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ABSTRACT
Slow dynamical changes in magnetic-field strength and invariance of the particles’ mag-
netic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized
astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose in-
stabilities, which are capable of exerting feedback on the macroscale dynamics of the system.
By way of a new asymptotic theory of the early non-linear evolution of the mirror instability
in a plasma subject to slow shearing or compression, we show that the instability does not
saturate quasi-linearly at a steady, low-amplitude level. Instead, the trapping of particles in
small-scale mirrors leads to non-linear secular growth of magnetic perturbations, δB/B ∝ t2/3.
Our theory explains recent collisionless simulation results, provides a prediction of the mirror
evolution in weakly collisional plasmas and establishes a foundation for a theory of non-linear
mirror dynamics with trapping, valid up to δB/B = O(1).

Key words: instabilities – magnetic fields – MHD – plasmas – turbulence – solar wind –
galaxies: clusters: intracluster medium.

1 IN T RO D U C T I O N

Dynamical, weakly collisional high-β plasmas develop pressure
anisotropies with respect to the magnetic field as a result of the
combination of slow changes in magnetic-field strength B and con-
servation of the first adiabatic invariant of particles µ = v2

⊥/2B.
This renders them unstable to fast (ion cyclotron time-scale #−1

i ),
small-scale (ion gyroscale ρ i) firehose, mirror and ion cyclotron
instabilities (Rosenbluth 1956; Chandrasekhar, Kaufman & Watson
1958; Parker 1958; Vedenov & Sagdeev 1958; Rudakov & Sagdeev
1961; Gary 1992), whose observational signatures have been re-
ported in the solar wind (Hellinger et al. 2006; Bale et al. 2009) and
planetary magnetosheaths (Kaufmann, Horng & Wolfe 1970; Erdös
& Balogh 1996; André, Erdös & Dougherty 2002; Joy et al. 2006;
Génot et al. 2009; Horbury & Lucek 2009; Soucek & Escoubet
2011). These instabilities are also thought to be excited in ener-
getic astrophysical environments such as the intracluster medium
(ICM; Fabian 1994; Carilli & Taylor 2002; Govoni & Feretti 2004;
Schekochihin et al. 2005; Peterson & Fabian 2006), the vicinity
of accreting black holes (Quataert 2001; Blaes 2014), or the warm
ionized interstellar medium (Hall 1980), producing strong dynami-
cal feedback at macroscales, with critical astrophysical implications
(Chandran & Cowley 1998; Schekochihin & Cowley 2006; Sharma
et al. 2006, 2007; Kunz et al. 2011; Mogavero & Schekochihin
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2014). A self-consistent description of the multiscale physics of
such plasmas requires understanding how these instabilities satu-
rate non-linearly.

Let us consider a typical situation in which slow changes in B due
to shearing, compression or expansion of the plasma at large (‘fluid’)
scales build up ion pressure anisotropy &i ≡ (p⊥

i − p
∥
i )/p⊥

i , driv-
ing the plasma through either the ion firehose instability boundary
(&i < −2/β i, with β i = 8πpi/B2) in regions of decreasing field, or
the mirror instability boundary (&i ! 1/β i) in regions of increas-
ing field (the ion cyclotron instability appears to be subdominant,
see Hellinger et al. 2006; Bale et al. 2009; Riquelme, Quataert &
Verscharen 2014). This triggers exponential growth on time-scales
up to #−1

i , much faster than the shearing time-scale S−1. The sep-
aration between these time-scales implies that the instabilities al-
ways operate close to threshold and regulate the levels of pressure
anisotropy in the plasma non-linearly. However, how they achieve
that in the face of the slowly changing B constantly generating more
pressure anisotropy, remains an open question.

In the simplest case of the parallel firehose instability, the growth
of magnetic perturbations δB leads to an increase of the average
(rms) field strength and perpendicular pressure, which drives the
anisotropy back to marginality, &i(t) → −2/β i. If a weakly unstable
initial state &io + 2/β i < 0 is postulated with no further driving
of &i, quasi-linear theory (Shapiro & Shevchenko 1964) predicts
saturation at a steady, low amplitude δB/B ∼ |&io + 2/β i|1/2 ≪ 1.
However, the shearing or expansion process that drove the plasma
through the instability boundary in the first place, must ultimately
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become important again once quasi-linear relaxation has pushed the
system sufficiently close back to marginality. When such continued
driving is accounted for, asymptotic theory (Schekochihin et al.
2008; Rosin et al. 2011) predicts secular growth of perturbations
as δB/B ∝ t1/2 up to δB/B = O(1) (cf. Matteini et al. 2006), a very
different outcome from steady-state, low-amplitude saturation.

The non-linear dynamics of the mirror instability (Tajiri 1967;
Hasegawa 1969; Southwood & Kivelson 1993; Hellinger 2007) in a
weakly collisional shearing (or compressing) plasma driven through
its instability boundary is more involved and has only recently
been explored numerically (Kunz, Schekochihin & Stone 2014;
Riquelme et al. 2014). In this Letter, we show that weakly non-linear
mirror modes in such conditions (rather than in a scenario of free
relaxation from initial anisotropy, see e.g. Shapiro & Shevchenko
1964; McKean et al. 1993; Califano et al. 2008; Pokhotelov et al.
2008; Hellinger et al. 2009) do not saturate quasi-linearly at a steady,
low amplitude either, but continue to grow secularly as δB/B ∝ t2/3.
To do this, we introduce a new asymptotic theory in the spirit of
earlier work (Califano et al. 2008; Schekochihin et al. 2008; Rosin
et al. 2011), in which the combined effects of weak collisionality,
large-scale shearing, quasi-linear relaxation (Shapiro & Shevchenko
1964), particle trapping (Kivelson & Southwood 1996; Pantellini
1998; Istomin, Pokhotelov & Balikhin 2009; Pokhotelov et al. 2010)
and finite ion Larmor radius (FLR) are consistently retained.

2 A S Y M P TOT I C TH E O RY

We consider the simplest case of a plasma consisting of cold elec-
trons 1 and hot ions of mass mi, charge qi = Ze, and thermal velocity
vthi =

√
2 Ti/mi , coupled to the electromagnetic fields E and B.

The dynamics is governed by the non-relativistic Vlasov–Maxwell
system,

∂fi

∂t
+ v · ∇fi + qi

mi

(
E + v × B

c

)
· ∂fi

∂v
= C [fi] , (1)

∇ · B = 0,
∂B
∂t

= −c ∇ × E, j = c

4π
∇ × B, (2)

and Ohm’s law describing the force balance for electrons,

E + ui × B
c

= (∇ × B) × B
4πZeni

. (3)

Here, fs(t, r, v), ns(t, r) =
∫

fs d3v and us(t, r) =
∫

vfs d3v are,
respectively, the distribution function, number density and mean
velocity of species s = (i, e), j = e ne (ui − ue) is the total current
density given the quasi-neutrality condition ne = Zni, and C[fi] is a
collision operator. In the following, we use the ion peculiar veloc-
ity v′ = v − ui as the velocity-space variable and will henceforth
drop the primes. Taking the first moment of equation (1) and using
equations (2) and (3), we obtain the ion momentum equation

d ui

dt
= −∇ · P i

mini

+ (∇ × B) × B
4πmini

, (4)

where d/dt = ∂/∂t + ui · ∇ and P i = mi

∫
vvfi d3v is the ion

pressure tensor. Introducing b̂ ≡ B/B, using equations (2) and (3),

1 Formally, we first expand the electron Vlasov equation in
√

me/mi and
then take the limit Te ≪ Ti, so electrons still stream along the field very fast.
This is purely a matter of analytical convenience: our results also hold for
hot, isothermal electrons.

we obtain the evolution equation for the field strength

d ln B

dt
= b̂b̂ : ∇ui − ∇ · ui − b̂

B
· ∇ ×

(
j × B
Zeni

)
. (5)

Our derivation is based on an asymptotic expansion of these equa-
tions. The separation between the slow magnetic-field-stretching
time-scale and the fast instability time-scale implies that the dis-
tance to instability threshold ' ∼ &i − 1/β i must remain small,
which provides us with a natural expansion parameter. In order
to study the dynamics in this regime, we start from an already
weakly unstable situation and order ' = O(ε2), with ε ≪ 1. We
then construct a ‘maximal’ ordering (summarized in equations 8–
12) retaining ion FLR, collisional, quasi-linear and trapping ef-
fects, as well as the effect of continued slow shearing. Following
Hellinger (2007), we order the time and spatial scales of mirror
modes as γ ∼ ε2k∥vthi, k⊥ ∼ ε−1k∥, ρ−1

i ∼ ε−2k∥, where γ is the
instability growth rate, (k⊥, k∥) the typical perturbation wavenum-
bers (defined with respect to the unperturbed field), ρ i = vthi⊥/#i,
and #−1

i = (mic)/qiB ∼ ε−2k∥vthi . The ion distribution function is
expanded as fi = f0i + f2i + δf, where f0i provides the required
pressure anisotropy to pin the system at the threshold, f2i provides
an extra O(ε2) anisotropy to drive the system away from it, and δf
contains mirror perturbations. We also expand B = B0 + δB and
ui = u0i + δui , where B0 and u0i have no instability-scale varia-
tions, u0i is the slow, large-scale shearing/compressive motion, and
δB and δui are the mirror perturbations.

The ordering of δf, δB, δui and of the remaining time-scales
is guided by physical considerations. The critical pitch-angle
ξ = v∥/v below which particles get trapped by magnetic fluctu-
ations is ξ tr = (δB/B0)1/2 and the corresponding bounce frequency
is ωB ∼ k∥vthi ξ tr. To retain their contribution in our calculation,
we order ωB ∼ γ ∼ ε2k∥vthi, which provides us with the ordering
δB/B0 = O(ε4) (plus higher order terms). For consistency of the ε

expansion, we must order δf = O(ε4), δui = O(ε5) and higher. We
further order S ≡ d/dt (ln B0), the shearing/compression rate, the
same size as d/dt (δB/B0) ∼ ε6k∥vthi to be able to investigate the
effect of a slowly changing field strength. The exact O(ε6) evolu-
tion equation for ln B0 is obtained by averaging equation (5) over
instability scales,

d ln B0

dt
= b̂0 b̂0 : ∇u0i − ∇ · u0i ≡ S. (6)

Subtracting equation (6) from equation (5), we find that

d
dt

δB

B0
= b̂0 b̂0 : ∇δui , (7)

to all orders relevant to the calculation.2 The aforementioned time-
scale separation S/#i is now related to ε through ε ∼ (S/#i)1/8

(ε ∼ 0.01 for the ICM, see Rosin et al. 2011).
A separate asymptotic treatment is required for low-pitch-angle

resonant particles, which develop a velocity-space boundary layer
and evolve into a separate population of trapped particles on the
instability time-scale (the process is similar to ‘non-linear Lan-
dau damping’, see Dawson 1961; O’neil 1965; Istomin et al.

2 A Hall term −
(
ρivthi⊥/β⊥

0i

)
b̂0 ·

[
∇⊥ ×

(
∇∥ δB⊥

5 /B0
)]

is formally
present in the induction equation at the maximum order O(ε6) needed here.
However, it can be proven to be zero because of the particular polarization
of mirror modes (Califano et al. 2008) and has therefore been summarily
discarded in equation (7) to simplify the algebra. Non-linearities quadratic
in perturbations are at most O(ε8) and can therefore also be neglected.
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2009). As can be seen by considering a simple Lorentz pitch-
angle scattering operator (Helander & Sigmar 2002), C [fi] =
(νii/2) ∂ξ [(1 − ξ 2)∂ξfi], this results in a boost of their effective
collisionality, ν ii, eff ∼ ν ii/ξ tr

2 ≫ ν ii for ξ < ξ tr ≪ 1. To retain this
effect, we order ν ii, eff ∼ γ ∼ ωB, or ν ii ∼ k∥vthi(δB/B0)3/2 ∼ ε6k∥vthi

(this preserves the low-collisionality assumption, i.e. the rest of the
distribution relaxes on a time-scale 1/ν ii ≫ 1/γ ). The maximal
mirror ordering is summarized as follows:

fi = f0i + f2i + δf4i + · · · , (8)

B = B0 + δB
∥
4 b̂0 + δB⊥

5 + · · · , ui = u0i + δu⊥
5i + · · · , (9)

ρ−1
i ∼ ε−2k∥, k⊥ ∼ ε−1k∥, (10)

γ ∼ ε2k∥vthi , #i ∼ ε−2k∥vthi , S ∼ νii ∼ ε6k∥vthi , (11)

ξtr ∼
(
δB

∥
4/B0

)1/2
∼ ε2, ωB ∼ νii,eff ∼ γ ∼ ε2k∥vthi . (12)

Taking the three lowest non-trivial orders of equation (1), we first
find that f0i, f2i, δf4i are gyrotropic. Expanding and gyroaveraging
equation (1) up to O(ε4) then gives δf4i in terms of the mirror
perturbation δB

∥
4/B0, from which the perturbed scalar pressures

δp⊥
4i and δp

∥
4i are derived (note that resonant/trapped particles are

not involved at this stage). Taking the perpendicular projection of
equation (4) at the lowest order O(ε3), we obtain the threshold
condition for the mirror instability (Hellinger 2007):

'0 = −2 mi

p⊥
0i

∫
v4

⊥
4

∂f0i

∂v2
∥

∣∣∣∣∣
v⊥

d3v − 2
β⊥

0i

− 2 = 0. (13)

Next, we expand and gyroaverage equation (1) to three further or-
ders, up to O(ε7). This tedious calculation yields FLR corrections
and resonant effects (not shown, see Califano et al. 2008 for an al-
most identical procedure) and provides us with explicit expressions
for δf5i and δf6i, from which we obtain higher order elements of P i ,
δ p⊥∥

5i ≡ mi

∫
v⊥v∥ δf5i d3v and δ P⊥⊥

6i , in terms of δB
∥
4 and δB

∥
6 .

No new information arises from equation (4) at O(ε4). Using these
results and equation (13) in the perpendicular projection of equa-
tion (4) at O(ε5), we derive the pressure balance condition:
[
'2 + 3

2
ρ2

∗∇2
⊥ −

(
p⊥

0i − p
∥
0i

p⊥
0i

+ 2
β⊥

0i

)
∇2

∥

∇2
⊥

]
∇⊥

δB̃
∥
4

B0
= ∇⊥

δp̃⊥
6i

(res)

p⊥
0i

,

(14)

where the resonant/trapped particle pressure is

δp̃⊥
6i

(res) = mi

∫

|ξ |<ξtr

v2
⊥
2

δf̃
(res)
4i d3v, (15)

δf
(res)
4i is the resonant part of the perturbed distribution function, the

distance to instability threshold is

'2 = −2 mi

p⊥
0i

(∫
v4

⊥
4

∂f2i

∂v2
∥

∣∣∣∣∣
v⊥

d3v +
∫

|ξ |<ξtr

∂δf
(res)
4i

∂v2
∥

v4
⊥
4

∣∣∣∣∣
v⊥

d3v

)
− 2 p⊥

2i

p⊥
0i

,

(16)

and the effective Larmor radius is

ρ2
∗ = ρ2

i

12
mi

p⊥
0i v2

thi⊥

∫ (
−v6

⊥
∂f0i

∂v2
∥

∣∣∣∣∣
v⊥

− 3 v4
⊥ f0i

)
d3v. (17)

Tildes denote fluctuating (zero field-line average) parts of the per-
turbed fields and overlines denote line averages. The l.h.s. of equa-
tion (14) describes the non-resonant response.3 '2 and δp̃⊥

6i
(res) de-

pend on the regime considered. However, both only involve δf
(res)
4i

because restricting the integration to ξ tr brings in an extra O(ε2)
smallness, whereas FLR corrections only start to affect the distribu-
tion function at O(ε6) within our expansion. Thus, δf̃ (res)

4i and δp̃⊥
6i

(res)

can be directly calculated from the much simpler drift-kinetic equa-
tion which, in (µ, v∥) variables, reads (Kulsrud 1983):

dfi

dt
+ v∥ ∇∥ f i = −µB (∇ · b̂)

∂fi

∂v∥
+ C[fi] (18)

to all orders relevant to our calculation (here E∥ = 0 because
the electrons are cold). For resonant particles, v∥ ∼ ε2vthi and
∂δf

(res)
4i /∂v∥ ∼ (ε−2/vthi) δf

(res)
4i , so the expansion of equation (18)

at the first non-trivial order O(ε6) is

dδf
(res)
4i

dt
+ v∥ ∇∥ δf

(res)
4i = µB0

(
∇∥ δB

∥
4

B0

)(
∂f0i

∂v∥
+ ∂δf

(res)
4i

∂v∥

)

+ C
[
δf

(res)
4i

]
. (19)

We have omitted the collision term C[f0i]: it gives a O(ε4) correction
to the line-averaged pressure on the instability time-scale that can
be absorbed into '0.

3 LI N E A R A N D QUA S I - L I N E A R R E G I M E S

Neglecting the non-linear and collision terms in equation (19) and
taking its space–time Fourier transform, we obtain

δf̂
(res)
4ik = µ ik∥ δB̂

∥
4k

γL + i k∥v∥

∂f0i

∂v∥
, (20)

where γL is the linear instability growth rate. Using equation (15) to
calculate δp̃⊥

6i
(res) and substituting it into equation (14), we recover

the linear mirror dispersion relation (Hellinger 2007):

γL =
√

2
π

|k∥|v∗

[
'2 − 3

2
ρ2

∗k
2
⊥ −

(
p⊥

0i − p
∥
0i

p⊥
0i

+ 2
β⊥

0i

)
k2

∥

k2
⊥

]
,

(21)

with the effective thermal speed

v−1
∗ = −

√
2π

2mi

p⊥
0i

∫
v4

⊥
4

∂f0i

∂v2
∥

∣∣∣∣∣
v⊥

δ(v∥) d3v. (22)

Because of the resonance, δf̃
(res)
4i develops a velocity-space bound-

ary layer on the time-scale 1/γL, resulting in a correction to the
line-averaged distribution function that satisfies

dδf
(res)
4i

dt
= −µB0

(
∇∥ δB̃

∥
4

B0

)
∂δf

(res)
4i

∂v∥
+ C[δf (res)

4i ]. (23)

Assuming a monochromatic perturbation for simplicity and using
equation (20) to calculate the line-averaged non-linear term on the

3 Non-linearities quadratic in δB/B are negligible here because of the weakly
non-linear ordering δB/B ∼ '2, which differs from δB/B ∼ ' used in
Califano et al. (2008).
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r.h.s. of equation (23), we recover the resonant quasi-linear diffusion
equation (Shapiro & Shevchenko 1964):

∂δf
(res)
4i

∂t
= ∂

∂v∥

⎡

⎣ 2 (µB0)2k2
∥γL

γ 2
L +

(
k∥v∥

)2

(
δB̃

∥
4

B0

)2
∂f0i

∂v∥

⎤

⎦+ C[δf (res)
4i ]. (24)

The effect of the first term on the r.h.s. of equation (24) is to relax
'2 (see equation 16) by flattening the total averaged distribution
function at low ξ , thereby decreasing the growth rate (Pokhotelov
et al. 2008; Hellinger et al. 2009).

4 TR A P P I N G R E G I M E

Quasi-linear relaxation ceases to be the dominant saturation mecha-
nism once particle trapping becomes dynamically significant (ωB ∼
k∥vthi (δB/B)1/2 ∼ γL). Indeed, due to the growth of δB/B and
quasi-linear reduction of the growth rate ∂/∂t ≪ γL for t ≫ 1/γL,
(i) the system eventually reaches a bounce-dominated regime,
ωB ≫ ∂/∂t , and (ii) collisional and shearing effects, however slow
their time-scales are, compared to the initial linear instability time-
scale, inevitably become important after a few instability times
(hence the maximal ordering equations 8–12). To elicit these ef-
fects, we rewrite equation (18) in (µ, E = v2/2) variables:

dfi

dt
±

√
2(E−µB)

∂fi

∂ℓ
= −µ

dB

dt

∂fi

∂E
+ C[fi], (25)

where ℓ is the distance along the perturbed field line. Expanding
equation (5) and equation (25) at O(ε6), we obtain

dδf
(res)
4i

dt
±

√
2(E−µB)

∂δf
(res)
4i

∂ℓ
= −µB0

d
dt

δB
∥
4

B0

∂f0i

∂E

− µB0

(
d ln B0

dt
+ d

dt

δB
∥
4

B0

)
∂δf

(res)
4i

∂E
+ C[δf4i]. (26)

Here C[f0i] and −µB0 (d ln B0/dt)(∂f0i/∂E) have been discarded
for the same reason as in equation (19). Note that both ∂δf

(res)
4i /∂E

and ∂δf
(res)
4i /∂µ are O(1) because of the velocity-space boundary

layer in |ξ | < ξ tr = O(ε2).
We anticipate that magnetic fluctuations will grow secularly as

δB
∥
4 ∼ δB

∥
4 (tL)(t/tL)s , with s > 0, for t ≫ tL ∼ 1/γL (∼ 1/ωB ),

and introduce a secondary ordering parameter χ = (tL/t)s/2 ≪ 1,
so now δB

∥
4/B0 = O(ε4/χ2) and ξtr ∼ (δB∥

4/B0)1/2 = O(ε2/χ ) ≫
ε2. The instantaneous non-linear growth rate is γNL ∼ ∂/∂t ∼
1/t = O(ε2χ2/s), so the new ordering guarantees ωB ∼ k∥vthi ξtr ≫
γNL. For trapped particles to play a role in the non-linear evo-
lution, their pressure in equation (14) must be taken to be of
the same order as the instability-driving term, '2 (δB∥

4/B0) ∼
δp⊥

6i
(res)/p⊥

0i = O(ε2/χ2). Given that δp⊥
6i

(res) ∼ ξtrδf
(res)
4i , we must

therefore order δf
(res)
4i = O(ε4/χ ). Expanding equation (26) to

lowest order O(ε6/χ2), we find that the distribution function of
the trapped particles is homogenized along the field lines within
the traps: ∂δf

(res)
4i /∂ℓ = 0. Therefore, δf

(res)
4i = ⟨δf (res)

4i ⟩ + δf
(res)
4i

′
,

where δf
(res)
4i

′ ≪ ⟨δf (res)
4i ⟩ and ⟨•⟩ =

∮
• dℓ denotes a bounce av-

erage between bounce points ℓ1 and ℓ2 defined by the relation
E = µB(ℓ1) = µB(ℓ2). Looking at the next orders of equation (26),
we find that the first term on the r.h.s. (the betatron term linear in
perturbations) is O(ε6χ2/s − 2), while the time derivative on the l.h.s.
and the r.h.s. term quadratic in perturbations are O(ε6χ2/s − 1), so
quasi-linear effects are subdominant. The terms involving dln B0/dt
and collisions are O(ε6χ ). For equation (26) to have a solution at
O(ε6χ ), we see that s = 2/3 is required, so δB

∥
4/B0 ∝ t2/3. The

resulting equation for δf
(res)
4i

′
is

∂δf
(res)
4i

′

∂ℓ
= ∓ µB0√

2(E−µB)

⎛

⎝d
dt

δB
∥
4

B0

∂f0i

∂E
+ d ln B0

dt

∂
〈
δf

(res)
4i

〉

∂E

⎞

⎠

± C
[〈

δf
(res)
4i

〉]
. (27)

Using a Lorentz operator and bounce averaging, we obtain
〈

µB0√
2(E−µB)

d
dt

δB
∥
4

B0

〉
∂f0i

∂E
=

− d ln B0

dt

〈
µB0√

2(E−µB)

〉 ∂
〈
δf

(res)
4i

〉

∂E

+ νii

B0

∂

∂µ

⎛

⎝µ
〈√

2(E−µB)
〉 ∂

〈
δf

(res)
4i

〉

∂µ

⎞

⎠ . (28)

5 PH Y S I C A L B E H AV I O U R A N D E VO L U T I O N

This equation has taken some effort to derive but is fairly transparent
physically. It represents a competition between perpendicular beta-
tron cooling of the equilibrium distribution due to the local decrease
of the magnetic field in the deepening mirror traps (the l.h.s. of equa-
tion 28), the perpendicular betatron heating of the trapped-particle
population associated with the increasing mean field B0 (the first
term on the r.h.s.), and their collisional isotropization (the second
term on the r.h.s.). In the weakly collisional, unsheared regime (ν ii ̸=
0, d ln B0/dt ≡ S = 0), the balance is between betatron cooling and
collisions. In the collisionless, shearing regime (ν ii = 0, S > 0), it
is instead between betatron cooling (of the bulk distribution in mir-
ror perturbations) and heating (of the perturbed distribution in the
growing mean field). For the system to stay marginal in the face of
continued driving and/or collisional relaxation, perturbations have
to continue growing. A physical interpretation of the collisionless
case is that trapped particles regulate the evolution so as to ‘see’
effectively a constant total magnetic field.

Solutions of equations (14) and (15)–(28) can be found in the form
δB

∥
4/B0 = A(t)B(ℓ). Using equation (28), this implies ⟨δf (res)

4i ⟩ =
αA (dA/dt)H[(E − µB0)/A(t)] ∂f0i/∂E, where α = 1/S if
ν ii = 0 and 1/ν ii if S = 0 (H also depends on the functional form
of B(ℓ)). Then, from equation (15), δp⊥

6i
(res) = αA3/2(dA/dt)F (ℓ).

Equation (14) will have solutions if αA1/2(dA/dt) = 0'2, with 0

a constant of order unity. As anticipated in our discussion of the
secondary ordering (in χ ), this implies secular growth of perturba-
tions,

A(t) = (0'2St)2/3 and A(t) = (0'2νii t)2/3 (29)

in the shearing-collisionless regime and unsheared-collisional
regime, respectively. This result is formally valid for times St,
ν ii t = O(ε4). The t2/3 time dependence also holds in mixed regimes4

4 It does not apply to the frequently discussed case νii = S = 0, because
continued growth of fluctuations was assumed to derive equation (28). In
that regime, fluctuations should instead settle in a steady state δB/B ∼ '2

through quasi-linear relaxation, possibly after a few transient bounce oscil-
lations (Istomin et al. 2009). However, only a small amount of collisions or
continued shearing/compression is required for the present theory to apply:
these effects are bound to become dynamically important after a few insta-
bility times, once quasi-linear relaxation has reduced the instability drive '

sufficiently.
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(ν ii ̸= 0, S ̸= 0). 0 and B(ℓ) (which is not sinusoidal) are obtained
by solving a non-linear eigenvalue equation involving trapping in-
tegrals. A detailed classification of these solutions lies beyond the
scope of this Letter.

6 C O N C L U S I O N

Equation (28) and the secular growth of the non-linear mirror insta-
bility, δB/B ∝ t2/3, in both collisional and collisionless regimes, are
the main results of this work. Thus, we appear to be approaching
a theory in which trapping effects, higher amplitude non-linearities
(Kuznetsov, Passot & Sulem 2007; Califano et al. 2008; Pokhotelov
et al. 2010) and relaxation of anisotropy through anomalous par-
ticle scattering (Kunz et al. 2014) blend together harmoniously.
The results make manifest the importance of particle trapping
(Kivelson & Southwood 1996; Pantellini 1998). Numerical sim-
ulations (Kunz et al. 2014) confirm t2/3 secular growth of mirror
perturbations in a collisionless, shearing plasma, with saturation
amplitudes δB/B = O(1) independent of S (cf. Riquelme et al.
2014).

The weakly collisional, weakly shearing regimes studied in this
Letter occur in many natural environments (Quataert 2001; Bale
et al. 2009) and are increasingly the focus of attention in the context
of high-energy astrophysical plasmas (Schekochihin et al. 2008;
Rosin et al. 2011; Kunz et al. 2014; Riquelme et al. 2014). The
emergence of finite-amplitude magnetic mirrors with scales smaller
than the mean free path lends credence to the idea that microscale
instabilities regulate heat conduction (Chandran & Cowley 1998),
viscosity, heating (Sharma et al. 2006, 2007; Kunz et al. 2011) and
dynamo (Schekochihin & Cowley 2006; Mogavero & Schekochihin
2014) processes in such plasmas, and profoundly alter their large-
scale energetics and dynamics.
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