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Summary 

An explanation of the observed light distributions of elliptical galaxies is 
sought and found. 

The violently changing gravitational field of a newly formed galaxy is 
effective in changing the statistics of stellar orbits. The equilibrium distribution 
under this encounterless relaxation is found by use of a fourth type of 
statistics related to both Fermi-Dirac statistics and equipartition of energy per 
unit mass. In the relevant limit this becomes Maxwell’s distribution but with 
temperature proportional to mass. 

The predicted light distributions are those of the modified isothermal 
spheres developed by Michie from considerations of stellar relaxation in 
globular clusters. Both these and the special case further developed by King are 
known to give agreement with observations of spherical systems. Application 
to clusters of galaxies will remove Zwicky’s paradox. 

The theory is also developed for rotating systems where allowance must be 
made for anisotropy of stellar motions if the outer parts are not to be much 
flatter than the inner parts. 

The new statistics developed here should have important applications to 
collisionless plasmas and collisionless shocks. 

Kelvin’s theorem is rederived for collisionless dynamics. 
It is suggested that the typical * equilibrium ’ state of a stellar system 

may be hierarchical. 

I. Introduction. The remarkable regularity in the light distribution in elliptical 
galaxies suggests that they have reached some form of natural equilibrium. 
However, estimates of the normal star-star relaxation show that it is too weak to 
establish equilibrium in the time available. Equipartition of energy would lead to a 
marked segregation by mass with the lighter stars at the outside; and, as a result, 
to greater colour differences than are observed. No relaxation mechanism which 
leads to equipartition of energy can be primarily responsible. 

This paper discusses the relaxation that occurs when the mean gravitational 
field of the system is not steady and derives the form of equilibrium towards 
which this relaxation proceeds. The importance of this form of relaxation has 
previously been stressed by a number of authors including Henon (1) and King (2). 
Numerical experiments on it were recently made by Henon (1) and Lecar (3). 

Both recently formed and tidally deformed stellar systems possess a large scale 
gravitational field which changes in time. Due to these changes the stars follow 
complicated paths along which the individual stellar energies are not conserved. 
In fact 

¿6* 

dt (i) 

? 
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102 Z). Lynden-Bell Vol. 136 

Where is the energy of a star, m is its mass and y, z, t) is the gravitational 
potential of the whole stellar system measured from a zero at infinity. 

€# = m(^2—?/f) 

where c is the star's velocity ; it is natural to define an energy per unit mass 
so that equation (1) becomes 

de _ difj 

dt dt * 

e=e*jm 

(2) 

The relaxation time, TV, may be defined as 

To find an estimate for TV we must know how rapidly ip changes. The galaxy will 
vibrate turning potential energy into kinetic energy and back again in accordance 
with the time dependent virial theorem, 

i/=2T+F. 
Here 

i=Y.mr2 

where r is the position of the mass m with respect to the centre of mass of the whole 
galaxy and the summation is extended over all the masses. 

T is the kinetic energy of the galaxy with respect to its centre of mass; and 
V is the potential energy of the galaxy. We also define the total energy of the 
galaxy E= T+V. 

At equilibrium /= o so T= —E, V= zE. 
Away from equilibrium T and V will vibrate about these values since E is constant. 
T is the sum of the kinetic energies of the individual stars but V is half the sum of 
their potential energies (because it is mutual). For a typical star the kinetic energy 
must therefore vibrate about one quarter of its potential energy so 

whence 

For the relaxation time we have from (3) approximately 

TV is thus closely related, to the time in which log ip. changes which is typically the 
same time scale as for the vibration of the whole galaxy. To get the factors 277 etc. 
approximately correct we now derive this from the virial theorem. 

Define R by 
GM2 

R 
V (5) 

where M is the mass of the galaxy. 

Then 7= X2MR2 (6) 

where À2 is a number of order unity which is approximately constant for the 
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Violent relaxation No. i, 1967 103 

fundamental mode of vibration. À2 is ^ for a body whose density falls like r-2 

within some boundary and is approximately ^ for a uniform body. From the Virial 
theorem 

\2& = 2EIM+GMIR 

To find the period we assume small amplitude vibrations about the equilibrium 
radius R0=GM^I(-2E). 

Then 

2\*Ro8R= ~^8R 
Ro¿ (7) 

which is simple harmonic with angular frequency 

_/GMy'2_ 2 /-£\3'a 
n \2\2Ro3) \GM\m) 

or putting A2 = ^ and p = M/(§7ri?o3) 

n = (27rGp)1¡2. 

(8) 

(9) 

We now assume that initially the variation of R is as large as the mean, i?o 
itself. Then for all positions inside the main body of the galaxy the changes in i/j 
will be of the same order as i/j itself. So from equation (4) we obtain 

Tr^=ç 
4# 077 

(10) 

where P# = 277/7* is the typical radial period of the orbit of a star in the galaxy. 
Formula (10) illustrates the violence of this form of relaxation. Throughout 

the above discussion the mass of the star cancelled out showing that gain or loss of 
energy per unit mass by any star is not dependent on its mass. We may predict at 
this early stage that this form of relaxation will not lead to any segregation by mass. 

The vibrations of a galaxy are heavily damped by Landau Damping so they will 
not persist for more than a few periods. Basically this is because even if all the 
stars start falling inwards (i.e. all in step) their different galactic periods will soon 
spoil the synchronism (4). However, from our relaxation estimate it seems quite 
possible that this is long enough for the galaxy to make significant progress towards 
a state of complete ‘ mean field relaxation ’.We therefore turn our attention to the 
question ‘ where is this form of relaxation leading? ’ In particular, does it lead to 
some form of statistical equilibrium? 

2. Invariants. Any final equilibrium that is attained must have the same total 
energy, JB, as the initial state. We could say the same of the total mass M, the total 
angular momentum H and the total linear momentum P. Conserving these 
quantities only, statistical mechanics leads us to Maxwell’s distribution in moving 
and rotating axes. However, on the time scale which we are now considering star- 
star encounters are quite negligible and the system is described by the time- 
dependent Boltzmann-Liouville equation with no encounter term. We shall show 
that there are many more invariants than the above mentioned six. lîfdhd^c is the 
total mass of those stars in a volume dfy about r flowing with velocities in the 
range dsc about c the Boltzmann-Liouville equation reads 

+c . V+» . Ä=0 
Dt dt dr dr dc 
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104 Z). Lynden-Bell Vol. 136 

where 
c = (w, vy w), d3c = du dv dw 
r = (#, y, z)y dBr=dx dy dz 

± (±>L±\ 
dc \du dv dw] 

and D\Dt is the convective derivative following the motion in phase space. the 
gravitational potential, arises from the mass density J/¿3c by way of Poisson’s 
integral 

1/ (r'i c\t)dh’dh, 
t —t 

(12) 

Since DflDt = o each element of density in phase space conserves its phase- 
density as it moves (Liouville’s theorem but here in six dimensions rather than 6N). 
Each element of phase is always made up of the same stars wherever it moves to so 
it always has the same mass. Hence m{f ) 8/, the total mass of all those phase elements 
with phase-densities between f and f+8f is conserved. To put it differently M(f) 
the total mass of all those elements with phase-density greater than / is conserved 
for each and every/. 

We have here a conserved function, an infinity of conserved quantities. It is 
natural to attempt the new problem in statistical mechanics which allows for this 
conservation. However, to do this correctly it is vital to know what is meant by an 
equilibrium and how it is attained. This has been neatly discussed by Gibbs (5) 
and a mathematical discussion of the process for a stellar system was given by 
Lynden-Bell (4). Here we shall only discuss a much simplified model which 
contains what is important for our present purposes. 

3. A model of approach to equilibrium. Consider a set of many non-interacting 
particles released in a frictionless pig-trough as in Fig. 1. 

Let the initial distribution function be /(«?, </>) where e is a single particle energ 
and (f> is the phase of the oscillation across the pig-trough. Now plot phase space 
against (/> and assume that like most dynamical systems the higher energy oscillatioi 
have longer periods. We plot contours of the distribution function /(e, <£, t). ] 
fig. 2 f(€,<j>,ó) is taken to be uniform inside a circle for illustratio: 
The sequence of illustrations shows that 

(i) The distribution function/(e, </>, t) never reaches an equilibrium if it 
looked at on a fine enough scale. However, to see changes, microscopes 
progressively higher power must be used. 
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No. i, 1967 Violent relaxation 105 

Fig. 2 

(ii) If we use only a finite resolution then the distribution function appears to 
converge to what one would get by averaging f (e, o) over (j> to obtain /(e). 

(iii) In this process of looking with finite resolution we have averaged over 

regions of different phase densities. In this averaging process M(f) is not 
conserved, so M(/) is not the same function as M(/). / must, however, be the 
result of smoothing / thus there will be restrictions on M(/). For instance the 
largest value/attains can not be greater than the largest value/attained. Further 

it can be shown that the mathematical expression of (i) and (ii) is contained in the 
statement/converges in the mean to/. 

7§ 
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By our application of statistical mechanics we wish to predict the most probable 
distribution / consistent with given conserved quantities. We do not wish M(f) 
to be the same function as M(f), however we shall require that /is attained by 
smoothing/. The distinction between / and /often occurs in statistical mechanics 
where/is called the coarse-grained distribution and/the fine-grained distribution. 

4. The most probable state. We re-write equations (n) and (12) 

^=i+C-i+âr(GJ |/?TííV)-á¿ = (ïS) 

where/'=/ (r', c', t). 
Given /initially equation 13 determines /for all later times without mention of 

a stellar mass. It therefore does not matter how /is made up out of stars of different 
masses, it still obeys the same equation. 

Evidently the equation describes the complicated motion in phase space of 
each element of phase. We shall assume that there are so many equivalent elements 
and such violent variations in the mean gravity field that a typical element of 
phase is equally likely to be found anywhere in phase space subject to the following 
restrictions : 

{a) The total number of elements of phase which have any given phase density 
is the same as it was initially. 

(6) The total energy is conserved. 
(c) As a corollary of {a) no two elements of phase can overlap in phase space for 

then the phase space density would be different in the region of overlap. 
We have ignored the integral of linear momentum because including it merely 

leads to the same system but in rectilinear motion. 
The angular momentum integral will be included in Section 7. For a discussion 

of further conserved quantities which may or may not give isolating integrals see 
Appendix II. 

Fixed phase density. We shall in this first calculation assume that all the elements 
of phase have the same density 77. We show in Appendix 1 that a distribution of phase 
densities leads to similar results. 

To apply statistics we turn our distribution into a set of numbers by dividing 
phase-space into a very large number of micro-cells each of volume ¿5. These 
micro-cells will be so hyper-fine that even the fine grained distribution function / 
is adequately described by giving the mass of the phase element that occupies each 
cell. In the present instance these numbers will be o or 770). We shall group these 
micro-cells into coarse grained macro-cells each of which contains many micro- 
cells but is nevertheless so small that its spread in velocity and position space is 
infinitesimal compared that that of the whole galaxy. We call the number of 
micro-cells in each macro-cell v so the volume of each large cell is vœ. 

In the present case all phase elements have volume ¿5 and mass 77C0 so the 
total mass is M=Nr}a> where N is the number of occupied micro-cells. 

Consider the configuration in which there are nt phase elements in the fth 
macro-cell, each occupying one of the v micro-cells with no cohabitation. The 
phase-elements are distinguishable so the number of ways of assigning a cell to 
the first element is v, to the second v—i etc. The number of ways of assigning cells 
to all ni elements is thus 

id 

v — ni)\ 
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Violent relaxation No. i, 1967 107 

Note that if we allowed cohabitation this number would be vni whereas if the 
elements were indistinguishable this number would be 

(v — ni)\rii\ v ' 

as for Fermi-Dirac statistics. 
To obtain the number of microstates corresponding to the configuration 

defined by the numbers ni we must take the product of the terms such as (14) 
and multiply it by the number of ways of splitting our total of N elements into the 
groups Hi. Thus the number of microstates is 

TJ/ N\ ^ v! 
W=„ , .. xfj 

O(«0! 
i 

which should be compared with the Maxwell-Boltzmann expression 

(16) 

w. 
Nl 

MB w 
i 

and the Fermi-Dirac expression 

Wi'D=i><n (ni)\(v—Mj)! 

i1?) 

(18) 

R. M. Lynden-Bell makes the interesting point that morphologically (6) 
there are four types of statistics as follows: 

Indistinguishable particles Distinguishable particles 
No exclusion I Einstein-Bose II Maxwell-Boltzmann 
Exclusion III Fermi-Dirac IV 

It is the fourth type of statistics that concerns us here. However, comparison of 
expressions (16) and (18) shows that we have arrived with a W which is the same as 
the Fermi-Dirac one but for a normalization. When all the particles are equivalent 
exclusion leaves the same number of full and empty microstates and the distin- 
guishability or indistinguishability determines only whether we count each of these 
configurations N\ times or only once. Unlike particles, phase elements of different 
densities exclude one another so the new statistics IV of such elements is not 
equivalent to Fermi-Dirac statistics. This matter is explored in Appendix I. 

Following normal procedures we now maximize log W subject to the constraints 
to obtain the most probable state 

log W — iV(log iV— 1) — £ [rc¿(log ni—i) + (v — fti){log (v — ni)—i}— v(log v — 1)]. 
i 

It is convenient here to return to a representation in terms of a distribution function 
giving the average phase-density in the fth macro-cell 

fi =/ (rU Cí) = Mi'ijcu/ vw = 

log W=N{logN-i)- 

Í [ïkb b-b-]l 
- »'(log 
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io8 D. Lynden-Bell Vol. 136 

where dQr indicates integration over all phase space. Our constraints are 

$fd*T = M 

Using Lagrange multipliers a/^a> and ß/rjü to take account of our constraints 
we have 

where 

S(log m-o-- ¿«V to) 

(20) 

This last term arises from 8E as follows 

by interchanging the dummy variables of integration r and r' the last terms are 
seen to be equal thus 

Since the 8/in equation (19) may now be considered to be independent the integrand 
must be zero. 

/ _ 

where 
v-f 

= exp ( — oc — ße) 

c2 

«-H- 

Hence 

i+exp {— ß(e — fi)} 

(21) 

(22) 

where /x, the chemical potential per unit mass, is defined as — a/ß. The equivalent 
result for a Fermi-Dirac gas is 

f = mh-3 exP ÎzÆLIÈÏ (2ï 
1 i + exp {— mß'(e — /x)}’ ( 1 

where h is Planck’s constant and m is the mass of a particle and jS' is (AT1)-1 

Returning to the case in hand if* is determined from equation (20). Differentiating 
that expression we obtain 

VV= -47tgJ fd*c (24 

writing in expression (22) for /the equation to be solved becomes 

VV= - lön^Gß-wj 
exp —x2jz 

exp { - ß{ifi -b /x)} + exp - x2¡z 
x2 dx 

where x2 = ßc2. This is, apart from a reinterpretation of the constants, the equatic 
for the self-gravitating Fermi-Dirac gas. In the near fully degenerate case this h 
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No. i, 1967 Violent relaxation 109 

been solved in connection with white dwarf stars. The form of the distribution 
function depends crucially on the degree of degeneracy. We devote the next 
section to estimating this. 

As we explained in the introduction the distribution (22) is the form towards 
which mean field relaxation leads, rather than that necessarily attained. The mean 
field relaxation process is dependent on the strength of the variations in potential. 
As these die out the relaxation ceases and it is likely that the system may find a 
stable steady state before the relaxation process is completed. The distribution 
functions actually attained should be near (22) unless the stars were formed with a 
distribution function close to that of a steady state. In the latter case it would 
settle into the steady state with very little mean field relaxation. However, for the 
reasons given in the next section this case is very unlikely to occur in real galaxies. 
Incompleteness of the relaxation is further discussed in Section 6. 

5. Non-degeneracy of stellar systems. Degeneracy becomes important when / 
attains phase-densities of order 77. Now 77 is the typical phase-space density of a 
phase element, something which is conserved from birth. Thus we regard 77 as 
the phase space density at star formation. Leaving aside our belief that stars are 
made in clusters we must ask whether the stars could have been made at the low 
phase-space densities now observed in the field. If this density turns out to be too 
low for star formation then field stars will be far from degenerate. 

In the following discussion we shall assume that the velocity dispersion of a 
set of newly formed stars is about the same as the velocity dispersion within the gas 
immediately prior to star-formation. From the condition that Jeans’s criterion for 
instability must be satisfied for masses of stellar size we deduce that the phase-space 
densities at star formation must have been much higher than those now found in 
the field. Jeans’s condition for instability towards fragmentation into masses as 
small as is 

where c2 is the velocity dispersion of elements of gas and p is the gas density. The 
distribution function phase density in the field is 

/= (27) 

where p is the galaxy’s density, cg
2 its velocity dispersion and the last expression is 

derived by saying that the whole elliptical galaxy is the Jeans mass at its own density 
and dispersion. This last statement may be derived from the virial theorem. From 
equation 26 the phase density at star formation must satisfy 

_P_ 
C9Z 

> 
m*\p) J' 

(28) 

Now p the density at star formation can hardly be less than p whereas M must be 
some io10m#. Thus /must be less than the phase space density at star formation, 77, 
by a factor which is likely to be greater than 1010. 

Thus galaxies are in the non-degenerate limit and we may use the Maxwell- 
Boltzmann approximation to our statistics. That ís/^tj; hence from equation (22) 

/=i7 exp {-ß(€-p.)}=A exp (-ße) 
where A = 7] exp (ßp,). 

(29) 
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It should be emphasized again that € is the energy per unit mass so this distribu- 
tion function shows no segregation among stars of different masses. Our statistical 
analysis has led us back to the isothermal sphere with this equipartition of energy 
per unit mass rather than energy as the sole change. It should be noted that galactic 
nuclei may be an exception to the above argument and our type of degeneracy may 
be important there. 

6. Limitations of the relaxation. In real systems relaxation is not complete. 
Variations in the radius of the galaxy as it falls about do not appreciably affect 
the potential at points well outside the main body of the galaxy. We therefore 
assume that the relaxation is spatially limited to the region within a sphere of 
radius R\ about the centre of mass. To estimate R\ suppose that the system were 
homogeneous with its present energy and oscillating about its equilibrium radius 
(given by F= zE), Then it would fill a sphere of radius 

Furthermore we shall assume that considerable star-formation occurs only in the 
denser central regions inside such a sphere and that any stars now outside have only 
got there as a result of relaxation. All stars pass inside or close to R\ and their 
orbits are at least partially relaxed. Orbits not satisfying these criteria are depop- 
ulated. A modification to the isothermal equilibrium that adequately allows for 
this depopulation is the replacement of 

/= A exp ( — ße) (30) 
by 

f=A exp [ — ß(e + iA2i?i-2)] (31) 

1 3 GM2 

where h= |r x c| the angular momentum per unit mass about the galactic centre. 
(Note we have dropped the bar on/.) For r^R± this provides a significant depopula- 
tion of stars moving transversely. For r<4Ri the distribution function is hardly 
affected. This modification has a long history in the works of Eddington (7), 
Oort & van Herk (8) and Michie (9) among others. 

Even thus modified, the distribution (31) does not lead to a body of finite mass. 
The fundamental difficulty lies in the long range nature of gravity and the resulting 
divergence in the volume of phase space open to stars bound to the galaxy. Consider 
only the radial motions for bound stars cr

2 < zifj so the volume of phase space open 
to such radial motions is ¡z^zifj dr. For any finite system ifj-^GM/r as r->oo so 
this integral diverges. This divergence becomes worse if non radial motions are 
allowed. Even theories that restrict tangential motions to zero and consider only 
phase space bound to the galaxy will still fail to give bodies of finite mass if 
equal weights are allotted in phase space. The infinite weight of phase space at 
infinity is overpowering. An example which exemplifies this is the distribution 
function 

/=ÆS(A2)exp(-j5e) €<o 

(S is Dirac’s S function) 
(32) 
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to which (31) tends at great distances. Integration over velocities leads to 

p^zA' for 0 small. (33) 

This density distribution clearly leads to an infinite total mass. This difficulty has 
arisen because we have apphed statistical mechanical arguments without due care 
to their domain of validity. Two important effects that we have so far omitted occur 

because 
(i) relaxing conditions persist only while the galaxy is dynamically unsteady. 

Orbits which lie partly outside the relaxing region and have periods longer than the 
time for which the galaxy is unsteady will not acquire their full quotas of stars; 
and 

(ii) in practice the galaxy will not be isolated but will be subject to the tides of 
other systems. 

Both of these lead to similar effects so it may be difficult to decide which process 
is dominant except in a few obvious cases. 

We now consider a Fokker-Planck equation to describe the encounterless 
relaxation process. To do this our first aim is to find how the relaxation time 
depends on velocity for the high velocity phase elements. Let such an element 
encounter fluctuations of potential of magnitude hijj oí length scale L. Then the 
number of fluctuations undergone in time t is ctjL where c is the element’s velocity. 
The change in energy in each fluctuation is proportional to S?/r, so 

(Ae)2=a(Si/r)2. 

Defining the relaxation time by 

(A€)2 = (^c2)2, the summation being over time Tr 

we find 

C-lla(8W=lc*. 

TrKc*. (34) 

We must point out that relaxation by this mechanism is important only in the 
central parts where most of the stars have achieved an equilibrium distribution 
under its influence. The precise form of the Fokker-Planck diffusion terms is 
unimportant for them because Maxwell’s distribution is unchanged. It is the high 
velocity tail of the distribution functions in the central regions of the cluster which 
both departs from the equilibrium distribution and is subject to the relaxation. 
For such elements (34) is a good approximation. Following Chandrasekhar (10) 
(11) we consider each phase element as diffusing in velocity space under the 

influence of this relaxation. In terms of our statistical mechanical model it is 
elements of / that is the smooth distribution function that undergo this diffusion 
which would be impossible for elements of/. Pure diffusion would be represented 

y (¥) 
\ dt / fluctuation ^ \ 

however under the influence of pure diffusion / would smooth itself to ever higher 
energies and the Maxwellian would not be stable against encounters, 

Chandrasekhar’s dynamical friction allows for conservation of energy in th( 
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presence of diffusion and gives the form 

fluctuation 
(35) 

where rj the coefficient of dynamical friction is inversely proportional to the 
relaxation time. The invariance of the Maxwell distribution function (29) under 
the influence of these fluctuations yields the relation qß = r}. 

The change in / due to fluctuations occurs as we follow the same piece of 
phase through the average non-fluctuating field thus the full equation for the 
evolution of the system is 

Dt dc 
(36) 

where D/Dt follows the motion in the non-fluctuating average potential ip. 
Remembering that where this R.H.S. is important Trozc3 and that 17cei/Tr we 
may write 

Df=z± 
Dt dc (37) 

Now in the central region of interest/=/(c2/2 — if/) =/(e) so we convert the R.H.S 
to an equation in terms of energies 

where I have not worried about the singularity at c = o because this approximation 
to the Fokker-Planck coefficient is incorrect there anyway. Thus the equation true 
for the high energies is 

sBIHJH] <38) 

while at low energies / is Maxwellian to a sufficient approximation. Michie’s 
solution (9) of this equation is to put K( df¡ de + ßf) = const = KßB say which clearly 
gives a stationary solution in the outer parts. We then obtain 

f—B = A exp ( — ße) 
f=A exp ( — ße) — B. (39; 

/ becomes zero at the energy e= — i/ß log (B¡A)= ee which is identified as th< 
energy of escape in the tidal case. For € > ee,/= o since stars there would be remove« 
by the tidal field. In practical cases the escape energy is near zero so jB = 
A exp ( — ßee) is small compared with A exp ( — ße) and the Maxwellian is onl; 
significantly modified close to the escape energy. Similar considerations applied t 
our modified distribution function which is Maxwellian where the diffusion occur 
but anisotropic in the outer parts, leads to the function 

/= (A exp (-ße)-B) exp -%ßh?Rr2 (4( 

In the general case it is instructive to assume that the central regions of tl 
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No. i, 1967 Violent relaxation 113 

galaxy are not changing rapidly so that ß changes slowly if at all. We return to our 
non-stationary equation (38) and write it 

oR£[i:“p(-MF«(/expH (4i) 

Making a somewhat drastic assumption we shall replace c by the 
velocity of escape from the central regions on the grounds that the R.H.S. is 
significant only for high energy stars in the central regions. The diffusion coefficient 
K is independent of € though it will depend on time rapidly becoming zero as the 
oscillations of the galaxy die out. We define a new time variable 

t 

T=^{2>Po)~mKdt (42) 

0 

and note that r will tend to some finite value as 00. Looking for solutions of 
equation (38) of the form /=/(€, t)y the operator DjDt reduces to d¡dt and when 
we use r as independent variable we have 

¿Uñ+Ri (43) 
dr ^ de 

This is a form of diffusion equation. We need solutions such that/=o at ee the 
energy of escape and such that there is no flux of stars towards higher energies 
coming through the energy e = — ^0 (which corresponds to the energy of stationary 
stars at the cluster centre). Thus dflde + ßf=o at e= — Noting that equation 
(43) is linear in/with constant coefficients its solution is of the form 

/= £ Ai exp ( - (TiT - Aje) 
i 

where Xf and oi are related by 
— vi— Xi2 — ßXi 

Thus 

^ <+4) 

In order to satisfy the boundary conditions at the escape energy / must take the 
form 

f=YJAi exp —(tít . [exp -A¿+(€-ee)- exp -Àr(€-€e)] 
i 

while the other boundary condition leads to the relationship 

( Xi+ - ß) exp Àî+^o + ee) = ( Ar - ß) exp Ar(<Ao + ee) (45) 

Putting s=\/(ß2l^— vi) and using equation (44) 

(s-ß/z) exps(i/jo +€e) = (-s-ß/z) exp -styo + e6) 
so 

j=th [sito+ee)] (46) 

It is normally the case that ij8(0o+ee)> 1 80 equation (46) will have one real 
and many imaginary solutions for s. The imaginary solutions correspond to larger 
eigenvalues that is to more rapidly decaying eigen modes of the diffusion 
equation, than the one real solution. In so far as different solutions will converge 
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as the diffusion proceeds they will do so to the most persistent mode. We therefore 
consider the situation when only this mode with real s has survived. Assuming 

iß(</fo+ €e) is not close to 1 the approximate solution of equation (46) is 

S=2tk [2^0 + e^]“f (I-2eXp [“^(^0+e«)]) 

so the solution for /tends to 

/= A [exp -ß(i-Q)(e- ee) - exp -ßQ(e- ee)] (47) 

where 0=exp [ - iß(if>o + e«)], 

A=Ai exp [-jS^Tco] 

and I have written for r. 
In practical cases the system is Maxwellian over quite a range of energies and 

ßi^o+ee) is of order 6 to 10. £) is therefore small. It will be noted that in the limit 
Q = o the form of / reduces to equation (39). For small Q the differences are 
negligible so we shall use Michie’s solution (39), modified by him to include the 
anisotropic velocities equation (40), in all cases. 

Michie & Bodenheimer (iz) have already computed the detailed density 
distributions corresponding to such models. King (z) using the isotropic special 
case of these models has computed all the quantities required and has given a 
thorough discussion of the observations. Further support comes from a detailed 
discussion of Baum’s Observations of M 87. 

7. Rotating elliptical systems. To allow for conservation of angular momentum 
we must maximize log IF as we did in equation (19) but subject to the extra 
constraint that 

J /r x c¿3c=H 

Introducing a vector Lagrange multiplier we obtain 

S(logPF) = o=-J^ jlog-^.+ a + /S^-^ + Y . (rxc)| d6r 

Hence 
, exp {—/?[e—(flxr) . c]} 

J ^ i + exp {—ß[e—fi—(Slxt) . c]} 
(48) 

where Sl= — y/ß. 
If we again use the non-degeneracy condition we obtain the uniformly rotating 

Maxwellian 
/= A exp {—/?[«—(ßxr) . c]} (49) 

Modification of this law is necessary to take account of the spatial limitation of the 
relaxation. However we can no longer account for this by a depopulation factor 

exp (So) 

because the total angular momentum per unit mass of a star is no longer an integral 
of the motion. To replace h in this formula by the angular momentum about the 
galactic axis is insufficient to ensure that stars reach the relaxing region, and leads 
to pancake shaped velocity dispersion ellipsoids with the galactic centre in the plane 
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of the pancake. To put in the restriction that the stars pass through the relaxing 
region we must invoke a third integral. In general these integrals are not in closed 
form but to resort to a computer at this early stage before we even know what 
potential interests us seems unpromising. We note that our depopulation factor 
must be important only for stars of relatively high energy. In the region covered 
by such orbits the potential may probably be approximated by one of Eddington’s 

type (13H16) viz. 

A- (51) 

where A and ¡1 are spheroidal coordinates and £ and yj are arbitrary functions. 
[To avoid singularities at the foci £ and tj should be taken as the same functional 
form. A and /x have ranges with but one value in common.] For large r where our 
depopulation factor will be important this reduces to the simpler form 

m t=F(r) (52) 

where F and g are arbitrary and g without loss of generality may be taken to be 
zero on the galactic axis. Eddington’s potentials are separable and yield exact 
quadratic third integrals. Indeed in the potentials (52) the third integral is (16) 

(S3) 

Although real systems will not show this exact separation, nevertheless this 
integral is simple enough to be used and is presumably a good approximation to 
the complicated adelphic (17) or third integrals that appear to exist for most orbits 
in smooth galaxy-like potentials (17-20). We therefore take our depopulation factor 
to be 

exp 
1-4 

which leads to distribution functions of the form 

/=^4 exp j —ßje —(ftxr) . c 
I *2 g(6) 

1- 

(54) 

(55) 2 i?i2 i?i2. 

Orienting the polar axis along ñ and writing c in spherical polar coordinates 
c = (¿V, cd, c<f,) and R for distance from the axis, this becomes 

ÜR V 

i + r2jRi2J 

+ 
Q2i?2 

•A 
g(9) 

2(1 +r2/i?i2) r i?i2J 

which shows a velocity law of approximately 

CIR 
C<s i + r2jRi2 ^ 

Note that this velocity decreases as one rises from the galactic plane. It should be 
noted however that our assumptions are not suitable for a disk-like galaxy for which 
there are certainly stars moving in circular orbit which never pass through anj 
relaxation region. The above / suitably modified for escape by subtracting í 
constant might well represent a halo population but the disk would have to b< 
added. On the galactic axis R—o, g(0) — o and the distribution function reduces t 
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the form considered for non-rotating systems. The density distribution up the 
galactic axis will again follow the observed law at large distances from the centre. 
More generally in the limit of large r the density distribution unmodified for 
escape is 

pccr^i/i+^+lQ2#!2 sin2 öj ' (57) 

It is interesting to compare this with the functional forms obtained with no velocity 
anisotropy viz. 

p= + sin2 6). (58) 

The flattening of the equidensity contours of this formula is very pronounced 
in the outer parts and increases rapidly with r. Formula (57) gives a much more 
nearly constant eccentricity to these contours in agreement with the observation 
that the isophotes of E0-E5 elliptical galaxies have an ellipticity almost independent 
of projected radius (21). 

To explore these matters further it is necessary to compute the self-gravitating 
models corresponding to this distribution function, a very considerable project 
in its own right and outside the scope of the present discussion. 

Disk systems. In systems of high angular momentum the outer parts are held 
far from the central regions and have no chance to share in any overall equilibrium. 
The shearing motions keep the system far from equilibrium and there is evidence 
that the invariant function M(h) which gives the total mass with angular momentum 
per unit mass greater than h is similar to that of the uniformly rotating uniform 
sphere or spheroid. Statistical mechanics even when conservation of M{h) is 
supplied as a constraint gives no difference between the velocity dispersion in the 
direction of the galactic centre and in the direction perpendicular to the galactic 
plane whereas this difference is a major feature of observed dispersions. If 
significant relaxation has occurred it must have been driven by anisotropic forces 
possibly connected with spiral arm formation. 

8. Comparison with observations. For distribution functions that are approxi- 
mately Maxwellian the inner parts of the light distribution are adequately fitted 
by scaling the model. King has shown convincingly that only one further parameter 
—the tidal cut-off—gives a good fit to the outer parts. No further easily available 

observational parameters exist to test the anisotopy of the velocity distributions 
in spherical galaxies. However when we consider rotating galaxies the variatior 
of the eccentricity with radius provides such a parameter. Dickens & Woolley (22 
found their rotating truncated Maxwellian was too flat in the outer parts to fit th< 
observations of co Centauri. Anisotropy will lead to the much more nearly constan 
eccentricities reported for elliptical galaxies (21). It will therefore be important t< 
compute rotating models and compare them with observations. An edge-o: 
Elliptical with accurately determined light distribution and detailed knowledge c 
rotation and velocity dispersion over the photographic image is within reach wit 
an image tube and could do much when combined with theory to give an accural 
mass and mass to light ratio. These in turn would help to determine the dominai 
stellar type of which these galaxies are made. 

It is not yet really clear from observations that anisotropy is important at a1 

It could be that projection factors have led to galaxies with Roche model shap 
(23) appearing far rounder than they actually are in their outer parts. 
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9. Conclusions doubts and speculations. I hope this paper has exploded the 
paradox of stellar dynamics that a system with a long relaxation time can never- 
theless look like a Maxwellian. It provides a basis for using Maxwell’s distribution 
with temperature proportional to mass and its modifications to galaxies. The work 
of Michie and King is thus vindicated. It is pointed out that measurement of the 
isophotal eccentricity as a function of distance from the centre provides information 
on the anisotropy of the stellar orbits in the outer parts. 

Applied to clusters of galaxies such as Coma these ideas remove Zwicky’s para- 
doxical age of io16-io18 years (24). 

However this work suffers from the following defects 
(i) The size of the relaxation region was determined crudely, equation (31). 

It is important to determine this observationally as discussed in Section 8. 
(ii) The general theory of the new statistics predicts a superposition of 

Maxwellians; it is not clear how far our use of just one is justified. 
(iii) A detailed theory of the relaxation process including anisotropy should 

predict a relation between and R\. 
(iv) The theory of rotating systems should be worked out properly including 

integrations for the density. 
(v) There is a fundamental weakness in the whole theory as presented and in 

stellar dynamics generally which may cause violent and exciting phenomena. 
This has been ignored in our tacit assumption of the existence of an equilibrium 
state. I enlarge on this below. 

(vi) We have ignored knowledge of the other conserved quantities discussed 
in Appendix II. 

Consider two stellar systems nearly but not quite identical and suppose that 
each is approximately Maxwellian at its centre so that we may talk of its tempera- 
ture. Owing to the Virial theorem they will, like stars, grow hotter if energy is 
lost and cooler if energy is gained. We imagine some form of energy transfer 
between the two similar to thermal conduction in the sense that energy flows from 
the hotter cluster to the cooler one. Far from approaching equilibrium the hotter 
cluster gets hotter still while the cooler gains energy and cools down. There is no 
tendency here to energy sharing—quite the reverse. This basic tendency towards 
disequilibrium is further illustrated by Antonov’s discovery that it can all be done 
on one cluster the centre becoming hotter and denser while the outside expands. 
His discussion shows that even if the system is enclosed in a large perfectly elastic 
sphere off which stars bounce with impunity there is no equilibrium for N stars 
of mass M unless the binding energy is small enough (i.e. close enough to zero). 
His result may be put in a different way. Let the binding energy be — E, and the 
volume of the sphere V. If E is unchanged but V is increased we reach a stage at 
which there is no relaxed equilibrium, the entropy is not even a local maximum at 
Maxwell’s distribution the system can gain entropy by condensing its central 
parts and growing hotter while giving out the excess energy to the outer parts. 

In many ways this behaviour is like a phase transition—it leads us to expect very 
concentrated systems immersed in or in contact with very diffuse ones, it also 
greatly stimulates the imagination particularly with a view to explaining violent 
events in old elliptical galaxies. However it should be noticed that the basic 
mechanism involved is an exchange of ‘ heat energy ’. It is not clear that there is a 
relaxation mechanism in such systems that can lead to this exchange. I shall report 
elsewhere my investigations of Jeans’ gravitational instability in such a cluster 
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when encounters are completely neglected but I have shown that Antonov’s 
critical volume is not associated with an encounterless spherical instability of that 
type although it coincides with the critical instability radius for an isothermal gas 
sphere surrounded by a box. I consider the basic urge for disequilibrium in self- 
gravitating systems to sound the death knell of Boltzmann’s hypothesis of the 
universe as an improbable deviation from equilibrium; it is probable that no 
equilibrium can exist even in theory ! 

It is the phenomena mentioned in the last paragraph which provide the possi- 
bility of new and startling results in stellar dynamics. Much more work should be 
done on these topics even if they are intrinsically difficult to investigate; in 
particular high order correlations corresponding to hierarchies of dynamical 
clusterings may be the typical ‘ equilibrium ’ of a stellar system rather than the 
smooth systems assumed by all theorists to date. Heat exchange could then occur 
and excessive densities could be attained stars would have glancing collisions 
stripping off parts of their atmospheres which would expand to the size of the 
whole condensed region due to the energy of collision. Following on these lines 
one is led to a system embedded in hot gas clouds with the cores of stars hurtling 
through. The low average density of gas would make 1-particle phenomena 
dominate, so electron scattering would be important and the spectrum should 
shown wide emission lines. All these phenomena are so reminiscent of the nuclei 
of Seyfert galaxies that I am tempted to say that it happens but I think it is wrong 
to accept such speculations until it has been demonstrated that the typical equi- 
librium of a stellar system is hierarchical rather than smooth and the theory of 
hierarchical systems has been developed. 

Acknowledgment. I would like to thank Professor Oort for the hospitality of 
the Leiden Observatory where this work began. I would also like to thank Dr 
Ostriker for stimulating discussions of fluctuations in stellar dynamics. 

Royal Greenwich Observatory. 
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APPENDIX I 

General case of the new statistics. Let there be a total number Nj of elements of 
phase of density r¡j. Let their total mass Njr¡ja) = Mj. Furthermore let the number 
of these elements in the ith macrocell be nij. Then 

ZniJ = Nj all J. 
i 

Consider the configuration of n^j phase-elements of class J in the /th macrocell 
each occupying one of the v microcells with no cohabitation even among elements 
of different classes. The number of ways of assigning a cell to the first element is v 
to the second v—i etc. Thus the number of ways of assigning micro-cells to all 

mj elements in the ixh macro-cell is 
j 

v\ 

(v-ZM! 
j 

The total number of microstates W corresponding to the single macrostate 
defined by the numbers ntj is the product of the above numbers with the total 
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number of ways of splitting our Nj elements into the groups So, 

W=Y\ x rr 

i J 
Hence 

log W= Y Nj(log iVj-1) - X Z nij-i) + 
J J i 

+Z Mlogv” i)‘-(i/~Z^)Pog(i;“Z ^)*“ ï]} 
i J J 

We now convert to phase-space densities by writing 

jÀïiCi)^
nJJW--nÆl 

VO) 

<Pt 

VO) 

The coarse grained distribution function itself is 

'ZniJSi 

/(TiCi) = J- = X/Xri. Cj). 
^ J 

In this notation 

log (r=constant-J ^/.[log (£)-,] + 

hK-ïê)]’ 

and our constraints are 

jfjdGr^Mj all J. 

Using Lagrange multipliers ocjlœrjj and ßlür) where ^ = ^ Mj we obtain 
/ j 

Mog W'- -Ç J ¿SAjlog (f )-,og 

Letting this equal to zero for all S/j which may now be considered independent 
we obtain 

log 

w-a 

--«-/Si' 

or 

where 

K Vk 

dividing by t]j and summing over J 

fj = VÁ1-Y) exP -ßÄe-V-j) 

and w=-^ 
V Pj 

E = (I-DEexP -ßj(e-pj) 
J 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

7M
N

R
A

S.
13

6.
 .

lO
lL

 

120 2). Lynden-Bell Vol. 136 

I-Z=[I+ZexP -ßj(e~H'j)]"1 

J 

f exp 

^'7 i +1 exp -ßj(e-ixj) 
J 

so our coarse grained distribution function / is 

exP -ßÄe-Pj) 

J i + Z exP “ßAe-^j) 
J 

Note the interesting differences from Fermi-Dirac statistics. 
By the argument of paragraph 5 we expect to be in the extreme non-degenerate 
limit for all J. Then each factor 

exp -ßj(€-ixj) 

has to be small and we obtain the non-degenerate approximation 

// = Z^exP -ßj* 
j 

where Aj=r¡j exp +j8j/v is determined from the condition d*T = Mj 

ßj=ß^=ß 
Vjm 

IvjMj 
J 

and ß is in turn determined from the total energy condition. 
Our result shows the correct distribution function to be a superposition of 

Maxwellian components whose velocity dispersions are inversely proportional 
to the phase space density of the component at star formation. It should be 
remarked that if the luminosity function at birth is biased towards heavy stars 
whenever birth conditions have large phase space densities then such stars will 
have that same bias towards the central regions of the equilibrium object. This 
effect will be much smaller than the segregation by mass when equipartition of 
energy occurs and should not be confused with the latter. 

APPENDIX II 

Kelvin's Theorem generalized to phase space. If we were to apply the strictest 
dictates of statistical mechanics we should keep all conserved isolating integrals to 
definite values. We have not done this because there are many infinities of them. 
In particular we have the generalization of Kelvin’s Theorem given below, 

Consider any closed phase space path Ze occupied by phase elements. Its 
projection defines a path 1% in position space. We measure path length s around k 
and associated with each point P{s) on h will be a point Q(s) on fa which project« 
into P. Let the coordinates of £)($) be (r(s), c(s)). We prove that §ic(s). ds ií 
constant where I3 is taken to move with the phase elements which compose it 
The proof follows one of the normal proofs of Kelvin’s theorem. Let D/Dt b< 
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convective derivative following the phase space flow then 

raí 

D_ 

Dt 

D(ds) 

Dt 

0+ 

The equivalent theorem for collisionless plasmas in magnetic fields may be shown 
to be 

fc . ds+-i- f B dS= 
Ji me J s 

constant 

where S is any surface spanning /, q is the charge of the particle species concerned 
and m its mass and c is the velocity of light. This result is already known in plasma 
physics. 
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