
JOURNAL OF GEOPHYSICAL RESEARCH,  VOL.98,  NO.  ,4 .6 ,  PAGES 918I -9 I87 ,  JUNE I ,  1993

Mirror Instabi l i ty:
1. Physical Mechanism of Linear Instabi l i ty

Davro J. Sourswoool ,qNo M^q.nceRer G. Ktver-soN2
Institute of Geophysics and Planetary Physics, University of Californi*

Los Angele s, California

The mirror instability is prevalent in planetary and cometary magnetosheaths and other high beta
env i r onmen ts .  Werev iew thephys i cso f t he l i nea r i ns tab i l i t y .  A l t hough the ins tab i l i t ywas  o r i g i na l l y
der ived f rom magnetohydrodynamic f lu id theory,  later  work showed that  there were s igni f icant
di f ferences between the f lu id theory and a more r igorous k inet ic  approach.  Here we point  out  that  the
instabi l i ty  mechanism hinges on the specia l  behavior  of  part ic les wi th smal l  veloci ty  a long the f ie ld.
We call such particles resonant particles by analogy with other uses of the term, but there are significant
di f ferences between the behavior  of  the resonant part ic les in th is instabi l i ty  and in other instabi l i t ies
dr iven by resonant part ic les.  We comment on the impl icat ions of  these resul ts for  our understanding
of  the observat ions of  mirror  instabi l i ty-generated s ignals in space.

INTRoDUcrroN

?he mirror instability has long been of interest in space physics.

It was identified theoretically fRudakov and Sagdeev, 196l;

Thompson, 19641 as one of the two magnetohydrodynamic insta-

bilities that occur in the presence of extreme velocity space (pitch

angle) anisotropy in a uniform plasma, the other instability being

the fire hose, In 1967 , Tajiri [ 1967] derived a kinetic description

which, as we discuss further below, shows that the actual instabil-

ity is not really correctly described as a fluid instability. In 1969,

H ase gaw a [ 1 969] put forward a further development of the theory

for a medium in which the plasma is nonuniform. He proposed

that large storm time magnetic field and particle flux oscillations

seen on the ATSI spacecraft at geosynchronous orbit within the
Earth's magnetosphere were due to the inhomogeneous form of
the instability which he called the drift-mirror instability. Sub-
sequent work by Southwood [1976) and Chen and Hasegawa

[1988] amongst others has led to a revision of Hasegawa's origi-
nal suggestion. However, since that time the mirror mode has
garnered increasing interest following its identification in space-
craft daia from the terrestrial magnetosheath [Kaufnann et al.,
19'70, 1971; Tsurutani et al.,1982', Tsurutani et al.,1984) and the
vicinity of comets [Russell et al., 1987] and other planetary mag-
netosheaths fBalogh et al., 1992]. Further numerical work on the
instability has been done by Price et al. [1986] and McKean et al.

[1992]. Recently, the mode appears to have been identified in the
solar wind in the events resulting from the large solar events of
March 1991 fTsurutani et al., 19921.

The instability occurs when B (the ratio of plasma to magnetic
pressure) is large (the ratio of the perpendicular component of
plasma pressure to the magnetic pressure BI must necessarily be
greater than unity). The anistropy required for instability is in-
versely dependent on B. In planetary magnetosheaths the source
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of anisotropy is likely to be the planetary bow shock and in
cometary environments the ion pickup process is a natural source
of anisotropy. Both types of environment tend to have relatively
large values of p.

Recently, Gary [1992] has raised an interesting question regard-
ing the occurrence of the mirror instability, There is a second
instability that occurs at frequencies below the ion gyrofrequency
in the presence of ion pitch angle anisotropy, the ion cyclotron
instability. Gary fl9921presents the results of a numerical evalu-
ation of the full kinetic dispersion relation. Both ion cyclotron
and mirror instability are covered by the calculations and Gary
points out that the former mode generally has the higher linear
growth rate of the two, suggesting that it could suppress the
anisotropy needed to produce the mirror instability. Price et al.

[1986] have shown that heavy ions can reduce the linear growth of
the resonant ion cyclotron instability, while leaving the minor
instability unaffected. Although we shall not address quantita-
tively the question of relative growth rates of the two instabilities,
we note that the structure of the mirror instability itself may
recluce the growth rate ot the lon cyclotron lnstabl l l ty.-:--r--_-=-

The develo described
by the standard quasi-linear theory in which the unstable distribu-
tion equilibrates through a spatially smooth process of velocity
space diffusion. Growth rate calculations assume that the waves
propagate through a nearly uniform plasma and that the resonant
ions have approximately the same parallel velocity everywhere.
However, the mirror instability in its linear development phase

depends crucially on the spatially structured nature of the field
disturbance even though the instabiliry occurs in the limit of long
parallel wavelength. Any nonlinear saturation mechanism of the
minor instability is likely to leave the plasma spatially structured,
as is also strongly suggested by the many observations. In prac-
tice, in almost any experimental detection of a plasma instability,
the wave fields and the plasma population will have evolved to
some quasi-steady condition that represents a nonlinear saturated
state of the instability. We reserve a detailed discussion of the
nonlinear development of the instability for another paper. Here
we merely point out that in the spatially structured magnetic field
associated with the minor instability in both its linear and non-
linear phase, different parts of the ion distribution will resonate
with an ion cyclotron wave as the wave propagates along the
inhomogeneous field. This effect is likely to inhibit the growth of
the ion cyclotron mode and may provide yet another answer to
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Gary's question about why the mirror instability is favored over
the ion cyclotron instabi l i ty in certain circumstances, especial ly in
planetary magnetosheaths.

Gary also remarks that the two instabilities have a different
nature. The ion cyclotron instability is a resonant instability in
which the energy for the instabiliry is fed from a subset of the
particle population that are in gyroresonance with the unstable
wave. In contrast, the mirror instability is referred to as a ,,fluid"

instability, alluding ro the fact rhat the phase space (pitch angle)
anisotropy of the bulk of the hot plasma distribution serves as the
source of energy. It is at best a partial truth to regard the mirror
instability as a fluid instability, as we show in this paper. The
instability grows because of a subtle coupling between a group of
particles with small velocity parallel ro the field and the rest of the
population. The mirror insrability has zero parallel phase velocity
in the plasma frame of reference. It follows, by analogy with
other uses of the term that we can call particles with near zero
parallel velocity resonant. However, although we may show here
that the mirror instability is resonant in the sense that its physics
depends critically on resonant particle behavior, there are signifi_
cant differences between the behavior of the resonant particles in
this instability and in other resonant instabilities (such as. for
example. the ion cyclotron mode discussed by Gary 11992)).

TnaorrroNeL PicruRg oF THE MIRROR INSTRgTT_lty

Thompson [1964] and Hasegawa [1969] give (slightly differ-
ent) descriptions of the mirror instability mechanism which corre-
spond to the tradit ional view of the instabi l i ty as a f luid
magnetohydrodynamic instability. The instability results from
the fact that at very low frequencies the perpendicular pressure
6pr responds to a compressional change in the magnetic field
strength 58 in antiphase, namely,

plus plasma) pressure accelerates the plasma and would give rist
to a plasma displacement, ( . Assuming that the field strength
perturbation 68 varies in time and space as exp (7 t + i k r), we
can write the equation of motion perpendicular to the field in the
fbrm

pf E=-i l rr  (6pr + B 6B/p<,) (4)

The frozen in field condition relates 619 and (

l kx ( (xB)=- i ( / .  € )  B=- i le .Eu 
( r )

where the wave vector /r has been taken to have components of
magnirude k11, ,( parallel and perpendicular to rhe field. Combin_
ing (4) and (5) with (1) and el iminating ( yields

,r+=-tr,n(, fi)y -E+

ur =#

(6)

(for a bi-Maxwellian distribution with parallel remperature Zll and
perpendicular temperature T1) fHasegawa, 19691. The formula
shows that whenever the perpendicular pressure exceeds the par-
allel, the pressure decreases as the field strength and the field
pressure lncrease.

The perturbed pressure in (1) is proportional to the unperturbed
pressure and, in particular, if the unperturbed plasma pressure is
large enough, the sense of the total pressure produced by the field
change may be opposite to the change in magnetic pressure pro-
duced by the field change. For a bi-Maxwellian, the condition for
this is

. 868
oz++ 

*  
<u  

(2 )

On substituting from (1) one finds that when the followine condi-
t ion holds

the force exerted by the total pressure (plasma + magnetic) in the
direction transverse to the field decreases/increases with increas_
ing/decreasing 68. Inequality (3) is the instabiliry condition (in
the short perpendicular, large parallel wavelength limit).

Let us examine how the instability is decribed in a fluid approxi_
mation. The pressure force associated with the total (masnetic

where p is the mass density. Eliminating 68 and rearranging
yields

t '= - �k te ' [ r  * ru f r - I . } ]_ . 1  z r , J l  0 ) y
LAn*, ("r*

where A = ( 82/p.,p 1% is the Alfv6n velociry. Equation (7) not
only illustrates the fluid instability condition (3) once again, it
also shows that when the fluid instability condition is not met, the
fluid equations predict osci l lat ions 1f < 0).

DpscntprroN oF INSTABTLITy IN THE FI_uIo AppnoxIMATIoN

By identifying the rerms in equations (6) and (7) wirh their
physical counterparts, we can give the following physical descrip-
tion of the instability lThompson, 19641. The fluid instabiliry
results when the pressure anisotropy is large enoueh that an in-
crease ln magnel. lc treld produces a Iocal decrease in total pressure
-whlch ln turn causes the field lines to move closer together. Tfie
lu ivine
the instabi l i ty.

The pressure response described by equation ( 1 ) is central to the
instabi l i ty. @parricle pressure to f ietd
increase ir * ,nn -
Irslng ln pnase wltn tne l leld as l} ie l@oment invari_-ant is conserved. There is tbalancing decrease in pfrli6f 6er-gy
whrch ensures that the total energy ofthe particle does not change.

The exchange of energy between parallel and perpendicular
degrees of freedom in a spatially varying field when the magnetic
moment invariant is conserved is often described by introducing
the notion of the-magnetic mirror force. The link to the minor:rorce ls wortn dtscusslng at this point. Thompson refers to i ts role
and Hasegawa's [1969] description of the physics of the instabil-
ity relies heavily on it. In the minor instability, the force can be
thought oi as squeezing ,
ano rnro me weak I leld regions. When the magnetic moment and
energy are conserved, a particle's motion into a weaker field
leads to conversion ofperpendicular (gyration) energy into paral-
lel energy and so to motion along the field. It appears as if a force
is acclerating the particle along the field. Vewing the motion
parallel to the field in isolation from the perpendicular (gyro)
motion, the changes in parallel energy can be regarded as provid-
ing a pseudopotential along the field which produces a force

(3 )
r + n[r -fij.'



6i1sc.i-ed away from the regions where the field is high The corre-

Ioontfing (pseudo) force is the mirror force, but it is not a force in

,te nor.ul sense as i t  does not change the total part icle energy'

i@sure responselT|6ffi!!6nds to

,h..ut" where particle energy is strictly conserved' We shall also

see ihat the instability cannot occcur without some particles'

energy changing.

MtnRon INsrRsll- lrv IN THE KINETIc LIMIT:

RPsoNeNr PaRrtclPs

The mathematical derivation leading up to equation (7) is not

correct (as Hasegawa [1969] notes). The instability condition is

not wrong, but the implication of equation (7) that the stable

solution of the dispersion relation corresponds to oscillatory mo-

tion is. Furthermore, any physical descriPtion based on the.equa-

rion is false,The inslabi l i ry. which is f 'undamental ly a hot plasma

ililUlliry, has to be treated in the kinetic limit rather than assum-

ing the purely fluid response given by the equations leading up to

(1')
Tajiri [196'7) produced a kinetic treatment of the mirror instabil-

iry, as part of a thorough study of low-frequency wave behavior in

a collision-free plasma. As Hasegawa [1969] notes, his result

difiered from earlier treatments in that it identified a fourth mode

in ,he low-frequency range in addition to the familiar MHD wave

mt,tles; it is this mode that causes the minor inslability' The mode

is nonoscillatory even when WTtr < (1 + &)/ft The latter point

contradicts the prediction of fluid theory (discussed in the pre-

vious section). In the kinetic theory, which should provide a more

accurate description of collision-free plasma behavior, the mirror

mode when stable simply represents a dampe4g ilhelwlle
ion. As we s the major differ-

enee introduced by the lonetlc approach ls lnat not al l  ol  tne

plasma particles respond to the field in the same way. The pres-

sure variation given by (1) is valid for particles with pitch angle

sr.rfficiently far from 90o, but as particles with small parallel

velociry are not affected by the minor force to the same degree,

they respond differently. Their energy is not conserved as the

field changes and their perpendicular pressure response is in

phase with the field pressure change' Such particles with very

small parallel velocities can be regarded as resonant with the time

stationary signal.
Before demonstrating the role of resonant particles, let us show

that the kinetic dispersion relation produces a nonoscillatory

mode. The general form in a uniform plasma is given by

p,'; e)" =-ft;fr E)"=-[' .o't -
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whcre 7 is the derivative of the plasma dispersion function lFried

anrl Conte,1961l, vnr =(2kTl/m)a is the paral lel thermal veloc-

ity, and the summation is taken over all species present (denoted

by subscriptT); the plasma distributions have been assumed to be

bi-Ma.rwellian.
Substituting from (9) into (8) one finds (after some simple

algebra)

) -
4 = * r * > l d P r r r  P r u
A ' i '

"  (  \ r  ( 1 0 )
* a'8.,1 1*#z(#)U. t  L t | j  - \z  K|  vny '  

f

where, as before, A is the Alfv6n speed. We drop the summations

over species and assume that  la l2 . . t?Az and that  lo l2

.a 4l vr?r to obtain

f t / 2 r

*2+kfiryr+kr,prl  ,-*(r. ,r+f+) I  l=., ,  z  , L  1 r r [  r r r v n r \ z /  
)  )  

( 1 1 )

where we have used the small argument approximation for Z

( -Z (z )  =  2+ i2z ) .

In the limit, ki<<t& one recovers Tajiri's [196?] result [see
Hasegawa,19691

4 ).lrr
;  l l ;1il  l l  r-r

2 , 2
C K

;  
=urr 

(8)

where €yy is the appropriate element of the plasma dielectric

tensor, ) being the direction transverse to both B andk. The dis-

turbance is now assumed to vary as exp (- iro r) where to is gener-

ally complex. In the low-frequency limit, try is given by

lHasegawa,19751

E,n =I ery' -  
1 ' B -

t f  ,  z
+ l K | l  , ^_  

r l  "  ( B j _
( t ) - L '

(12\

where "y= - ior. One sees that there is a single root for ro, which is

purely imaginary whether the plasma is stable or not.

Now it is clear that equation (12) gives the same instability

condition as the fluid treatment (see equation (7))' However, the

equation no longer is quadratic. Were one to include terms to

order o2 in (12) the ordering would require the addition of terms

in (Mklv111;2 from the expansion of Z that normally would be

larger than the term in co2 1or t'; *tti"tt controls the fluid expres-

sion (7). lt follows that the physics of the instability cannot be the

familiar fluid picture that is generally used. The physics of the

actual mirror instability must involve nonfluid aspects which we

wil l  examine in the next section.

PHvsIcs oF LINEAR KtNr'rtc INStestLltv

The new terms in the Tajiri treatment of the mirror instability

emerge from the explicit retention of the collision-free velocity

distribution function in the kinetic treatment. In the discussion so

far, the distribution function has been assumed bi-Maxwellian and

has appeared in the calculation through the presence of the plasma

dispersion function, Z.LettJS now reexamine what happens in the

instability if one retains more explicitly the plasma velocity distri-

bution function F.

We can regard the distribution as gyrotropic and thus can write

the velocity distribution function as a function of two quantities;

for example, lV11 and lVr, the parallel and perpendicular energy are

useful if we wish to express the result in terms of parallel and

perpendicular temperature. At low frequencies the magnetic mo-

ment invariant p is conserved (the basis oi the mirror effect) and

Fy)+,c s1(t*fiztr;ll])
(e)
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the perpendicular energy at any point is directly linked to the local

magnetic field strength, W- = ftB Introducing the total energy W

we can write the changes in Wu,Wt, 6Wrr, 6W+ as

6i4,ir'= 6ty- p 68 and 5tV1 = prSB ( 1 3 )

We can calculate th.e change in distribution associated with

changes in'field strength and energy by using the fact that the
value of -F for any particle remains constant as the particle moves
(the Li,ouville theorem). The change in distribution function is

then given by fKivelson and Southweod, 1985]
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where thc notat ion Frr is used for the distr ibution of paral le,

velocit ies aftcr the integral over the perpendicular velocit ies has
been carr ied out. Flt  has been assumed a symmetric function of
v i l .

In the l imit of ^1 goes to zero, the integral may be carr ied out
using the approximation

f i m  ; f  '  =  n 6 t  r t
y=>0 f  +x-

where {r) is the Dirac delta function. One f inds

Substituting a Maxwellian parallel velocity distribution into (21)

reprociuces the kfr << tr2 ti.it ot rhe Titjiri [1965] result given in
equat ion (11) .

I * ruf '-+l
\  

' , ,  
, l

fu(Tf 
'tt)

# . ,",[,-fi)T .'*[Jdv;;r6(, ).)#T =,1,,
1 F

. lF  d ts

5F=-6wrr;-  aru*,

rhus sF=_sw#_ -r[a*_ *a) (15)
and

*=[+.#[,-ft]

( 1 4 )

(11)  and so

_ t ,
trrvnr

f r (
l : l
f 'J (22)

(  1 6 )

The latter term on the righrhand side of (16) corresponds to the

minor term as the factor proportional to the anistropy (\/Tlt-l)

shows. The change in energy due to a change in field strength is

given in the low-frequency limit by the adiabatic expression

lNorthrop,19631

Now the third term in equation (2 1 ) contains the resonant contr i

bution; indeed, i t  is possible to rewnte the expression for any5r

distribution function

[j 0",'n 6(vrD F(vrD =fr n r(o) =*] n a,.,

(  1 8 )

(rvhere for low frequencies perpendicular velocity averages to 0),

and thus we have the distribution function in the low-frequency

i imit

We derive an expression for 6lV by integrating (17) tbr a distur-

bance varying as exp (lt'r +Y7), to find

aw=--f- u 6a
Y+ r,(tvil

u"=[#['-fi)".[,**F

-  
" {  

=B'
kl p"

i + t u (1 - f i )
2 n (T\2 /Tt) F,", (23)

It is immediateiy apparent that the resonant particles play a role

somewhat different from that met in other resonant instabilities
l ike the ion cyclotron [e.g., Gary. 1992]. Whereas the l inear

growth rate is usually proportional to the number of resonant

particles, here it is inversely proportional to the number present or

to the resonant pressure. The reason wil l  become apparent in our

physical description of the instabiLity.

PHvsrce l  MecH,qNtsv  oF THE L tNe,cn  INs tea lL I tv

Equation (22) is auseful vehicle to describe rvhat heppens in th -
instabitiry. The equation itself represents totai pressure balance.

The first term on the left hand side is the magnetic pressure

perturbation, the second is the (mirrorlike) response of the bulk of

the plasma and the third term represents the resonant response of

the particles with close to zero parallel velociry (90o pitch angle).

Figure I is designed to illustrate the disparate behavior of the bulk

of the plasma population and the resonant particles which arise

solely from the difference in parailel motion.
The resonant pressure response is proportional to the growm

rate. Equations (18) and (19) show that the dependence on growth

rate is due to the particle undergoing betatron acceleration accord-

ing to equation (17). Unlike what occurs for the bulk of the plasma

where energy is simply exchanged between perpendicular ano

parallel degrees of freedom, the energy of the resonant particles

does change as the instability develops. Being clustered about

zero paral lel velocity, the resonant part icles do not move a signif i-

cant distance along the f ield in the instabi l i ty growth t ime (1ry)

Thus the change in f ield that a resonant part icle detects is simpl!

due to the local temooral increase or decrease in field. In contrast'

dw aB
dr dt

( 1 e )

The last term on the righrhand side is an additional contribution

that arises from the kinetic approach. Note that if yis small as one

expects, at least for marginal stability, then the term is negligible

except for particles with vll = 0' However, for these particles the

term is of the same order and potentially of larger magnitude than

the preceding mirror term. The term shows that the particles with

small v11 behave radically differently to the rest of the distribution.

These particles can be identified as resonant with the (zero fre-

quency) wave. Thus it is the presence of resonant particles that

causes the difference in dispersion relation between kinetic and

fluid mirror instability treatments. Correctly treated, the mirror

instability is a resonant insrability, albeit with further some un-

usual properties.

Taking the second moment of 6F given in (19) and imposing the

pressure balance condition yields

8 6 8 , - . f ,  r ) s a  -  r (  1 o , r - l r ,  r ' l f + =
r , .  

*  znr\ t -  r t )E "  -  
[ ,  

" '  ^ f  + l" l '  
"  
) ru 

o 
- 0

(20)
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Q nu]lk ptasma

tion. The term describing field line acceleration is dropped in the

limit appropriate to the kinetic instability' (The term is of order

tc,tzn& g2 and was dropped between equation (10) and (11) )

In Figure 2, we show a sketch illustrating the effect of the

instability during is linear phase on a contour of the plasma

distribution function in the (vtt, vf plane A bi-Maxwellian has

elliptical contours in this plane. The unperturbed contour is elon-

gated in the vr direction because of the distribution anisotropy'

We have indicated the regime vtr<Vkt in which the particles are

resonant with the disturbance. The energy of the nonresonant

particles does not change as they move through the disturbance;

lnly their pitch angle changes. When the field is increasing' the

pitch angle increases and the nonresonant part of the contour ls

ilrptu"eO toward the origin. As the change of pitch angle is

adiabatic (conserving p), particles with vr - 0 are unaffected and

therefore the contours remain at constant levels along the vtt axis'

)

t

S

tr
l t
)r

r = r o + l a r  I

6 8 > 0

B = B o

vr r  n  =  no  - l6n  I

6 8 < 0

f !..1I range of v', < T i k tt

r e -

rf
. f

)
tk

Fig. 1. Ttp sketch illustrates the difference between rcsonant ano non-

,"ronint-patti.te behavior in the perturbed magnetic field of the mirror

t;;"btli,y: The resonant particles hive close to zero parallel velocity and arc

,i"*" Ui, ,itpre solid circles A resonant particle in the-weak field region

O"a.o " "on,inually decreasing field' A resonant particle in the region of

increasing field detects a continuaily increasing fr:19 ft former set of

[r""* p"ni"f"s cool; the latter set heat as the irstability develops Tle bulk

"i,ft" p"ii"f" population are nonresonant and' as the arrows attached to tbe

op"n ouut, iniicate, they travel through the mirror held structwe as the

irir,uiifiry O"*fops. Tlrey experience both increasing and decreasing field as

thev move through the mirror structure; their energy does not change signif!

;and; il iii"&_- ,r,it back and forth benpeen parallel and perpendicular

inui#onuU degees of freedom. The resonant particles move little along the

Fi;;J;t-c; energy as the field magnitude changes locallv'

for the bulk of the plasma, the predominant change in field expe-

ri""..a by particles is through the spatial variation of the field

p".i"tU"l"" ""d is experienced due to the particle motion through

the f ield.
The linear instability thus progresses in the following manner'

An increase/decrease in field leads to a pressure decrease/increase

in the bulk of the plasma that causes a net local pressure defi-

ciVsurplus. 1-he pressure is balanced by the resonant particle

pr.rrur" in which the resonant particles respond being acceler-

ated/decelerated by the field in the increasing/decreasing field

regions thus responding in antiphase to the bulk plasma' Al-

thiugh some motion along the field is implicit in the field

changes, this response plays no dynamic role'

Not"e that the issue of any pressure imbalance causing the field

lines to move together or apart does not enter the simple descrip-

Fig.2.Contoursofthedistributionfunctioninthe(vn,v1)planeindicating
*hat tiappen, in the linear phase ofthe instability at different locations along

tf,l U".{g.tna ft"ld. The middle distribution contour shows the distribution

at a location where there is no field perturbation' This distribution is repeated

fo, r"furence in the other two panels' The top and. bonom distribution

contours apply to positions where the held strength has increased or de-

"**.4, *ip"ltiveiy. All particles conserye the magnetic mornent p and thus

the change'in perplndicular energy is proportional-o the change in field

;;;;cth ;d lt.' The perpendicul. "n"tgy change of the nonresonant (bulk)

of the"distribution is simply balanced by a change in parallel energy so as to

"on**" totut.r"rgy. Theparallel energy increases yfrere.ttre perpendicular

"*ij 0".r"*o ai'a uic" versa The ttion-t particles (which have small

p*irlr-u"ro"itles, vn<1/kn) experience changes predominantly in their

i".p"ndi.ufar "nergy and'their total energy increases (or decreases) wherever

ihe'field increaseJ(or decreases)' The range of vl that contains resonant

particles is shaded.

rh
rh
I

ta
rd
3s
ut
'i-

0 .
ly
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In the same region at low parallel energy, where the resonant

particles are found, the rising field causes the total particle energy

and the perpendicular energy to change proportional to B; the

contour is thus moved away from the origin in this regime' Thus

in the resonant regime the distribution contour develops a bulge

extending outside the original contour. Where the field is decreas-

ing (58 < 0), the nonresonant part of the contour moves further

from the origin as pitch angles decrease ln this part of the

disnrrbance, the resonant particles lose energy and the contours

develop an indentation toward lower energy near the Wr axis

which will extend inside the position of the original contour'

The pressure and number density variations for the nonresonant

part of the plasma are well known [e.g., Hasegawa, 1969] and are

implicit in the changes shown in the contours However, the

deicription of the special role of the resonant particles is critical to

understanding the properties of the linear waves'

Dtscuss toN AND CoNCLUSIoNS

Wehaveder ivedaphys ica ldescr ip t ionof theminor ins tab i l i t y
appropriate for the linear theoreticai treatrnent of the kinetic insta-

Uitlry 
^tirst 

given by Tajiri [19611' The analysis reveals that the

instabi l i ryisresonantbutthattheresonantpart iclero, leisunusual.
The instability results from pressure imbalance between the bulk

of the plasma and the magnetic field' For this to occur' the bulk

(nonreionant) pressure response must be in antiphase with the

magnetic pressure as occurs at low frequencies when the magnetic

moment and the particle energy are conserved' The response ts

illustrated by equation (1) The resonant particles produce a

pressure perturbation however, in phase with the field pressure

.frung". A corollary is that unlike the nonresonant particles' the

."ronunt particles experience energy changes as the instability

develops. The computer simulations of McKean et al' 179921 are

consistent with our anaiysis and the earlier work of Hasegawa

t19851 in showing that the minor instability selectively affects a

portion of the particle distribution with large pitch angles How-

"u.., *" believe that the special way in which the different pars

of the distribution affect wave growth has not been previously

pointed out.
The resonant particle behavior is very unlike the resonant partl-

cle behavior in resonantly driven instabiliies' Melrose [1986]

describes several such instabilities' Commonly, the nonlinear ef-

fect of the instabiliry is expected to be a diffusion of resonant

particles in velocity space described by quasi-linear theory fMel-

rose,1986, p. 491. The diffusion is spatially uniform (the quasi

l inear approximation involves averaging the distr ibution in

space). The resonant particles lose energy in the diffusion' and

this energy loss can be equated to the energy gain of the unstable

waves. The ion cyclotron instability falls into the class of such

instabi l i t ies lMelrose, I  986' p. 2331.

The linear growth rate of most resonant instabilities is propor-

tional to the number of resonant particles. As discussed above, in

the case of the mirror instability, equation (23) shows that the

growth is inversely proportional to the number (and pressure

contribution) of resonant particles' The reason for the anomalous

result is clearly explained by our physical description. The fewer

particles there are at small parallel velociry, the higher the growth

iate needs to be to balance the pressure imbalance generated by

the nonresonant distr ibution.

Un l ike theusua l resonant ins tab i l i t ies , themi r ro r ins tab i l i t y is
nonosciilatory so that the resonant particles have zero velocity

a longthe t ie ld . I t i sc lear f romth is fac ta lonetha tas theresonant
particles themselves are not moving along the field, a spatial

averaging process would not be an appropriate way to analy ze the

nonlinear development. In tact, the resonant part icles at the peak

of the fleld perturbation accelerate and the resonant particles near

the bottom of tbe magnetic wells decelerate. Thus the instability

does lead to resonant particle heating but only in part of the distur-

bance: elsewhere, the resonant particles cool.

We reserve for a future Paper a treatment of the nonlinear

evolution of mirror unstable plasmas' Suffice it to say that the

physical mechanism described here suggests two features of any

likely nonlinear saturated state. First, the resonant interaction is

expected to modify the distribution significantly in the vicinity of

zero parallel velocity. The nonresonant particles are not likely to

be as greatly affected so their anisotropy is not likely to change

much. Pufting the two notions together one expects that the insta-

biliry is likely to lead to a nonuniform plasma in which tbe minor

field structure along the field is retained and pressure, number

density, and plasma temperature vary along the field as well as

across the field. We predict that at large pitch angles the resonant

distribition will be strongly modified and, in particular, that the

pitch angle anisotropy of the very large pitch angle particles will

have changed. The simplest scenario would predict that the pitch

angle anistropy would reverse near large pitch angle so that reso-

nant particle pressure varies spatially in phase with the static

nonuniform field, while the bulk of the plasma still retains the v

antiphase response to field variation given by (1)'

The observations of large almost purely compressional field

irregular oscillations attributed to mirror instability certainly are

consistent with our speculation that a minor unstable plasma

evolves to a nonuniform sLate in which substantial pitch angle

anisEopy may remain in the distribution. One interprets the oscil-

latory nature of the disturbances as due to the spatial structure

which may be time stationary in the plasma frame that sweeps by

the spacecraft at the plasma flow velocity [e'g', Tsurunni et al"

19821. Our prediction that the pitch angle distribution near 90o

could be radically different in order to balance pressure ln a

quasi-steady manner is well worth examining if appropriate data

can be found.
We have not answered the problem raised by Gary [1992] con-

cerning the discrepancy in growth rates between ion cyclotron and

mirror modes. However, we have shown that although both rely

on resonant processes, one expects very different nonlinear re-

sponses. The tendency of the minor instability to create inhomo-

geneous f ield-al igned structures could reduce the resonance

.ffi.i"n"y of the ion cyclotron mechanism if inhomogeneity in

the background field causes the resonance condition to becomev

position dependent. Further analysis is required to elucidate the

competition between the two instabilities driven by ion pitch

argle anistropY.
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