=0$, whence $p=p(\psi)$.
5. In either r or z component of the force balance, express the pressure gradient in terms of $d p / d \psi$ and obtain the following Grad-Shafranov equation

$$
\begin{equation*}
-\left(\frac{\partial^{2} \psi}{\partial r^{2}}-\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)=4 \pi r^{2} \frac{d p}{d \psi}+F \frac{d F}{d \psi} \tag{6}
\end{equation*}
$$

6. Now show that if cylindrical symmetry is assumed $(\partial / \partial \theta=0, \partial / \partial z=0)$, this equation reduces to the equation of cylindrical equilibrium derived in class:

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(p+\frac{B^{2}}{8 \pi}\right)=-\frac{B_{\theta}^{2}}{4 \pi r} \tag{7}
\end{equation*}
$$

