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Mirror Instability:
1. Physical Mechanism of Linear Instability

DAvID J. SOUTHWOOD1 AND MARGARET G. KlVELSON2

Institute of Geophysics and Planetary Physics, University of California,
Los Angeles, California

The mirror instability is prevalent in planetary and cometary magnetosheaths and other high beta
environments. We review the physics of the linear instability. Although the instability was originally
derived from magnetohydrodynamic fluid theory, later work showed that there were significant
differences between the fluid theory and a more rigorous kinetic approach. Here we point out that the
instability mechanism hinges on the special behavior of particles with small velocity along the field.
We call such particles resonant particles by analogy with other uses of the term, but there are significant
differences between the behavior of the resonant particles in this instability and in other instabilities
driven by resonant particles. We comment on the implications of these results for our understanding
of the observations of mirror instability-generated signals in space.

INTRODUCTION

The mirror instability has long been of interest in space physics.
It was identified theoretically [Rudakov and Sagdeev, 1961,
Thompson, 1964] as one of the two magnetohydrodynamic insta-
bilities that occur in the presence of extreme velocity space (pitch
angle) anisotropy in a uniform plasma, the other instability being
the fire hose. In 1967, Tajiri [1967] derived a kinetic description
which, as we discuss further below, shows that the actual instabil-
ity is not really correctly described as a fluid instability. In 1969,
Hasegawa {1969] put forward a further development of the theory
for a medium in which the plasma is nonuniform. He proposed
that large storm time magnetic field and particle flux oscillations
seen on the ATS1 spacecraft at geosynchronous orbit within the
Earth’s magnetosphere were due to the inhomogeneous form of
the instability which he called the drift-mirror instability. Sub-
sequent work by Southwood [1976} and Chen and Hasegawa
[1988] amongst others has led to a revision of Hasegawa’s origi-
nal suggestion. However, since that time the mirror mode has
garnered increasing interest following its identification in space-
craft data from the terrestrial magnetosheath {Kaufmann et al.,
1970, 1971; Tsurutani et al., 1982; Tsurutani et al., 1984] and the
vicinity of comets [Russell et al., 1987] and other planetary mag-
netosheaths [Balogh et al., 1992]. Further numerical work on the
instability has been done by Price et al. [1986] and McKean et al.
[1992]. Recently, the mode appears to have been identified in the
solar wind in the events resulting from the large solar events of
March 1991 [Tsurutani et al., 1992].

The instability occurs when B (the ratio of plasma to magnetic
pressure) is large (the ratio of the perpendicular component of
plasma pressure to the magnetic pressure L must necessarily be
greater than unity). The anistropy required for instability is in-
versely dependent on B. In planetary magnetosheaths the source
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of anisotropy is likely to be the planetary bow shock and in
cometary environments the ion pickup process is a natural source
of anisotropy. Both types of environment tend to have relatively
large values of B.

Recently, Gary [1992] has raised an interesting question regard-
ing the occurrence of the mirror instability. There is a second
instability that occurs at frequencies below the ion gyrofrequency
in the presence of ion pitch angle anisotropy, the ion cyclotron
instability. Gary [1992] presents the results of a numerical evalu-
ation of the full kinetic dispersion relation. Both ion cyclotron
and mirror instability are covered by the calculations and Gary
points out that the former mode generally has the higher linear
growth rate of the two, suggesting that it could suppress the
anisotropy needed to produce the mirror instability. Price er al.
[1986] have shown that heavy ions can reduce the linear growth of
the resonant ion cyclotron instability, while leaving the mirror
instability unaffected. Although we shall not address quantita-
tively the question of relative growth rates of the two instabilities,
we note that the structure of the mirror instability itself may
reduce the growth rate of the ion cyclotron instability.

The developmént 6f The 1on cyclotron wave fsustally described
by the standard quasi-linear theory in which the unstable distribu-
tion equilibrates through a spatially smooth process of velocity
space diffusion. Growth rate calculations assume that the waves
propagate through a nearly uniform plasma and that the resonant
ions have approximately the same parallel velocity everywhere.
However, the mirror instability in its linear development phase
depends crucially on the spatially structured nature of the field
disturbance even though the instability occurs in the limit of Jong
parallel wavelength. Any nonlinear saturation mechanism of the
mirror instability is likely to leave the plasma spatially structured,
as is also strongly suggested by the many observations. In prac-
tice, in almost any experimental detection of a plasma instability,
the wave fields and the plasma population will have evolved to
some quasi-steady condition that represents a nonlinear saturated
state of the instability. We reserve a detailed discussion of the
nonlinear development of the instability for another paper. Here
we merely point out that in the spatially structured magnetic field
associated with the mirror instability in both its linear and non-
linear phase, different parts of the ion distribution will resonate
with an ion cyclotron wave as the wave propagates along the
inhomogeneous field. This effect is likely to inhibit the growth of
the ion cyclotron mode and may provide yet another answer to
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Gary’s question about why the mirror instability is favored over
the ion cyclotron instability in certain circumstances, especially in
planetary magnetosheaths.

Gary also remarks that the two instabilities have a different
nature. The ion cyclotron instability is a resonant instability in
which the energy for the instability is fed from a subset of the
particle population that are in gyroresonance with the unstable
wave. In contrast, the mirror instability is referred to as a "fluid"
instability, alluding to the fact that the phase space (pitch angle)
anisotropy of the bulk of the hot plasma distribution serves as the
source of energy. It is at best a partial truth to regard the mirror
instability as a fluid instability, as we show in this paper. The
instability grows because of a subtle coupling between a group of
particles with small velocity parallel to the field and the rest of the
population. The mirror instability has zero parallel phase velocity
in the plasma frame of reference. It follows, by analogy with
other uses of the term that we can call particles with near zero
parallel velocity resonant. However, although we may show here
that the mirror instability is resonant in the sense that its physics
depends critically on resonant particle behavior, there are signifi-
cant differences between the behavior of the resonant particles in
this instability and in other resonant instabilities (such as, for
example, the ion cyclotron mode discussed by Gary [1992]).

TRADITIONAL PICTURE OF THE MIRROR INSTABILITY

Thompson [1964] and Hasegawa [1969] give (slightly differ-
ent) descriptions of the mirror instability mechanism which corre-
spond to the traditional view of the instability as a fluid
magnetohydrodynamic instability. The instability results from
the fact that at very low frequencies the perpendicular pressure
dpy responds to a compressional change in the magnetic field
strength 0B in antiphase, namely,

7,\88
= ] —— |—
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(for a bi-Maxwellian distribution with parallel temperature T} and
perpendicular temperature 71) [Hasegawa, 1969]. The formula
shows that whenever the perpendicular pressure exceeds the par-
allel, the pressure decreases as the field strength and the field
pressure increase.

The perturbed pressure in (1) is proportional to the unperturbed
pressure and, in particular, if the unperturbed plasma pressure is
large enough, the sense of the total pressure produced by the field
change may be opposite to the change in magnetic pressure pro-
duced by the field change. For a bi-Maxwellian, the condition for
this is

opy + B_S}E <0
Ho 2)

On substituting from (1) one finds that when the following condi-

tion holds
1+B 1—~T—l <0
Tii (3)

the force exerted by the total pressure (plasma + magnetic) in the
direction transverse to the field decreases/increases with increas-
ing/decreasing 8B. Inequality (3) is the instability condition (in
the short perpendicular, large parallel wavelength limit).

Let us examine how the instability is decribed in a fluid approxi-
mation. The pressure force associated with the total (magnetic
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plus plasma) pressure accelerates the plasma and would give rise
to a plasma displacement, & . Assuming that the field strength
perturbation 8B varies in time and space as exp (Yt +i k), we
can write the equation of motion perpendicular to the field in the
form

PY E=—iki (5pi + B 8B/1o) 4)

The frozen in field condition relates 88 and £

-8B, ik E) B =
SB—B ikx(ExXB)=—i(k &) B=—i kiB )

where the wave vector k has been taken to have components of
magnitude ky, k parallel and perpendicular to the field. Combin-

ing (4) and (5) with (1) and eliminating & yields

8B __ 2 Ti\8B _ 2838
pYZF“ kﬂp‘[l TujB Q ™ (6)

where p is the mass density. Eliminating 88 and rearranging

yields
=— 242 1 —*‘L
Y kKA [ +R1 T

o

5

where A = ( Bz/pﬂp )I/2 is the Alfvén velocity. Equation (7) not
only illustrates the fluid instability condition (3) once again, it
also shows that when the fluid instability condition is not met, the

fluid equations predict oscillations (Y2 <0).

DESCRIPTION OF INSTABILITY IN THE FLUID APPROXIMATION

By identifying the terms in equations (6) and (7) with their
physical counterparts, we can give the following physical descrip-
tion of the instability [Thompson, 1964]. The fluid instability
results when the pressure anisotropy is large enough that an in-
crease in magnetic field produces a local decrease in total pressure
which in turn causes the field lines to move closer together. The
latter effect causes the field to continue to increase, hence driving
the instability.

The pressure response described by equation (1) is central to the
instability. The antiphase response of particle pressure to field
increase is achieved despite the perpendicular particle energy
rising in phase with the field as the first magnetic moment invari-
antis conserved. There is a balancing decrease in parallel energy
which ensures that the total energy of the particle does not change.

The exchange of energy between parallel and perpendicular
degrees of freedom in a spatially varying field when the magnetic
moment invariant is conserved is often described by introducing
the notion of the magnetic mirror force. The link to the mirror
force is worth discussing at this point. Thompson refers to its role
and Hasegawa’s {1969] description of the physics of the instabil-
ity relies heavily on it. In the mirror instability, the force can be
thought of as squeezing the plasma out of the high field regions
and into the weak field regions. When the magnetic moment and
energy are conserved, a particle’s motion into a weaker field
leads to conversion of perpendicular (gyration) energy into paral-
lel energy and so to motion along the field. It appears as if a force
is acclerating the particle along the ficld. Viewing the motion
parallel to the field in isolation from the perpendicular (gyro)
motion, the changes in parallel energy can be regarded as provid-
ing a pseudopotential along the field which produces a force




directed away from the regions where the field is high. The corre-
Sponding (pseudo) force is the mirror force, but it is not a force in
the normal sense as it does not change the total particle energy.
indeed we shall see that the pressure response (1) corresponds to
the case where particle energy is strictly conserved. We shall also
see that the instability cannot occcur without some particles’

energy changing.

MIRROR INSTABILITY IN THE KINETIC LIMIT:
RESONANT PARTICLES

The mathematical derivation leading up to equation (7} is not
correct (as Hasegawa [1969] notes). The instability condition is
not wrong, but the implication of equation (7) that the stable
<olution of the dispersion relation corresponds to oscillatory mo-
tion is. Furthermore, any physical description based on the equa-
Mﬁgljﬁ, The instability, which is fundamentally a hot plasma
instability, has to be treated in the kinetic limit rather than assum-
ing the purely fluid response given by the equations leading up to
(.

Tajiri [1967] produced a kinetic treatment of the mirror instabil-
ity as part of a thorough study of low-frequency wave behavior in
a collision-free plasma. As Hasegawa [1969] notes, his result
ditfered from earlier treatments in that it identified a fourth mode
in the low-frequency range in addition to the familiar MHD wave
modes; it is this mode that causes the mirror instability. The mode
is nonoscillatory even when Ti/Ty < (1 + )/ The latter point
contradicts the prediction of fluid theory (discussed in the pre-
vious section). In the kinetic theory, which should provide a more
accurate description of collision-free plasma behavior, the mirror
mode when stable simply represents a damped but otherwise
Tme-stationary perturbation. As we shall show the major differ-
ence introduced by the kinetic approach is that not all of the
plasma particles respond to the field in the same way. The pres-
sure variation given by (1) is valid for particles with pitch angle
sufficiently far from 90° but as particles with small parallel
velocity are not affected by the mirror force to the same degree,
they respond differently. Their energy is not conserved as the
field changes and their perpendicular pressure response is in
phase with the field pressure change. Such particles with very
small parallel velocities can be regarded as resonant with the time
stationary signal.

Before demonstrating the role of resonant particles, let us show
that the kinetic dispersion relation produces a nonoscillatory
mode. The general form in a uniform plasma is given by

A _
—5 =&y
w (&)
where gy is the appropriate element of the plasma dielectric
tensor, y being the direction transverse to both B and k. The dis-
turbance is now assumed to vary as exp (— i® f) where @ is gener-
ally complex. In the low-frequency limit, &y is given by
[Hasegawa, 1975]

20
&y = E(C p;p
i B

_ ;[1_21(&1._ ]3|U)+kf&j(l+2_7%z(_\/2=kn_v7—1;))})
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where Z’ is the derivative of the plasma dispersion function [Fried

and Conte, 1961], vni= (2kT||/m)1/2 is the parallel thermal veloc-
ity, and the summation is taken over all species present (denoted
by subscript j); the plasma distributions have been assumed to be
bi-Maxwellian.

Substituting from (9) into (8) one finds (after some simple
algebra)

2

E o4z [k%—L—lB”_ By
A i 2

2o (1o B ®
+ kf Bl](l +a1y z( 5 vny)J]

where, as before, A is the Alfvén speed. We drop the summations

(10)

over species and assume that I << KA and that lof
<< kif vifr to obtain

172
2, 2B1=Bu 2 T, . o« B
k° + ki 2 + k¢ BL[I—ﬂl(l+lkllvﬂ'(2j ) :|—O
11

where we have used the small argument approximation for Z’
(-Z'@) = 2+i2z).

In the limit, kﬁ <<kf one recovers Tajiri’s [1967] result [see
Hasegawa, 1969]

y EI/Z_ o Ex/z_ 1 A
ﬁlan7m2 —_&kuvw2 R L

(12)

where y=— im. One sees that there is a single root for @, which is
purely imaginary whether the plasma is stable or not.

Now it is clear that equation (12) gives the same instability
condition as the fluid treatment (see equation (7)). However, the
equation no longer is quadratic. Were one to include terms to

order @ in (12) the ordering would require the addition of terms
in (/ky vTu)2 from the expansion of Z’ that normally would be

larger than the term in o’ (or f) which controls the fluid expres-
sion (7). It follows that the physics of the instability cannot be the
familiar fluid picture that is generally used. The physics of the
actual mirror instability must involve nonfluid aspects which we
will examine in the next section.

PHYSICS OF LINEAR KINETIC INSTABILITY

The new terms in the Tajiri treatment of the mirror instability
emerge from the explicit retention of the collision-free velocity
distribution function in the kinetic treatment. In the discussion so
far, the distribution function has been assumed bi-Maxwellian and
has appeared in the calculation through the presence of the plasma
dispersion function, Z. Let us now reexamine what happens in the
instability if one retains more explicitly the plasma velocity distri-
bution function F.

We can regard the distribution as gyrotropic and thus can write
the velocity distribution function as a function of two quantities;
for example, Wy and Wi, the parallel and perpendicular energy are
useful if we wish to express the result in terms of parallel and
perpendicular temperature. At low frequencies the magnetic mo-
ment invariant p is conserved (the basis of the mirror effect) and
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the perpendicular energy at any point is directly linked to the local
magnetic field strength, W, = uB. Introducing the total energy W
we can write the changes in Wi, Wi, Wy, SW, as
SWi'= SW-n8B and oW, =udB (13)
We can calculate the change in distribution associated with
changes in*field strength and energy by using the fact that the
value of F for any particle remains constant as the particle moves
(the Lipuville theorem). The change in distribution function is
then given by [Kivelson and Southwood, 1985}

oF oF
OF == dWi e - Mo (14)
Thus oF oF oF
OF=—8W—-—-udB| =—- ——
oy [am aWn] (15)

and

W udB T
6F{Tu+ 7 (I_Tnﬂf (16)
The latter term on the right-hand side of (16) corresponds to the
mirror term as the factor proportional to the anistropy (7L/Tj— 1)
shows. The change in energy due to a change in field strength is
given in the low-frequency limit by the adiabatic expression
[Northrop, 1963]

dw _ JB

Mo (17)
We derive an expression for OW by integrating (17) for a distur-
bance varying as exp (ik-r +71), to find
__ X
v+ tkivy

u o8 (18)

(where for low frequencies perpendicular velocity averages to 0),
and thus we have the distribution function in the low-frequency

limit
5F = {”BB (1 —1]F+(—Y”,SB jﬁ
yol I y+ ik [T
The last term on the right-hand side is an additional contribution
that arises from the kinetic approach. Note that if yis small as one
expects, at least for marginal stability, then the term is negligible
except for particles with vi = 0. However, for these particles the
term is of the same order and potentially of larger magnitude than
the preceding mirror term. The term shows that the particles with
small vy behave radically differently to the rest of the distribution.
These particles can be identified as resonant with the (zero fre-
quency) wave. Thus it is the presence of resonant particles that
causes the difference in dispersion relation between kinetic and
fluid mirror instability treatments. Correctly treated, the mirror
instability is a resonant instability, albeit with further some un-
usual properties.
Taking the second moment of 8F given in (19) and imposing the
pressure balance condition yields

19)

BOB

AR g
) +2p1(1 1}£+2(Jd\'nyz ﬁﬁ ]THIf

(20)
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where the notation Fy is used for the distribution of paraile,
velocities after the integral over the perpendicular velocities hag
been carried out. Fy has been assumed a symmetric function of
Vi

In the limit of y goes to zero, the integral may be carried oyt
using the approximation

= 1 o(x)

Iim

y=>0 ’Y’Z +x

where &(x) is the Dirac delta function. One finds
B

BB, () _IL_ 8B
o B
1)

Substituting a Maxwellian parallel velocity distribution into (21)

SB

(Jd\|| 7 & (Vi) Fn)

reproduces the kﬁ << kf limit of the Tujiri [1965] result given in
equation (11).
T
R (] [,]

Ckivo

B(VTh) |m (22)
Now the third term in equation (21) contains the resonant contr-
bution; indeed, it is possible to rewrite the expression for ane

distribution function

- J v mdw Fov = =R F0) =4 7 Fres

and so

T
1+[3L(1—T”)

ki Mo 2 (TL%/Th) Fres (23)
It is immediately apparent that the resonant particles play a role
somewhat different from that met in other resonant instabilities
like the ion cyclotron [e.g., Gary, 1992]. Whereas the linear
growth rate is usually proportional to the number of resonant
particles, here it is inversely proportional to the number present or
to the resenant pressure. The reason will become apparent in our
physical description of the instability.

PHYSICAL MECHANISM OF THE LINEAR INSTABILITY

Equation (22) is a useful vehicle to describe what happens in th
instability. The equation itself represents total pressure balance.
The first term on the left hand side is the magnetic pressure
perturbation, the second is the (mirrorlike) response of the bulk of
the plasma and the third term represents the resonant response of
the particles with close to zero parallel velocity (90° pitch angle).
Figure 1 is designed to illustrate the disparate behavior of the bulk
of the plasma population and the resonant particles which arise
solely from the difference in parailel motion.

The resonant pressure response is proportional to the growth
rate. Equations (18) and (19) show that the dependence on growth
rate is due to the particle undergoing betatron acceleration accord-
ing to equation (17). Unlike what occurs for the bulk of the plasma
where energy is simply exchanged between perpendicular and
parallel degrees of freedom, the energy of the resonant particles
does change as the instability develops. Being clustered about

zero parallel velocity, the resonant particles do not move a signifi-
cant distance along the field in the instability growth time (1/7)-
Thus the change in field that a resonant particle detects is simply
due to the local temporal increase or decrease in field. In contrast
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Fig. 1. The sketch illustrates the difference between resonant and non-
resonant particle behavior in the perturbed magnetic field of the mirror
instability. The resonant particles have close to zero parallel velocity and are
shown by simple solid circles. A resonant particle in the weak field region
detects a continually decreasing field. A resonant particle in the region of
increasing field detects a continually increasing field. The former set of
resonant particles cool; the latter set heat as the instability develops. The bulk
of the particle population are nonresonant and, as the arrows attached to the
open ovals indicate, they travel through the mirror field structure as the
instability develops. They experience both increasing and decreasing field as
they move through the mirror structure, their energy does not change signifi-
cantly but it does shift back and forth between parallel and perpendicular
(gyrational) degrees of freedom. The resonant particles move little along the
field and change energy as the field magnitude changes locally.

for the bulk of the plasma, the predominant change in field expe-
rienced by particles is through the spatial variation of the field
perturbation and is experienced due to the particle motion through
the field.

The linear instability thus progresses in the following manner.
An increase/decrease in field leads to a pressure decrease/increase
in the bulk of the plasma that causes a net local pressure defi-
cit/surplus. The pressure is balanced by the resonant particle
pressure in which the resonant particles respond being acceler-
ated/decelerated by the field in the increasing/decreasing field
regions thus responding in antiphase to the bulk plasma. Al-
though some motion along the field is implicit in the field
changes, this response plays no dynamic role.

Note that the issue of any pressure imbalance causing the field
lines to move together or apart does not enter the simple descrip-
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tion. The term describing field line acceleration is dropped in the
limit appropriate to the kinetic instability. (The term is of order
|(D|2/ki2 A% and was dropped between equation (10) and (11).)

In Figure 2, we show a sketch illustrating the effect of the
instability during its linear phase on a contour of the plasma
distribution function in the (vy, vi) plane. A bi-Maxwellian has
elliptical contours in this plane. The unperturbed contour is elon-
gated in the v direction because of the distribution anisotropy.
We have indicated the regime vi < ¥/ky in which the particles are
resonant with the disturbance. The energy of the nonresonant
particles does not change as they move through the disturbance;
only their pitch angle changes. When the field is increasing, the
pitch angle increases and the nonresonant part of the contour is
displaced toward the origin. As the change of pitch angle is
adiabatic (conserving W), particles with vi = 0 are unaffected and
therefore the contours remain at constant levels along the vi axis.

v B=By+|5B|

3B >0

vi

\
=
-

\l/ 1 B=B,
Vi
Vi B=Bo-|8B|
5B <0

[ ] rangeofy, <y/ky

Fig. 2. Contours of the distribution function in the (vy, vi) plane indicating
what happens in the linear phase of the instability at different locations along
the background field. The middle distribution contour shows the distribution
at a location where there is no field perturbation. This distribution is repeated
for reference in the other two panels. The top and bottom distribution
contours apply to positions where the field strength has increased or de-
creased, respectively. All particles conserve the magnetic moment |1 and thus
the change in perpendicular energy is proportional to the change in field”
strength and p. The perpendicular energy change of the nonresonant (bulk)
of the distribution is simply balanced by a change in parallel energy so as to
conserve total energy. The parallel energy increases where the perpendicular
energy decreases and vice versa. The resonant particles (which have small
parallel velocities, Vi< ki) experience changes predominantly in their
perpendicular energy and their total energy increases (or decreases) wherever
the field increases (or decreases). The range of vy that contains resonant
particles is shaded.
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In the same region at low parallel energy, where the resonant
particles are found, the rising field causes the total particle energy
and the perpendicular energy to change proportional to B; the
contour is thus moved away from the origin in this regime. Thus
in the resonant regime the distribution contour develops a bulge
extending outside the original contour. Where the field is decreas-
ing (8B < 0), the nonresonant part of the contour moves further
from the origin as pitch angles decrease. In this part of the
disturbance, the resonant particles lose energy and the contours
develop an indentation toward lower energy near the Wy axis
which will extend inside the position of the original contour.

The pressure and number density variations for the nonresonant
part of the plasma are well known [e.g., Hasegawa, 1969] and are
implicit in the changes shown in the contours. However, the
description of the special role of the resonant particles is critical to
understanding the properties of the linear waves.

DiscusSION AND CONCLUSIONS

We have derived a physical description of the mirror instability
appropriate for the linear theoretical treatment of the kinetic insta-
bility first given by Tajiri [1967]. The analysis reveals that the
instability is resonant but that the resonant particle role is unusual.
The instability results from pressure imbalance between the bulk
of the plasma and the magnetic field. For this to occur, the bulk
(nonresonant) pressure response must be in antiphase with the
magnetic pressure as occurs at low frequencies when the magnetic
moment and the particle energy are conserved. The response is
illustrated by equation (1). The resonant particles produce a
pressure perturbation however, in phase with the field pressure
change. A corollary is that unlike the nonresonant particles, the
resonant particles experience energy changes as the instability
develops. The computer simulations of McKean et al. [1992] are
consistent with our analysis and the earlier work of Hasegawa
{1985] in showing that the mirror instability selectively affects a
portion of the particle distribution with large pitch angles. How-
ever, we believe that the special way in which the different parts
of the distribution affect wave growth has not been previously
pointed out.

The resonant particle behavior is very unlike the resonant parti-
cle behavior in resonantly driven instabilities. Melrose [1986]
describes several such instabilities. Commonly, the nonlinear ef-
fect of the instability is expected to be a diffusion of resonant
particles in velocity space described by quasi-linear theory {Mel-
rose, 1986, p. 49]. The diffusion is spatially uniform (the quasi-
linear approximation involves averaging the distribution in
space). The resonant particles lose energy in the diffusion, and
this energy loss can be equated to the energy gain of the unstable
waves. The ion cyclotron instability falls into the class of such
instabilities {Melrose, 1986, p. 233].

The linear growth rate of most resonant instabilities is propor-
tional to the number of resonant particles. As discussed above, in
the case of the mirror instability, equation (23) shows that the
growth is inversely proportional to the number (and pressure
contribution) of resonant particles. The reason for the anomalous
result is clearly explained by our physical description. The fewer
particles there are at small parallet velocity, the higher the growth
rate needs to be to balance the pressure imbalance generated by
the nonresonant distribution.

Unlike the usual resonant instabilities, the mirror instability is
nonoscillatory so that the resonant particles have zero velocity
along the field. It is clear from this fact alone that as the resonant
particles themselves are not moving along the field, a spatial

averaging process would not be an appropriate way to analy ze the
nonlinear development. In fact, the resonant particles at the peak
of the field perturbation accelerate and the resonant particles near
the bottom of the magnetic wells decelerate. Thus the instability
does lead to resonant particle heating but only in part of the distur-
bance; elsewhere, the resonant particles cool.

We reserve for a future paper a treatment of the nonlinear
evolution of mirror unstable plasmas. Suffice it to say that the
physical mechanism described here suggests two features of any
likely nonlinear saturated state. First, the resonant interaction is
expected to modify the distribution significantly in the vicinity of
zero parallel velocity. The nonresonant particles are not likely to
be as greatly affected so their anisotropy is not likely to change
much. Putting the two notions together one expects that the insta-
bility is likely to lead to a nonuniform plasma in which the mirror
field structure along the field is retained and pressure, number
density, and plasma temperature vary along the field as well as
across the field. We predict that at large pitch angles the resonant
distribition will be strongly modified and, in particular, that the
pitch angle anisotropy of the very large pitch angle particles will
have changed. The simplest scenario would predict that the pitch
angle anistropy would reverse near large pitch angle so that reso-
nant particle pressure varies spatially in phase with the staiic
nonuniform field, while the bulk of the plasma still retains the v
antiphase response to field variation given by (1).

The observations of large almost purely compressional field
irregular oscillations attributed to mirror instability certainly are
consistent with our speculation that a mirror unstable plasma
evolves to a nonuniform state in which substantial pitch angle
anistropy may remain in the distribution. One interprets the oscil-
latory nature of the disturbances as due to the spatial structure
which may be time stationary in the plasma frame that sweeps by
the spacecraft at the plasma flow velocity [e.g., Tsurutani et al.,
1982]. Our prediction that the pitch angle distribution near 90°
could be radically different in order to balance pressure in a
quasi-steady manner is well worth examining if appropriate data
can be found.

We have not answered the problem raised by Gary [1992] con-
cerning the discrepancy in growth rates between ion cyclotron and
mirror modes. However, we have shown that although both rely
on resonant processes, one expects very different nonlinear re-
sponses. The tendency of the mirror instability to create inhomo-
geneous field-aligned structures could reduce the resonance
efficiency of the ion cyclotron mechanism if inhomogeneity ir
the background field causes the resonance condition to become™
position dependent. Further analysis is required to elucidate the
competition between the two instabilities driven by ion pitch
angle anistropy.
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