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Collisionless Relaxation in Systems with Coulomb Interactions

B. B. Kadomtsev~ and O. P. Pogutse*
International Centre for Theoretical Phvsics, Miramate, 'Triest, Ital

(Received 7 July 1970)

We give an analytical consideration of the relaxation of the distribution function for
systems of particles with Coulomb interaction. It takes into account two-particle corre-
1ations which correspond to formation of some macropartlcles~ l.e ~ coherently moving

regions. It is argued that such relaxation leads to the Lynden-BeQ distribution with an

additional high-energy tail.

Recently Lynden-Bell' has ax gued that relaxa-
tion of collisionless systems of charged parti-
cles or stellar systems shouM be some kind of
chRotlc interchange of elements in phase spRce.
The e1ements in phase space cannot overlap and
therefore follow an exclusion px inciple. This
leads to statistics of the Fermi-Dirac type. For
the special case where the initial distribution
function f is equal to unity over certain regions
of phase space Rnd is zero outside these regions,
the equilibrium distribution function is exactly
equal to the Permi-Dix ac function.

To check the Lynden-Bell theox'y, numex ical
calculations were carried out' with a one-dimen-
sional model. These calculations have shown
that for simple initial conditions the quasiequilib-
rium 8tRte which ls x'eRched Rfter seve1 al plasma
periods is close to the Fermi di.stribution with
an additional high-enexgy tail. Por more com-
pllcRted lnltlal coxldltloI18 the final d18trlbutlon
deviates from the Fermi distribution.

We shall discuss this problem analytically from
the point of view suggested recently by Dupree's'
and the authors' ~ idea on the formation of ~acro-
particles in a plasma. The relationship between
this approach and quasilinear theory mill also be
discussed.

Fox' simplicity we consider an electron plasma
which is homogeneous on the average except for
some small initial perturbations. The evolution
of these perturbations is described by the Vlasov
equation

-+v-VE =—E-=
9f SZ 8V

Bf ~ e ~ Bfo—+v Vf =—E'
Bt Vl 8V (4)

In Pourier representation, neglecting slow varia-
tion of fo with time, we can write (4) in the form

Bf(m-k v)f =—yk. (5)Pl BV

wllel e p ls tile potelltlal. We find fl'olll (5)

e I - Bfo

whel'e f2 ls all arbitrary solutloll of Eq. (5) witll
zero on the right-band side. In fact, f, corre-
sponds to some initial perturbati. on of the elec-
tron distribution function.

The substitution of (6) into (2) gives us

ey =-(4we/h') Jf, d'v,

! where e is the weil-known dielectric constant:

with self-consistent electric fieM E =-V'y,

divE =-4we( JFd'v-n, ),

whex e n = const is the density of heavy ions and
I' is the distribution function.

It is natural to suppose that after several plas-
ma periods the evolution of electrons may be con-
sidered to be stochastic. We introduce the aver-
age value f, = {P) so that E =f, +f, where (f ) =0.
We find by averaging Eq. (I)

Bf, e Bf
~t(fo)~Bt teal 8V

where St(f,) denotes the collision term
Assuming that perturbation f is not very large,

we use for f an equation of the quasilinear type:

4we' f' k Bf, , 4we' " P . Bfo
iw5(&u k-v) k-

Bv

ikey from (7) in Eq. (3). It is convenient to separate the wave [h
&m /v, h, where v, h is some average "thermal" velocity and no=(4 nwe/ )0' r'n] and nonwave (k&~ / o, v)1
regions. In the wave region, neglecting the small term f„we get the usual quasilinear approxima-
tion." In the nonwave region the electric-field fluctuations are produced by f, only. Replacing approx-
imately the real part of e by unity we obtain the nonwave collision term in a form similar to the Bales-
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cu- Lenard type:

$t„„=&—,k.= (f, 'f, "*)p 5((u-k. v)k. -(f,"f,*)t; 5((u-k. v')k -0, d3v'd~v "d'kd(a), (9)
4

where f, '=f,(v'), f,"=f,(v"), and (f, 'f, "*)& is the Fourier component of the two-particle correlation
function. We define the integral over k and ~ so that

J(f f, '*)1; exp(-i~T+ik $)d'kdar=(f2(r+$, v, t+r)f (r, v', t)). (10)

(f,f, '*)g =AC(ur-k. v) 5(v-v'),

where A =—const at k&1/bx and is equal to zero at k&1/hx. To find A we should solve the equation for
the two-particle correlation function. But even without such a solution we can estimate the correlation
function in the following way.

As we see from (10), the integral from (ll) over e is proportional to the one-time correlation func-
tion

(f,(r+) v t)f2(r v t)) =(2m) A5(v v )5(g) (12)

Let us consider a special case when in the initial state the function I' was equal to unity over cer-
tain regions of the phase space and was zero outside these regions. This condition is conserved in
time so that

(F(v, r)p (v, r) ) = (1xF (v) )=f„ i.e., (f,(r, v, t)f, (r, v, t)) = ((E-fo)(E-fo))=f0-f, .
If the points r, v and r, v do not coincide, the correlation function will decrease. We can approximate
it by its value f,-f,' inside some regions (Ar)', (6v)' and zero outside so that

We see that (f,f, '*)1; corresponds to a two-time correlation function. Since the function f, is a solu-
tion of the equation (m-k v)f, =0, the correlation function (f,f, ) should be proportional to 6(~-k v).
It is natural to believe that correlations of particles with quite different velocities and positions should
quickly decrease so that the correlation function is not zero only when particles are close together,
say in the interval bu «u, h, bx«u, „/~, . This means that we can write

(2n )'A = (Lr)'(Lu)'f, (l-f,) =—q'f, (l-f,), (13)

(14)

where we have used the notation q' for the region of correlation. The quantity qe plays the role of the
effective charge of the macroparticles, i.e., correlated regions.

Substituting (11) and (13) into (9) we obtain the collision term for the nonwave thermal region:

=$ „= 1 k.—5 k f '(1-f ') —k-, f(1—f) d3 'dk,

where f, '=f, (v'). The integration over k should
be carried out from k —=~,/u, t, to k = I/bx and

gives, as usual, in(ru, bx/v, h).
We see that (14) has as the stationary solution

a Fermi distribution

1
1+exp(mu'/2T + p/T) ' (15)

as was predicted by Lynden-Bell.
But for this final state to be reached the quan-

tity q' should not be very small. In fact q' is a
function of time, q'= q'(t), which decreases with
time. For example, in the case of beam-plasma
interaction considered in Ref. 4, the quantity q'
decreases like t '". In the three-dimensional
case it should decrease even more rapidly. As
we see from (14), the possibility of reaching the

final state is determined by fq'dt. If the initial
deviation from the final state is large enough,
which corresponds to the "simple cases" of Ref.
2, then the final. state will be reached. For
small perturbations it probably cannot be reached.
These arguments are in qualitative agreement
with the data on the numerical calculations. '

Now we can discuss the wave region. The argu-
ments of Lynden-Bell are not applicable to this
region because, in addition to the particles, the
collective modes (Langmuir waves) are present.
These waves lead, as is well known, to the for-
mation of a high-energy tail. The particles of
this tail interact with the thermal part rather
weakly so that they represent their own subsys-
tem.
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We have considered here the three-dimensional
case. Unfortunately, this consideration cannot
be applied to the one-dimensional case since the
collision term of Balescu-Lenard type goes to
zero and the triple interactions have to be taken
into account. Therefore we can have only qualita-
tive correspondence between our consideration
and the numerical results of the paper. '

Our arguments can equally we11 be applied to
stellar systems with some modification of "par-
ticle" trajectories. They show that the approach
to equilibrium in such systems should be much
faster than predicted by binary interactions.
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We have accurately measured the Brillouin spectrum of pure xenon along the critical
isochore using two high-resolution spherical Fabry-Perot interferometers in tandem.
The spectrum, which contained an extra diffusive mode, is analyzed in terms of a hy-
drodynamic model employing a relaxing bulk viscosity. We obtain the temperature de-
pendence of the relaxation time, the bulk viscosity, the specific heat ratio C& /C„at fi-
nite k and cu, the correlation range, and the k = 0, cu = 0 values for the compressibility
and C& -C„.

This Letter reports accurate measurements of
the Brillouin portion of the spectrum of light
scattered by a pure fluid, xenon, near its criti-
cal point. The measurements were made along
the critical isochore at temperatures ranging
from 20 C above the critical temperature T, to
within 0.10 C of T, . The spectral measurements
were made using two high-resolution spherical
Fabry-Perot interferometers in tandem. This
technique enabled us to resolve clearly the weak
Brillouin portion of the spectrum despite the
presence of the extremeIy intense Rayleigh com-
ponent. In addition to the normal Rayleigh and
Brillouin components the spectrum contained an
additional diffusive mode centered at the fre-
quency of the incident light. The intensity of
this extra mode increased as the critical point
was approached, and for the lowest tempera-
ture studied, T, +0.10'C, its integrated inten-
sity was at least twice the integrated intensity
of one Brillouin component. The general ap-
pearance of the spectrum as well as its depen-
dence upon temperature is shown in Fig. 1.

The experimental setup consisted of a single-
mode, frequency-stabilized, helium-neon laser;
a high-pressure cell having two optical-quality
glass windows; an axiconical collecting lens; a
spectrometer consisting of two high-resolution
spherical Fabry-Perot interferometers which
were pressure swept in tandem; a photomulti. -
plier tube; and a strip-chart recorder. The cell
was carefully cleaned and filled to within 0.1%
of the critical density with xenon containing less
than 18 ppm of impurities. The cell tempera-
ture was controlled to within +0.001'C, and was
measured using a platinum resistance thermom-
eter. The meniscus was observed to disappear
at a temperature of (16.597 + 0.01)'C, which was
taken as the critical temperature, in good agree-
ment with the accepted value of 16.590 C. Light
scattered at an angle of 170, corresponding to
a scattering wave vector k= 2.25&&10' cm
was collected by an axiconical lens and spectral-
ly analyzed using the tandem interferometer.
The extremely high contrast of the interferome-
ter, and its narrow instrumental width of 20
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