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ABSTRACT
In weakly collisional plasmas such as the intracluster medium (ICM), the viscous stress and
the rate of change of the magnetic energy are proportional to the local pressure anisotropy,
so subject to constraints imposed by the pressure-anisotropy-driven microinstabilities (mirror
and firehose) and controlled by the local instantaneous plasma β. The dynamics of such
plasmas can be dramatically different from a conventional magnetohydrodynamic fluid. The
plasma is expected to stay locally marginal with respect to the instabilities, but how it does this
remains an open question. Two models of magnetic field evolution are investigated. In the first,
marginality is achieved via suppression of the rate of change of the field. In the second, the
instabilities give rise to anomalous collisionality, reducing pressure anisotropy to marginal – at
the same time decreasing viscosity and so increasing the turbulent rate of strain. Implications
of these two models are studied in a simplified zero-dimensional setting. In the first model, the
field grows explosively but on a time-scale that scales with the initial β, while in the second,
dynamical field strength can be reached in one large-scale turbulence turnover time regardless
of the initial seed. Both models produce very intermittent fields. Both also suffer from fairly
strong constraints on their applicability: for typical cluster-core conditions, scale separation
between the fluid motions (with account of suppressed viscous stress) and the miscoscale
fluctuations break down at β ∼ 104–105. At larger β (weaker fields), a fully collisionless
plasma dynamo theory is needed to justify field growth from a tiny primordial seed. However,
the models discussed here are appropriate for studying the structure of the currently observed
field as well as large-scale dynamics and thermodynamics of the magnetized ICM or similarly
dilute astrophysical plasmas.

Key words: dynamo – magnetic fields – plasmas – turbulence – galaxies: clusters: intracluster
medium.

1 IN T RO D U C T I O N

Both analytical theory and numerical modelling of the large-scale
dynamics of extragalactic plasmas present conceptual challenges
that are more serious than merely constraints of numerical resolu-
tion or analytical tractability. One of the most intriguing of these
challenges is understanding what happens in a weakly collisional
plasma when a dynamically small magnetic field is stretched and
tangled by the plasma flows – a process that is both interesting in
itself, in the context of the genesis of the magnetic fields ubiqui-
tously observed in the Universe, and integral to any large-scale fluid
dynamics of astrophysical plasmas.

�
E-mail: a.schekochihin1@physics.ox.ac.uk

We call a plasma weakly collisional and magnetized when, on
the one hand, the collision frequency in it exceeds the typical fre-
quencies associated with fluid motions, waves or instabilities, but,
on the other hand, it is much smaller than the Larmor frequency
of the plasma’s constituent ions and electrons gyrating around the
magnetic field (Balbus 2004 calls such plasmas dilute). While this
regime requires some magnetic field to be present, this field by no
means needs to be dynamically significant. As an example, consider
the intracluster medium (ICM) in the cores of galaxy clusters. The
ratio of the ion collision frequency ν ii to the ion Larmor frequency
�i, when referred to the conditions typical of this environment
(taken from Rosin et al. 2011) turns out to be

νii

�i

∼
(

B

10−17 G

)−1

, (1)
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where B is the magnetic field strength. Thus, B ∼ 10−17 G
(corresponding to the ratio of the thermal to magnetic energy
β = 8πp/B2 ∼ 1024) is sufficient for the plasma to be magnetized,
but magnetic field is not strong enough to affect plasma motions via
the Lorentz force until B ∼ 10−6 G (β ∼ 102), a value at which the
magnetic-energy density is comparable to the kinetic-energy den-
sity of the turbulent plasma flows at the viscous scale (Schekochihin
& Cowley 2006). Note that this is close to the values of B measured
in cluster cores (e.g., Carilli & Taylor 2002; Govoni & Feretti 2004;
Vogt & Enßlin 2005).

In a weakly collisional magnetized plasma, the magnetic moment
of each particle, μ = v2

⊥/B (where v⊥ is the peculiar velocity of the
particle’s Larmor motion), is conserved on the time-scales shorter
than the collision time. Therefore, as the magnetic field, which is
frozen into the turbulent flow and, being dynamically weak, might
appear to be entirely at its mercy, is stretched and tangled, its strength
changes (the field gets larger in some places, weaker in others)
and pressure anisotropies develop. If we ignore heat fluxes and
assume that flows are subsonic (therefore, incompressible), the local
pressure anisotropy is1

� ≡ p⊥ − p‖
p

≈ 1

νii

1

B

dB

dt
, (2)

where p⊥ (p‖) is the perpendicular (parallel) pressure with respect
to the local direction of the field. The rate of change of B can be
related to the local plasma flow velocity u according to

dB

dt
= (b̂b̂ : ∇u)B ≡ γB (3)

(this follows from the magnetohydrodynamic, MHD, induction
equation). Here d/dt = ∂t + u · ∇ and b̂ = B/B, so γ = b̂b̂ : ∇u
is the local field-stretching rate. All fluid frequencies, γ amongst
them, are taken to be small compared to ν ii, so � 	 1. For typical
core ICM parameters, � ∼ 0.01 (Kunz et al. 2011; Rosin et al.
2011).

Even though � is small, it turns out to be sufficient to render
the ICM violently unstable to the firehose and mirror instabilities
(see Schekochihin et al. 2005, and references therein), which have
growth rates closer to �i than to ν ii (see Davidson & Völk 1968;
Yoon, Wu & de Assis 1993; Hellinger & Matsumoto 2000; Hellinger
2007; Schekochihin et al. 2010 and Section 3.5) and thus can be
viewed as instantaneous from the point of view of all collisional
and fluid processes (i.e. all macroscale dynamics). The instabilities
are quenched when

� = γ

νii

∈
[
− 2

β
,

1

β

]
, (4)

where the lower threshold is for the firehose and the upper threshold
for the mirror.2 Thus, at large enough β, any change in the magnetic
field leads to instabilities and in order to understand whether and
how magnetic field can continue changing, we must account for the
effect these instabilities have on the dynamics of the ICM.

1 This follows from the so-called CGL equations (Chew, Goldberger & Low
1956), with collisions retained (see, e.g. Schekochihin et al. 2010). Besides
μ conservation, these equations are also an expression of the conservation
of the so-called longitudinal invariant (e.g. Kulsrud 1983; Quest & Shapiro
1996), which is related to the bounce invariant of particles trapped in the
local inhomogeneities of the magnetic field strength.
2 For the mirror, this is only an approximate bound assuming cold electrons
and bi-Maxwellian ions (Hellinger 2007) – approximations that are generally
incorrect quantitatively but give a threshold that is simple enough and close
enough to the truth to be useful in a qualitative discussion.

It is not currently clear precisely how these instabilities saturate,
but it is clear that the result of their saturation will be that the
pressure anisotropy averaged over scales smaller than those of the
fluid motions will not stray beyond the marginal-stability bound-
aries (4) (the clearest evidence for this is found in the solar wind;
see Kasper, Lazarus & Gary 2002; Hellinger et al. 2006; Bale et al.
2009). This suggests that large-scale dynamics of the ICM might
perhaps be modelled in total ignorance of the microphysical com-
plexities associated with the firehose and mirror saturation, simply
by assuming that � stays at most marginal, as per equation (4).
There are, unfortunately, two very different ways in which this can
be accomplished and which of them is correct depends on how the
instabilities saturate.

In equation (4), by � let us understand the mean pressure
anisotropy averaged over the microscales at which the unstable fluc-

tuations appear; similarly, γ = b̂b̂ : ∇u is the mean field-stretching
rate. Whenever � attempts to cross either of the boundaries (4), it
can be reined in either via γ being effectively suppressed by the
instabilities (Model I) or via the effective collision rate ν ii being
enhanced by, say, anomalous particle scattering off the firehose or
mirror fluctuations (Model II). The two models amount to two very
different closures for the fluid equations and lead to very different
physical consequences (see below).

After providing, in the remainder of this section (Section 1.1),
some pointers to relevant previous literature pertaining to the justi-
fication and/or consequences of these two models, we will, in the
rest of this paper, study, using very drastically simplified equations
for the evolution of the magnetic field and the local rate of its
stretching, what implications they might have for the field growth
and its spatial distribution. A ‘zero-dimensional-dynamo’ paradigm
that will be the basis for our investigation of the two models will
be introduced in Section 2. Model I will be studied in Section 3
and Model II in Section 4. The results for each of these will be
summarized at the end of the section devoted to it and a more global
discussion given in Section 5.

1.1 Current status of the two models

The suppressed-stretching-rate model (Model I) was used by Kunz
et al. (2011) in a theory of ICM thermal stability (this will be
further discussed in Section 5). Various versions of the anomalous-
scattering model (Model II) have been used in the theory of explo-
sive dynamo (Schekochihin & Cowley 2006), simulations of accre-
tion flows (Sharma et al. 2006, 2007), anisotropic heat-conduction
instabilities (Kunz et al. 2012) and of turbulent dynamo (Santos-
Lima et al. 2014) as well as a number of simulations and models of
space plasmas (Samsonov et al. 2001, 2007; Chandran et al. 2011;
Meng et al. 2012). In Section 5.4, we will explain why, in light of
the analysis of Section 4, adequate numerical implementation of
Model II may be harder than it appears.

We would like to avoid a lengthy discussion of the relative mi-
crophysical merits of the two models but it is perhaps worthwhile
to outline the state of play as we see it. Traditionally, modelling
results and observational evidence (in the solar wind) have been
interpreted in terms of anomalous scattering of particles pinning
the pressure anisotropy at the instability thresholds (e.g. Gary et al.
1997, 1998; Gary, Yin & Winske 2000; Bale et al. 2009). Some
doubt is, however, cast on the possibility of enhanced scattering at
the mirror threshold by the fact that near marginal stability, the mir-
ror fluctuations have scales much larger than the Larmor radius and
growth rates much smaller than the Larmor frequency (Davidson
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& Völk 1968; Hellinger 2007) and so should not be able to break
the conservation of the first adiabatic invariant. Similar reasoning
(fluctuation scales too large to break adiabatic invariance) holds
for parallel firehose fluctuations – but the oblique firehose does
produce Larmor-scale fluctuations (Yoon et al. 1993; Hellinger &
Matsumoto 2000).

A weakly non-linear theory of the parallel firehose (Schekochihin
et al. 2008; Rosin et al. 2011) finds a mechanism for pinning � at
marginal stability that relies on effective cancellation of the mean
rate of change of the magnetic field strength rather than on anoma-
lous scattering (see Section 3.1). An example of magnetic field evo-
lution in a Braginskii plasma where marginality with respect to the
firehose is maintained via modification of the flow field was recently
found by Melville & Schekochihin (2014). A no-scattering mech-
anism for maintaining marginal � has also been proposed for the
mirror, with a special role assigned to trapped particles in setting up
magnetic ‘holes’ that compensate for the mean field growth (Pan-
tellini, Burgess & Schwartz 1995; Kivelson & Southwood 1996;
Pantellini 1998; Schekochihin et al. 2008; Rincon, Schekochihin &
Cowley 2014; cf. Califano et al. 2008; Pokhotelov et al. 2010).

Recent PIC simulations of a shearing, high-β plasma by Kunz,
Schekochihin & Stone (2014) appear to support this line of thinking
for the mirror threshold (no scattering, non-linear evolution broadly
in agreement with Schekochihin et al. 2008; Rincon et al. 2014) –
except possibly in cases of very strong drive (see also Riquelme,
Quataert & Verscharen 2014) or at late stages of the non-linear evo-
lution, which may or may not be relevant to a situation where the
turbulent velocity field that drives the pressure anisotropy decorre-
lates every turnover time. Incidentally, both Kunz et al. (2014) and
Riquelme et al. (2014) confirm that it is the mirror instability that
dominates in high-β regimes with positive pressure anisotropy, not
the ion-cyclotron instability (cf. Gary et al. 1997, 2000). Note that
solar-wind measurements also appear to support mirror over the ion-
cyclotron instability as controlling the positive-pressure-anisotropy
threshold (Hellinger et al. 2006).

At the firehose threshold, Kunz et al. (2014) find evidence
both of transient evolution reminiscent of the no-scattering theory
(Schekochihin et al. 2008; Rosin et al. 2011) and of oblique fluctu-
ations at Larmor scales vigorously breaking adiabatic invariance in
their saturated non-linear state.

Thus, the state of play appears to be in flux and, with the complete
theory or complete understanding lacking, we take the view that
neither of our two models can as yet be ruled out – and that possible
implications of either are worth investigating.

2 Z E RO - D I M E N S I O NA L DY NA M O

We model the magnetic field evolution by a ‘zero-dimensional’
equation,

∂tB = γB, (5)

where γ (t) is a random time-dependent stretching rate and we will
interpret different realizations of γ as corresponding to different
(strictly speaking, Lagrangian) spatial positions. In the absence of
either dynamical back reaction by the field on the flow or of any
plasma microphysical effects, the stretching rate is of order of the
local rate of strain in the turbulent flow advecting the field. So we
set γ = σ (t), where σ is a scalar quantity representing this local
rate of strain and modelled as an Ornstein–Uhlenbeck process:

∂t σ = −2σ0 σ + 2σ
3/2
0 χ (t), (6)

where χ (t) is a unit Gaussian white noise, 〈χ (t)χ (t′)〉 = δ(t − t′),
and σ 0 is the rms value of σ (in statistically steady state), which is

also the decorrelation rate (see Appendix A; the factors of 2 are for
future normalization convenience). In Kolmogorov turbulence, the
largest rate of strain is associated with the motions at the viscous
scale (because smaller scale ‘eddies’ have shorter turnover times)
and so σ 0 ∼ (ε/μ)1/2, where ε is the mean power injected into
the turbulence (originating from large-scale driving mechanisms;
in clusters, merger-excited instabilities, ejecta from active galactic
nuclei, or galaxy wakes; see, e.g. Norman & Bryan 1999; Enßlin &
Vogt 2006; Subramanian, Shukurov & Haugen 2006; Ruszkowski
& Oh 2010) and μ ∼ p/ν ii is the dynamical viscosity of the ICM.3

Thus, the first term on the right-hand side of equation (6) stands for
viscous damping of the velocity and the second for the fresh input
of turbulent power into the viscous-scale motions coming from the
inertial range.

In the absence of further constraints, equations (5) and (6) lead
to an ensemble of realizations of B with exponentially growing
moments, 〈Bn〉 ∝ exp (σ 0n2t/2), and a lognormal probability den-
sity, P (B) = B−1 exp

[−(ln B)2/2σ0t
]
/
√

2πσ0t (see Appendix A).
This is similar to the standard properties of a kinematic dynamo in
a one-scale stochastic velocity field (see Schekochihin et al. 2002b,
2004, and references therein). Thus, the magnetic energy grows ex-
ponentially but the field is quite intermittent (note that, unlike the
magnetic energy, a typical realization of the field grows subexpo-
nentially, ln B ∼ √

σ0t , so only a small fraction of the realizations
contribute to the exponential growth of 〈B2〉).

The field will grow until the Lorentz force is strong enough to
affect the rate of strain. This happens when the magnetic-energy
density becomes comparable to the kinetic-energy density of the
motions at the viscous scale

B2

8π
∼ (εμ)1/2 ∼ σ0p

νii

. (7)

Since magnetic energy grows exponentially at the rate γ = σ ∼ σ 0,
the dynamical strength (7) is achieved after the time

tdyn ∼ 1

σ0
ln

(
σ0β0

νii

)
, (8)

where β0 = 8πp/B2
0 is plasma β associated with the initial (seed)

field.
Further growth of the field does occur after that, but requires

modelling of its dynamical effect on the flow (see Schekochihin
et al. 2002a, 2004; Cho et al. 2009; Beresnyak 2012). The field can
typically grow in this non-linear regime by a factor of Re1/2, where
Re = ρUL/μ is the Reynolds number of the intracluster turbulence
(ρ is the mass density and U the typical velocity at the outer scale
L). With the viscosity based on the Coulomb collisionality ν ii, Re
is not very much larger than unity in the ICM (Schekochihin &
Cowley 2006; Kunz et al. 2011; Rosin et al. 2011), so the difference
between the field given by equation (7) and the final saturated level
is not very large (we will come back to these non-linear issues
in Sections 3.4 and 4.2). Observationally, the B ∼ 1−10 μG fields
found ubiquitously in clusters (Carilli & Taylor 2002; Govoni &
Feretti 2004; Vogt & Enßlin 2005) are quite close to the magnitude
given by equation (7); this is also the field magnitude that gives
marginal values of the pressure anisotropy (see equation 4).

The ‘zero-dimensional-dynamo’ paradigm is, of course, a gross
simplification, not least because it says nothing of the spatial

3 In a magnetized plasma, this is the parallel Braginskii (1965) viscosity.
While only the parallel component of the rate-of-strain tensor, b̂b̂ : ∇u, is
damped by this viscosity and the perpendicular viscosity is much smaller, the
parallel viscosity is the relevant one for the magnetic field strength evolution
because only motions with b̂b̂ : ∇u �= 0 can change B.
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structure of the field or of its direction relative to the flow and
also ignores the effect of resistivity (or whatever other flux unfreez-
ing mechanism turns out to be important in a weakly collisional
plasma, another area of very poor current knowledge). However, it
is a useful tool to explore what possible effect our two microphys-
ical closure models might have on the evolution of the magnetic
field.

3 MODEL I: SUPPRESSED STRETCHING RATE

3.1 Microphysical closure

In this approach, we assume that the effect of pressure-anisotropy-
driven instabilities is to suppress the stretching rate γ in equation (5)
whenever the rate of strain σ becomes large enough to violate the
mirror or firehose stability conditions. In order to model this, we
stipulate that in equation (5),

if σ ≥ 0, γ = min

{
σ,

νii

β

}
, (9)

if σ < 0, γ = max

{
σ, −2νii

β

}
, (10)

i.e. while the collision rate ν ii is always the Coulomb collision rate
and the rate of strain σ ranges freely, the pressure anisotropy � and,
therefore, the field-stretching rate γ (see equation 4) cannot cross
the stability boundaries.

An example of how such a closure might be achieved microphys-
ically is provided by the calculation by Rosin et al. (2011) of the
non-linear evolution of the parallel firehose instability (the only ana-
lytical example we are aware of from which any inferences about an
effective closure can be drawn). In that calculation, both the large-
scale magnetic field and the large-scale velocity field are perturbed
by fast-growing (and oscillating), small-scale firehose fluctuations:
B = B0 + δB⊥, u = u0 + δu⊥. The mean rate of change of the
magnetic field is

1

B

dB

dt
= b̂b̂ : ∇u = b̂0 b̂0 : ∇u0 + b̂0 · (∇δu⊥) · δB⊥

B0

= 1

B0

dB0

dt
+ 1

2

∂

∂t

|δB⊥|2
B2

0

≈ −2νii

β
, (11)

so the (fast) growth of the firehose fluctuations largely cancels the
(slow) decrease of the large-scale field and keeps the mean rate
of change marginal. This is achieved by perturbations both to the
field and to the flow. However, while their combined effect on γ

is dramatic, the effect of the perturbations just on the rate-of-strain
tensor averages out: ∇u = ∇u0 + ∇δu⊥ = ∇u0. The rate of strain
may be large, but the mean magnetic field does not feel it.

PIC simulations by Kunz et al. (2014) of shearing a mean mag-
netic field in a high-β plasma provide a numerical example of how
the mean rate of change of the magnetic field strength might be
reduced (at least transiently) by both firehose and mirror fluctua-
tions. Another such example, for a collisional magnetized (Bragin-
skii) plasma at the firehose threshold, is reported by Melville &
Schekochihin (2014).

3.2 One-scale flow

Let us first consider a rather artificial situation in which the rate of
strain σ is set without regard to microphysics by the model equa-
tion (6). This amounts to assuming a fixed viscosity determining

a definite cutoff scale for the turbulence and, therefore, a definite
decorrelation rate, σ 0, for the rate of strain. In reality, the pressure
anisotropy will have a dramatic effect on the viscosity of the ICM
– we will take up this further complication in Section 3.4.

3.2.1 Qualitative discussion

In any given realization, how large the field has managed to grow
determines how strongly it can be further stretched. This means that
in the realizations where the field is particularly strong, its growth
(or decay) can also be faster. Conversely, in realizations where
the field is weak, it can neither grow nor decay very fast because
higher values of β constrain the rate of change of the field more
stringently. This suggests a positive feedback mechanism: consider
for a moment a realization where σ has managed to stay at the mirror
threshold at all times: σ = B2νii/8πp. Then ∂tB = (νii/8πp)B3

and the field growth is explosive:

B(t) = B0√
1 − t/tc

, tc = β0

2νii

. (12)

Thus, arbitrary field strength can be achieved in finite time. The con-
dition (7) for the field to become dynamically important is reached
at

tdyn = β0

2νii

− 1

2σ0
. (13)

The first term here will typically be much larger than the second
and so, in comparison with equation (8), this is a rather sluggish
field-growth mechanism – not a surprising outcome as the field
amplification rate is capped by the mirror threshold.

A further setback for the field growth in this scenario arises from
the fact that not all realizations of the random stretching rate γ will
manage to keep close to the mirror threshold for a time of order
tdyn necessary to consummate the explosive growth. Every time
γ strays into negative values and towards the firehose threshold,
the field gets weaker, the maximum value of |γ | decreases and so
recovery and growth become less likely. Furthermore, because of
the asymmetry of the stable interval of stretching rates, [−2/β,
1/β]ν ii, the decrements in the magnetic energy produced by the
negative values of the fluctuating rate of strain are on average twice
as large as the increments produced by its positive values. Thus,
there is a net tendency for field realizations to decay and any growth
will have to come from the rare realizations at the mirror end of
the distribution (see Appendix B for a quantitative discussion of
this point; this tendency is in fact largely an artefact of the zero-
dimensional dynamo model and will be cured in Section 3.3).

The result of all these effects is that only a small fraction f of the
realizations of the field will manage to grow to the dynamical level
(i.e. the field will be very poorly space filling). To obtain a crude
estimate of f, let us estimate the probability for a realization to stay
at positive values of σ (and therefore with γ at or just below the
mirror threshold) throughout the evolution from B0 to the dynamical
strength (7). Since the decorrelation rate of σ is σ 0, the rate of strain
has an opportunity to change sign roughly tdynσ 0 times during the
lifetime of such a successful realization and the probability for it
to stay positive each time is 1/2. Therefore, the fraction of such
realizations is

f ∼
(

1

2

)tdynσ0

∼ exp

(
−σ0β0

νii

)
(14)

(this is derived in a more quantitative fashion in Appendix B2).
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3.2.2 Numerical results

We non-dimensionalize our equations by letting M =
B2νii/8πpσ0 = νii/σ0β, τ = 2σ 0t and σ̃ = σ/σ0. Then the equa-
tions are

∂τM =

⎧⎪⎪⎨
⎪⎪⎩

M2, σ̃ > M,

σ̃M, σ̃ ∈ [−2M,M] ,

−2M2, σ̃ < −2M,

(15)

∂τ σ̃ = −σ̃ +
√

2 χ (τ ). (16)

The dynamically-strong-field condition (7) converts into M = 1.
This system depends on no parameters except the initial normalized
magnetic energy M0 = ν ii/σ 0β0.

Equations (15) and (16) are quite straightforward to solve nu-
merically. To obtain good statistics, a large number of realizations
(typically N = 107 to 109) were used and a parameter scan in the
initial magnetic energy M0 was carried out; for each value of M0,
all realizations had M(τ = 0) = M0, i.e. the initial distribution of
the magnetic energy was δ(M − M0).

In Fig. 1 (left-hand panel), we show the time τ f it takes for a
given fraction f of the realizations to achieve the dynamical level
(7), M = 1. At M0 that is not too small, all τ f follow equation
(13), which in dimensionless terms is simply τ dyn = 1/M0 − 1.
However, for each M0, there is a maximum fraction of realizations
fmax(M0) that will ever reach M = 1, while the rest will decay, and
so τf → ∞ as f → fmax. The inset in the left-hand panel of Fig. 1
shows that fmax follows the estimate (14) quite dutifully.

Examples of realizations that grow or decay are shown in Fig. 2.
Note that the typical behaviour of a successful dynamo realization
is explosive growth (on the time-scale ∼τ dyn), preceded perhaps
by a period of hesitation, in line with the qualitative discussion
in Section 3.2.1. Fig. 1 (right-hand panel) quantifies these periods
of hesitation in terms of the probability density function (PDF)
P1(τ |M0) of the time τ it takes a realization to get from M = M0 to
M = 1. The PDF has a peak at τ ∼ τ dyn and an exponential tail for
τ � τ dyn (see Appendix B2 for the derivation of this result).

The conclusion from the above is that getting to dynamically
significant fields from small initial seeds is both a very slow and a
very rare event in the scenario we have investigated. If a ‘dynamo’
is defined by the requirement of growth of mean magnetic energy

Figure 2. Examples of time evolution of growing and decaying realizations
in Model I, equations (15) and (16) with M0 = 0.1. Note the explosive
episodes that take the field to dynamical level (M = 1).

〈M〉, then this is clearly not a dynamo (in Appendix B, it is shown
that both the typical realizations and all moments of M decay).
However, there are several ways in which our treatment is in fact
overly pessimistic and reasonable amendments to the model render
it much more germane to magnetic field growth. These are discussed
in the next two subsections.

3.3 One-scale flow with a mean stretching rate

The main reason for the decay of the field in the above treatment
is that the decay rate at the firehose threshold (σ̃ = −2M) is larger
than the growth rate at the mirror threshold (σ̃ = M) while the
probability for the rate of strain to stray beyond either of these
thresholds is approximately the same when M 	 1. This is in fact
an artefact of the zero-dimensional dynamo model we have adopted
(Section 2), in which it is hard-wired that 〈σ 〉 = 0. Therefore, in
the absence of instabilities, 〈γ 〉 = 0 and typical realizations neither
grow nor decay on average, 〈ln B〉 = 0; with the instabilities, this
gives the field decay at firehose threshold a competitive edge. In 3D
dynamo, this is certainly not the case: the growing field configures
itself in such a way with respect to the rate-of-strain tensor that

Figure 1. Left-hand panel: times τ f for the fractions f = 10, 1, 0.1 and 0.01 per cent of all realizations to achieve dynamical field strength (M = 1; equation 7)
in Model I, equations (15) and (16), plotted versus initial normalized field energy M0 = νii/σ 0β0. The dotted line is τ dyn = 1/M0 − 1 (equation 13). Inset: total
fraction of realizations that ever make it to M = 1. The dotted line is the theoretical curve (B9). Right-hand panel: PDF of the time τ it took those realizations
to grow to M = 1. The case of M0 = 0.05 is shown together with the theoretical curve (B8).
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〈γ 〉 = 〈b̂b̂ : ∇u〉 > 0 and 〈ln B〉= 〈γ 〉t (see, e.g. Schekochihin et al.
2004; the value of 〈γ 〉 is related to the mean Lyapunov exponents
associated with the rate-of-strain tensor; see Zeldovich et al. 1984;
Chertkov et al. 1999; Schekochihin & Cowley 2007). Spatially this
means that regions where magnetic field decays occupy smaller area
on average than those where it grows, i.e. the rate of strain is more
likely to cross the mirror threshold than the firehose one (this was
quantitatively confirmed in the recent study by Santos-Lima et al.
2014).

To incorporate this feature into Model I, we may stipulate that,
in the absence of thresholds, γ (or, equivalently, σ ) has a non-zero
prescribed mean γ 0. Then in equations (9) and (10), we replace
σ → σ + γ 0. Equation (15) is then replaced by

∂τM =

⎧⎪⎪⎨
⎪⎪⎩

M2, σ̃ > M − γ̄ ,

(σ̃ + γ̄ ) M, σ̃ ∈ [−2M − γ̄ ,M − γ̄ ] ,

−2M2, σ̃ < −2M − γ̄ ,

(17)

where γ̄ = γ0/σ0 > 0.
For M 	 γ̄ , the system is at the mirror threshold with probability

p = 1√
2π

∫ ∞

−γ̄

dσ̃ e−σ̃ 2/2 >
1

2
(18)

and at the firehose threshold with probability 1 − p < 1/2. Then〈
∂τM

M2

〉
= 3p − 2. (19)

The tendency will be for M to decay if p < 2/3 and to grow if
p > 2/3. Using equation (18), we find that the threshold value cor-
responds to γ̄ ≈ 0.4, but one should not regard this as a quantitative
prediction for real 3D turbulence because the distribution of the rate
of strain is in reality very far from being Gaussian. The salient point
is that the spatial structure of the field and the consequent relative
space-filling properties of the regions of growth and decay will mat-
ter. They cannot unfortunately be captured adequately in the zero-
dimensional modelling framework adopted in this paper and require
direct numerical simulations of the dynamo saturation in 3D.

For completeness, an analytical treatment of the Model I with
one-scale flow and non-zero mean stretching rate is given in Ap-
pendix B3. When p > 2/3, the mean magnetic energy is

〈M〉 = 1

1/M0 − (3p − 2)τ
, (20)

which explodes at τ = 1/(3p − 2)M0 ∼ τ dyn (as do all higher
moments of M); all realizations eventually reach the dynamical
level M = 1, fmax = 1. The dynamo is explosive and 100 per cent
‘efficient’, although the growth time is still given by equation (13) –
long if the initial field is small. Fig. 3 confirms this result by showing
the time it takes for a given fraction of realizations to reach M = 1
in a numerical solution of equations (17) and (16) with γ̄ = 0.75
(so p ≈ 0.77).

3.4 Plasma dynamo and the ICM viscosity

The one-scale-flow dynamo model ignores an essential effect. The
suppression of the mean field-stretching rate by the microinstabil-
ities affects not just the rate of growth of the field but also the
effective viscosity of the plasma and, therefore, changes the spatial
scale of the maximum turbulent rate of strain, which is, in Kol-
mogorov turbulence, the viscous cutoff scale. This in turn sets the
magnitude of the rate of strain and so also its decorrelation rate (σ 0,
thus far assumed fixed).

Figure 3. Same as Fig. 1 (left-hand panel), but for the modified Model
I, equations (17) and (16) with mean stretching rate γ̄ = 0.75. This time
all realizations eventually reach M = 1 on a time-scale consistent with
equation (13); times τ f for f = 90, 50, 10, 1, 0.1 and 0.01 per cent are shown.

To be more quantitative, consider the momentum equation in a
magnetized plasma, valid at time and spatial scales longer than the
Larmor period and radius, respectively:

ρ
du
dt

= −∇
(

p⊥ + B2

8π

)
+ ∇ ·

[
b̂b̂ p

(
� + 2

β

)]
. (21)

The mean pressure anisotropy is p� = μ b̂b̂ : ∇u, where μ = p/ν ii

is the (parallel) viscosity of the plasma (see equations 2 and 3). In
the absence of the microinstabilities, it is this term that provides
the viscous damping of the component of the rate of strain that can
change the magnetic field strength (the stretching rate), while the
2/β term is the tension force (Maxwell stress), responsible for back
reaction of the field on the flow – this back reaction was assumed
small for weak fields being amplified by a dynamo. Since, under our

modelling assumptions, b̂b̂ : ∇u is suppressed by the instabilities
and so |�| is never larger than 2/β, there is no mechanism left to
enforce the viscous cutoff on any part of the rate-of-strain tensor.
Thus, as the system crosses the stability thresholds (4), the turbu-
lent cascade is free to extend to very small scales, probably into
the microscale range where the finite-Larmor-radius (FLR) effects
(omitted in equation 21) determine the shape of the velocity spec-
trum and where also the firehose and mirror instabilities operate,
so scale separation is lost between mascroscopic motions and the
microphysics.

As this happens, the maximum rate of strain σ becomes very large
even as the velocity of the motions becomes very small (σ ∝ l−2/3 but
u ∝ l1/3 in Kolmogorov turbulence; l is scale). Therefore, already
very weak magnetic fields can exert dynamical back reaction on
these motions and, if the field is sufficient to do that, the smallest
scale at which the motions are capable of amplifying the field will
be the scale where the kinetic-energy density of the motions is
comparable to the total magnetic-energy density, ρu2

l /2 ∼ B2/8π.
Since ul ∼ (εl/ρ)1/3, this gives

l ∼ p vthi

ε
β−3/2, (22)

where vthi = (p/ρ)1/2 is the ion thermal speed. The corresponding
rate of strain is

σ ∼ ul

l
∼ ε

p
β ∼ σ0

M
. (23)
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As the magnetic field grows, the scale (22) gets larger and the rate
of strain (23) smaller. Note, however, that the rate at which the
field is amplified is at all times limited by the instabilities to be �
ν ii/β 	 σ , as given by equation (9), so equation (23) just gives the
decorrelation rate of the stretching, not its actual magnitude, i.e. the
inverse of the typical time that the system might spend at the mirror
threshold before flipping the sign of σ and ending up at the firehose
threshold.

The argument involving the tension force limiting the motions
does not apply at the firehose threshold: indeed, there � + 2/β = 0
and so the viscous damping and the non-linear back reaction in
equation (21) exactly cancel each other: field lines lose tension
and the motions no longer feel them at all. This means that in the
regions and instances where the field weakens, the cutoff scale for
the motions is microphysical (FLR determined), giving the rate of
strain – and, therefore, the decorrelation rate – much larger than in
the growing-field regions.

Thus, as the field grows, the typical time the system spends at
the mirror threshold becomes much larger than the time it spends
at the firehose threshold. This resembles the dynamo discussed in
Section 3.3: ∂τM = M with probability p → 1 and ∂τM = −2M

with probability 1 − p → 0. The result will, therefore, be a robust
explosive dynamo with the typical growth time again given by
equation (13).

One can construct model dynamical equations for σ (to replace
equation 16) that would include all of the above effects and then
solve them numerically together with equation (15).4 However, the
level of uncertainty about the way in which the rates of strain at the
mirror and, especially, firehose thresholds are determined is such
that a zero-dimensional modelling exercise is unlikely to teach us
much more than the above qualitative discussion has done – and any
further conclusions will be sensitive to a large number of modelling
choices. A more promising course of action here would be direct
3D numerical simulations using Braginskii MHD equations with a
suitable implementation of the microphysical closure corresponding
to Model I – such a study, although highly desirable, is outside the
scope of this paper.

3.5 Constraints on the seed field

In order for the above considerations to be applicable, time- and
spatial-scale separation between macro- and microphysics must be
present. This imposes a number of constraints all of which can be
expressed as lower bounds on the magnitude of the magnetic field
– and, therefore, on the initial seed field from which any of the
dynamo models considered so far is allowed to start.

These constraints can be expressed in terms of β (or M) and the
three relevant time-scales in the problem, for which we will adopt
reference core ICM values (cf. Enßlin & Vogt 2006; Schekochihin
& Cowley 2006; Kunz et al. 2011; Rosin et al. 2011):

σ0 ∼ 10−14 s−1, (24)

νii ∼ 10−12 s−1, (25)

�1 ∼ 1 s−1, (26)

where �1 = e
√

8πp/mc is the Larmor frequency corresponding to
β = 1. Let us itemize the constraints.

4 The treatment of the enhanced-collisionality case in Section 4 is an example
of how non-linear equations for σ incorporating dependence on M might be
constructed.

(i) Plasma must be magnetized: ν ii 	 �i, provided

1

β
�

(
νii

�1

)2

∼ 10−24, or M � ν3
ii

σ0�
2
1

∼ 10−22, (27)

a constraint overriden by the more stringent ones to come.
(ii) The typical growth rates of the mirror and firehose instabil-

ities must be larger than the turbulent rate of strain in order for an
‘instantaneous’ suppression of the latter to be a sensible assump-
tion. The peak growth rates of the parallel firehose (e.g. Davidson &
Völk 1968; Schekochihin et al. 2010) and mirror (Hellinger 2007)
are

γf ∼ �i

∣∣∣∣� + 2

β

∣∣∣∣ ∼ �1

β3/2
, (28)

γm ∼ �iβ

(
� − 1

β

)2

∼ �1

β3/2
. (29)

For the purposes of these estimates, we take � ∼ 1/β and as-
sume that the distance to threshold is also of order 1/β (assuming
β � 1). This is reasonable (e.g. Rosin et al. 2011), but not neces-
sarily obvious (especially for the mirror; see Hellinger 2007 – but
we do not have a better a priori estimate). If the microinstabilities,
in their non-linear state, manage to keep the pressure anisotropy
even more tightly pinned to the threshold, their effective growth
rates become smaller, scales larger and the resulting lower bounds
on the seed field even more stringent. Note that the oblique firehose
grows faster than the parallel one (Yoon et al. 1993; Hellinger &
Matsumoto 2000), so if γ f and γ m given by equations (28) and (29)
are large enough, so will be the growth rate of the oblique firehose.

Thus, the reference instability growth scale we will use is
γ m ∼ �1/β

3/2. Then σ 0 	 γ m if

1

β
�

(
σ0

�1

)2/3

∼ 10−10, or M � νii

σ
1/3
0 �

2/3
1

∼ 10−8. (30)

With the heuristic model of the ICM viscosity proposed in Sec-
tion 3.4, the effective rate of strain at the mirror threshold is given
by equation (23) and so σ 	 γ m if

1

β
�

(
ε

p�1

)2/5

∼ 10−7, or M � ν
3/5
ii

σ
1/5
0 �

2/5
1

∼ 10−5 (31)

(we have used ε/p = σ 2
0 /νii). Note that γ f might be a sensible

estimate for the maximum rate of strain accessible at the firehose
threshold, in which case the condition for the system to be at the
mirror threshold with larger probability (p ∼ 1 − σ/γ f) than at the
firehose threshold is σ 	 γ f, which is automatically ensured by
equation (31).

(iii) The typical scales of the mirror and firehose instabilities must
be shorter than the scale of the motions that stretch the magnetic
field. The (parallel) scales at which the peak growth rates (28) and
(29) are achieved are

lf ∼ ρi√|� + 2/β| ∼ vthi

�1
β, (32)

lm ∼ ρi

β(� − 1/β)
∼ ρi ∼ vthi

�1
β1/2, (33)

where ρ i = vthi/�i is the Larmor radius. For the oblique firehose,
lf ∼ ρ i. The constraints that are obtained by requiring l � lm, lf are
less stringent than equation (31).

(iv) The use of equation (9) for the effective rate of amplification
of the magnetic field is predicated on the calculation of the pressure
anisotropy from the balance of the rate of change of the field and
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the collisional isotropization (see equation 2), which requires the
collision time-scale to be shorter than any fluid time-scales. On the
other hand, the collision rate must be smaller than the growth rates
of the instabilities. Requiring ν ii 	 γ m gives

1

β
�

(
νii

�1

)2/3

∼ 10−8, or M � ν
5/3
ii

σ0�
2/3
1

∼ 10−6. (34)

In Section 3.4, the rate of strain becomes large for small M (see
equation 23) and so the requirement σ 	 ν ii imposes what turns
out to be the most stringent of the lower bounds on the magnetic
energy:

1

β
� ε

pνii

∼ 10−4, or M � σ0

νii

∼ 10−2. (35)

If this is violated, further modelling choices have to be made re-
garding the handling of the collisionless mechanism for setting the
relationship between the mean pressure anisotropy and the rate of
change of the magnetic field,5 currently a poorly understood issue,
which we leave outside the scope of this paper and which is likely
to require some form of collisionless Landau-fluid closure (e.g.
Snyder, Hammett & Dorland 1997; Passot & Sulem 2007; Passot,
Sulem & Hunana 2012).

3.6 Summary for Model I

In this model, the pressure anisotropy is kept from crossing the
firehose and mirror thresholds by the effective suppression of the
mean rate of change of the magnetic field. This means that the field
growth is generally less efficient than it would have been without the
microinstabilities. While the growth is, mathematically speaking,
explosive, the time for it to happen is tdyn ∼ β0/ν ii (equation 13),
which can be very long if the initial seed is small and collisions
are rare.

If we accept this scenario, the implication is that it is virtually
impossible to generate fields of observed strength (B ∼ 10−6 G, or
β ∼ 102, or magnetic energy M ∼ 1 in our dimensionless terms)
from purely primordial seeds (B ∼ 10−21−10−9 G; see review by
Durrer & Neronov 2013). If, on the other hand, there is (or was)
a sustained source of field only one or two orders of magnitude
below the dynamical strength, then the dynamical field level can
perhaps be effectively maintained by turbulence, possibly in very
intermittent patches. To study this, one would need to combine a
dynamo saturation model (e.g. Boldyrev 2001; Schekochihin et al.
2002a) with the model of field evolution in the presence of pressure
anisotropies. Given the large amount of theoretical uncertainty in the
understanding of both, we leave this outside the scope of this paper –
and note that significant progress could be made via direct numerical
simulations incorporating a microphysical closure represented by
Model I.

An essential caveat to the above conclusion is that all versions
of Model I that we have discussed are valid only for relatively
large magnetic fields, owing to a number of lower bounds on the
magnetic energy imposed by the requirement of scale separation be-
tween fluid, collisional and microinstability time and spatial scales
(Section 3.5). The most pessimistic of these bounds (equation 35)
constrains B to values only an order of magnitude below the target

5 We stress that it is the relationship between � and γ that is unclear; the
pressure anisotropy itself is likely always to be at the mirror or firehose
thresholds (Kasper et al. 2002; Hellinger et al. 2006; Bale et al. 2009;
Laveder et al. 2011).

dynamical strength and thus means that these ideas are primarily
useful for the study of how the field is structured and maintained
in the currently observed turbulent ICM rather than how it grew to
its present level from a tiny seed. The question of magnetogenesis
starting from a tiny seed may have to wait for a better understanding
of field growth in a collisionless (as opposed to weakly collisional)
plasma (see further discussion in Section 5.1).

4 M O D E L I I : E N H A N C E D C O L L I S I O NA L I T Y

4.1 Microphysical closure

Now we examine the possibility that it is not the stretching rate of
the field but the effective collisionality of the plasma that keeps the
pressure anisotropy from crossing the instability thresholds. The
stretching rate is always γ = σ and the rate of strain σ continues
to obey equation (6) as long as σ ∈ [ − 2, 1]ν ii/β, but whenever it
falls outside this interval, we postulate an instantaneous adjustment
of the collision rate:

νeff = ξ |σ |β, (36)

where ξ = 1/2 and 1 at the firehose and mirror thresholds, respec-
tively. Larger collision frequency means smaller effective viscosity,
μeff = p/νeff = μν ii/νeff, where μ and ν ii continue to denote the
‘bare’ viscosity and collisionality associated with Coulomb colli-
sions. Therefore, locally, the Kolmogorov cascade will extend to
smaller scales and larger rates of strain ∼(ε/μeff)1/2 (Schekochihin
& Cowley 2006). We can model this by replacing in equation (6)

σ0 → σ0

(
νeff

νii

)1/2

= σ0

(
ξ |σ |β

νii

)1/2

, (37)

where σ 0 will continue to denote the ‘bare’ rms rate of strain. Adopt-
ing again the non-dimensionalization introduced in Section 3.2.2,
we replace equations (15) and (16) with6

∂τM = σ̃M, (38)

∂τ σ̃ = −σ̃ +
√

2 χ (τ ), ξ |σ̃ | ≤ M, (39)

∂τ σ̃ = −
(

ξ |σ̃ |
M

)1/2

σ̃ +
√

2

(
ξ |σ̃ |
M

)3/4

χ (τ ), ξ |σ̃ | > M. (40)

Note that our approach here differs from the earlier work by
Schekochihin & Cowley (2006; where the possibility of an explo-
sive dynamo was first explored) in that there a specific microphysi-
cally inspired formula for the effective collisionality was postulated,
while here we take a more agnostic attitude and simply assume that
the anisotropy will always be effectively pinned at the marginal
level. In this sense, the model proposed here is a more adequate
reflection of what ought to happen in numerical simulations that
adopt the prescription of sharply increased local collisionality to
prevent firehose and mirror instabilities from developing (Sharma
et al. 2006; Kunz et al. 2012; Meng et al. 2012; Santos-Lima et al.
2014). However, in none of these simulations has it so far been pos-
sible to accommodate numerically the dramatic local refinement of

6 We use the Stratonovich stochastic calculus discretization rule for the term
containing white noise in equation (40), i.e. ∂τ σ̃ = [σ (τ + dτ ) − σ (τ )]/dτ

and σ̃ on the right-hand side is [σ̃ (τ + dτ ) + σ̃ (τ )]/2; χ (τ ) dτ is the Wiener
measure. The numerical results obtained using the Itô calculus instead are
not significantly different.
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the viscous dissipation scale – the key effect here! – and thus we
remain in the realm of largely unexplored physics (see discussion
in Section 5.4).

4.2 Qualitative discussion

Ignoring for the purposes of a quick estimate the difference between
the rate of strain σ and its rms value, we find from equation (37)

σ ∼ σ 2
0

νii

β ∼ ε

p
β ∼ σ0

M
⇒ μeff ∼ μ

νii

νeff
∼ μM2, (41)

so realizations with weaker magnetic field will have smaller vis-
cosity, faster stretching, smaller viscous scale (Kolmogorov scale
∝ μ

3/4
eff ), but also smaller velocities at this scale (∝ μ

1/4
eff ). This

means that, with respect to these velocities, the magnetic field will
not need to be very strong in order to start having a dynamical
effect – and examining the condition (7) with μ replaced by μeff,
we discover that it is in fact exactly satisfied by the estimates (41).
Thus, in this scenario, the dynamo becomes non-linear the moment
either of the instability thresholds is crossed.

It might appear that this development requires some amendment
to our model reflecting the role of the newly ascendant Lorentz
back reaction in moderating the dynamo. In fact, our model al-
ready takes care of this effect, on a qualitative level. Indeed, let us
consider what happens when the magnetic-energy density becomes
comparable to the kinetic-energy density of the viscous-scale tur-
bulent ‘eddies’. These eddies (or, to be precise, the stretching rate
associated with them, b̂b̂ : ∇u) become suppressed and the field is
now stretched by the eddies at the next largest scale, grows to have
energy density comparable to the eddies at that scale, suppresses
them, and so on until it has thus worked its way up the inertial range
to be in energy equipartition with the largest turbulent motions.
This scenario (Schekochihin et al. 2002a) was recently studied and
validated in the MHD numerical simulations of Cho et al. (2009)
and Beresnyak (2012; ideologically it goes back to the classic paper
by Biermann & Schlüter 1951). The field growth can be modelled
by requiring that magnetic energy, as it grows, is always ampli-
fied by the turbulent eddies ul at scale l that have the same energy
density:

d

dt
B2 ∼ ul

l
B2 ∼ ρu3

l

l
∼ ε ⇒ B2 ∼ εt, (42)

where ε is the constant Kolmogorov cascade rate. This is precisely
what would happen in our model except the scale l will always be
the viscous scale set by the effective viscosity μeff: indeed, using
equation (41), σ̃ ∼ 1/M , in equation (38), we get

∂τM ∼ 1, (43)

and so the magnetic field reaches M = 1 (which corresponds to
dynamical strength with respect to the eddies at the viscous scale
set by the ‘bare’ Coulomb collision rate; see equation 7) at the time

τdyn ∼ 1 − M0, or tdyn ∼ 1

σ0

(
1 − νii

σ0β0

)
. (44)

This is at most one large-scale stretching time, regardless of the size
of the initial field – a much faster dynamo than achieved by Model
I (equation 13) or by the conventional MHD dynamo (equation 8).

Figure 4. Examples of the time evolution of particular realizations in Model
II, equations (38)–(40) with M0 = 0.01. Episodes of intense growth are
manifest here; this growth is exponential in time with the rate 1/M, where M
is the magnetic energy at the beginning of the episode – the corresponding
slopes are shown as dotted lines. See discussion in Sections 4.3.1 and 4.3.2.

4.3 Numerical results: effects of randomness and finite
decorrelation rates

4.3.1 Why the field grows

In view of the experience of a dynamo failure in the simplest version
of Model I (Section 3.2), we ought to ask why the above scenario
should preferentially produce growth of the field rather than decay.
The key difference between Models II and I is that in Model II,
the modification of the field-stretching rate as a result of crossing
the instability thresholds is not instantaneous: it is the effective col-
lisionality νeff that is modified on the short time-scales associated
with the instabilities, which then leads to the change in the instanta-
neous decorrelation rate of σ̃ (see equation 40). The actual value of
σ̃ then takes the time τ ∼ (|σ̃ |/M)−1/2 to change to a new random
value, with a modified rms of order 1/M.

Consider the evolution of any particular realization of the field. If
it finds itself at the mirror threshold, the field grows, with it increases
the effective collisionality, so the instantaneous decorrelation rate of
σ̃ decreases and the system can spend a longer time at this threshold
before σ̃ flips sign. In contrast, at the firehose threshold, the field
drops, the decorrelation rate goes up and so the system can revert
to positive growth rate sooner – and when it does, it grows at a
relatively higher rate, σ̃ ∼ 1/M , because it starts at a lower value
of M.7

Fig. 4 shows examples of time histories M(τ ) obtained by nu-
merical solution of equations (38)–(40). A particularly striking fea-
ture that is manifest here is that the field growth can happen in
short intense bursts during which the rate of increase is exponen-
tial and so much faster than suggested by the ‘non-linear-dynamo’
secular-growth estimate (42). These fast-growth episodes allow the

7 Note that in truth, the system’s reluctance to linger at the firehose threshold
may be even greater than our model allows because the exact cancellation
of the viscous stress will likely drive the effective decorrelation rate even
higher. This is reminiscent of the discussion in Section 3.4 except it is the
enhanced collisionality that sets � + 2/β = 0 this time, so the rate of change
of the field is not instantly affected – and by the time it is affected, it may
have changed sign. We do not attempt to model the effect of the cancellation
of the viscous stress because the enhanced collisionality produced by the
firehose fluctuations during an episode of field decay may actually set the
expectation value of the growth rate after one decorrelation time.
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Figure 5. Left-hand panel: times τ f for the fractions f = 90, 50, 10, 1 and 0.1 per cent of all realizations to achieve M = 1 in Model II, equations (38)–(40),
plotted versus initial normalized field energy M0 = νii/σ 0β0. The two dotted lines are τ dyn = 1 − M0 (equation 44) and τ 0 = M0ln (1/M0) (equation 45).
Right-hand panel: PDF of the time τ it took those realizations to grow to M = 1. Three cases, M0 = 0.1, 0.01, 0.001 are shown here, with τ rescaled by τ 0. The
slope corresponding to τ−3/2 is shown for reference. Inset: same PDFs, but without rescaling by τ 0 and shown on a log-linear plot to highlight the exponential
cutoff at τ � 1 ∼ τ dyn.

field to reach M = 1 much more quickly than predicted by the
estimate (44).

4.3.2 Time to saturation

Consider a realization starting with M = M0 	 1 and quickly
finding itself at the mirror threshold. Then the initial growth rate is
σ̃ ∼ 1/M0 (equation 41) and so M ∼ M0exp (τ/M0). Allowing for
a (relatively rare) instance in which this value of σ̃ persisted longer
than the typical correlation time (of order M0 initially, but getting
longer as M grows), we find that M = 1 is achieved after

τ0 ∼ M0 ln

(
1

M0

)
, or t0 ∼ p

εβ0
ln

(
σ0β0

νii

)
	 tdyn. (45)

This means that some number of realizations will get there much
earlier than suggested by the estimate (44). These are the fast-growth
episodes seen in Fig. 4.

Fig. 5 quantifies their contribution to the overall field growth
using the numerical solution of equations (38)–(40) (typically for
N = 105 realizations). The left-hand panel shows that the time τ f

needed for a given fraction f of these realizations to achieve M = 1
actually decreases at small M0, in contrast to the more conservative
prediction (44). The PDF of the time for the realizations starting
at M = M0 to reach M = 1, P1(τ |M0) (right-hand panel), has a
peak around τ = τ 0, followed by a power-law tail with a scaling
that appears to be ∼τ−3/2 (cf. the MHD case, equation A17), and
then an exponential cutoff at τ � 1 (i.e. t � tdyn, as per equation
(44); see the inset in the left-hand panel of Fig. 5). Eventually all
realizations reach M = 1 (the dynamo is 100 per cent efficient),
with a (relatively small) fraction arriving much earlier than others
(of order 10 per cent; these are the realizations with τ up to the left
of the peak of the PDF).

4.3.3 Stochastic non-linear plasma dynamo

It is interesting, for completeness, to examine what happens at times
τ 0 	 τ 	 τ dyn ∼ 1, i.e. during the period when the system settles
into self-similar evolution, as suggested by the power-law behaviour
of P1(τ |M0). Since at this point we are getting deeper into the study
of the precise properties of the particular zero-dimensional model
we have chosen (equations 38–40) – properties that may or may not

carry over quantitatively to the more realistic situations, – we have
exiled the more detailed treatment to Appendix C. Let us discuss its
results in qualitative terms.

As we explained in Section 4.2, the dynamo is non-linear at
all times and so, in some typical sense, ∂τM becomes a constant
independent of M (equation 43). In the stochastic system given by
equations (38)–(40), this behaviour can be teased out by formally
introducing a new stochastic variable, λ = σ̃M , so equation (38)
becomes

∂τM = λ (46)

and equation (40) can be transformed accordingly into an equation
for λ. It then turns out that λ has a stationary distribution with most
probability around λ ∼ 1 (as should be expected from the estimate
σ̃ ∼ 1/M). This distribution is strongly intermittent: the PDF of λ

has a power-law tail, P(λ) ∼ λ−2 at λ � 1, and so a logarithmically
divergent mean. Since from equation (46) it follows that 〈M〉= 〈λ〉τ ,
the mean magnetic energy also diverges; indeed, its PDF turns out
to have a power-law tail, P(M) ∼ M−1 at τ 	 M 	 1. The PDFs
of λ and M obtained by numerical solution of equations (38)–(40)
are shown in Fig. 6; note that the PDF of M evolves self-similarly
in time.

Obviously, the divergence of 〈M〉 does not mean that the magnetic
energy is infinite or, worse still, that its PDF is non-normalizable as
an M−1 tail would imply. In fact, the distribution of M is regularized
at M ∼ 1 because for M � 1, the rate of strain σ̃ no longer spends
most of the time outside the stable interval [−2M, M] and the
dynamics start to look more akin to the conventional dynamo of
Section 2. Furthermore — and more to the point, physically, the
field growth must saturate at M � 1 via a non-linear mechanism
not included in our model (in our numerical simulations, we simply
remove the realizations that reach M = 1). Physically, the divergence
of 〈M〉 on time-scales τ ∼ 1 is a statistical expression of the fact
that individual realizations can have periods of intense growth that
take them to M = 1 in very short times τ ∼ τ 0 	 1, as discussed in
Section 4.3.2.

4.4 Constraints on the seed field

We now itemize a set of constraints on the magnetic field in the
same way as we did in Section 3.5 for Model I, with typical ICM
time-scales given by (24)–(26).

MNRAS 440, 3226–3242 (2014)

 by guest on A
pril 18, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


3236 F. Mogavero and A. A. Schekochihin

Figure 6. Left-hand panel: PDF of λ = σ̃M for λ > 0 in Model II, equations (38)–(40) with initial magnetic energy M = 0.01. The PDF is shown at τ = 0.25,
0.5, 1 and 2 and is approximately stationary. Slopes corresponding to λ−3/4 and λ−2 are shown for reference (they are derived in Appendix C). Right-hand
panel: PDFs of M for the same simulation, shown for the same times, with M rescaled by the time τ (the PDF evolves self-similarly; see Appendix C). The slope
corresponding to M−1 is shown for reference. Note that realizations that reach M = 1 are removed from our simulation, so this PDF is just for the remaining
ones at any given time.

(i) Plasma must remain magnetized with respect to the increased
effective collisionality: νeff ∼ σβ ∼ (ε/p)β2 	 �i (see equations
36 and 41). This gives

1

β
�

(
ε

p�1

)2/5

∼ 10−7, or M � ν
3/5
ii

σ
1/5
0 �

2/5
1

∼ 10−5, (47)

a much more stringent constraint than equation (27), which used
the ‘bare’ Coulomb collision rate.

(ii) The same lower bound on the magnetic field is obtained (co-
incidentally) by demanding that the rate of strain remain slower
than the peak growth rates (28) and (29) of the firehose and mirror
instabilities. The bound is the same as for Model I, equation (31),
because the maximum rate of strain affecting the magnetic field
is the same in Model II and in the version of Model I proposed
in Section 3.4 (see equations 41 and 23) – indeed, as discussed in
Section 4.2, setting the effective collisionality to pin the pressure
anisotropy at the marginal level is equivalent to requiring the mag-
netic field to be just dynamically significant at the corresponding
‘viscous’ scale, the principle used to set that scale in Section 3.4.

(iii) The above constraints are in fact overriden by an even
stronger requirement that the effective collision rate (not just the
rate of strain) be smaller than the mirror’s growth rate: imposing
νeff ∼ (ε/p)β2 	 γ m ∼ �1/β

3/2 gives

1

β
�

(
ε

p�1

)2/7

∼ 10−5, or M � ν
5/7
ii

σ
3/7
0 �

2/7
1

∼ 10−3. (48)

Thus, as with Model I, we again conclude that a relatively simple
closure scheme represented by Model II is not really adequate for
describing the evolution of truly weak magnetic fields. We will
discuss this issue further in Section 5.1.

4.5 Summary for Model II

In this model, the pressure anisotropy is kept marginal by the en-
hancement of the effective collisionality of the plasma, owing to
alleged scattering of particles off the microscale magnetic fluctu-
ations caused by the pressure-anisotropy-driven instabilities. This
results in a dramatic decrease of the local viscosity of the plasma
wherever and whenever the field is weak and changing. The turbu-
lent cascade in such places can extend to very small scales, so the

rate of strain becomes very large and very fast field growth results.
Dynamical saturation can be achieved, at least by some fraction of
realizations, on time-scales that are smaller for weaker seeds than
for strong ones (equation 45) – and by the majority of realizations
after one large-scale turnover time (equation 44). Both the field and
its rate of growth are extremely intermittent, with shallow power-
law distributions (Section 4.3.3), as one might intuitively expect in
a physical system where the local value of viscosity depended on
the local instantaneous magnetic field and its stretching rate. The
dynamo is always non-linear in the sense that the magnetic-energy
density is comparable to the kinetic-energy density of the motions
that are dominantly amplifying it at any given moment in time
(Section 4.2).

Thus, the dynamo in Model II is fast (much faster than the regular
MHD dynamo)8 and very efficient. However, in order for the model
to be valid, scale separation is required between the smallest spatial
and time-scales of the fluid motions benefitting from diminished
viscosity and the spatial and time-scales of the mirror and firehose
fluctuations that are making this diminished viscosity possible. This
requirement constrains the field (under the most pessimistic esti-
mate, equation 48) to values just over an order of magnitude below
the observed strength, rather like in Model I. Thus, here again, the
model of field evolution provided by the enhanced-collisionality
closure is more suitable for studying the magnetized dynamics of
the current state of the ICM than the genesis of the observed field
from a tiny primordial seed (see further discussion in Section 5.1).

5 D I SCUSSI ON

It is perhaps fair to say that the foregoing represents more an account
of the state of our ignorance about the nature of plasma dynamo
(or, more generally, the dynamics of magnetic field in weakly col-
lisional environments) than a definitive solution even to a subset of
the problem. Nevertheless, we believe it was useful to compose this
catalogue of seemingly sensible modelling choices, a priori limita-
tions of their validity (see Sections 3.5 and 4.4), and their possible
consequences – not least because moving these from the category

8 See discussion in Section 5.4 on why this is not seen in current numerical
studies employing the enhanced-collisionality closure.
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of unknown unknowns to that of the known ones allows for a more
informed discussion of the problems at hand.

What are these problems that motivate the need to model the ICM
at all? Here we focus on three of them; for the specific conclusions
from our investigation of Models I and II, we refer the reader to the
summaries provided in Sections 3.6 and 4.5.

5.1 Cosmic magnetogenesis and collisionless plasma dynamo

It is a long-standing question how the magnetic field in the Uni-
verse has managed to grow from a small primordial seed to the
observed value (in the μG range in galaxy clusters). This requires
an amplification by at least three and possibly many more orders of
magnitude over a period of a few billions of years (the estimates for
the primordial field vary from 10−21 to, very optimistically, 10−9 G;
see Durrer & Neronov 2013). The plasma is magnetized and weakly
collisional (dilute) already for B � 10−17 G, so conventional MHD
description is unsuitable and a model of field evolution incorporat-
ing pressure-anisotropy-driven microinstabilities is required.

Normally one assumes that there would be a healthy scale sep-
aration between the chaotic motions of the ICM that amplify the
field and the firehose and mirror instabilities that limit the pressure
anisotropy arising from any attempt to change B. The two models
of how they do that considered above were concerned with the re-
lationship between the pressure anisotropy and the rate of change
of the field while taking the action of the instabilities to be instan-
taneous. Two very different field-evolution scenarios have emerged
(slow for Model I, fast for Model II) – but what the models have
in common is the dramatic reduction in the field-parallel viscous
stress (which is equal to the pressure anisotropy). As a consequence,
the turbulent rates of strain responsible for amplifying the field are
expected to be much larger and to occur at much smaller scales
than is usually assumed for the ICM. Keeping these scales sep-
arated from the scales (in time and space) at which the firehose
and mirror fluctuations occur is only possible for magnetic fields
merely one or two orders of magnitude below the observed level.
Thus, in order to understand how the field can grow from a pri-
mordial seed to values of order 10−8−10−7 G, we need a theory
of a fully collisionless dynamo operating with no scale separation
between plasma flows and pressure-anisotropy-driven instabilities.
Is there such a dynamo? How fast is it? These questions are open
– and they cannot be answered by solving fluid equations with any
microphysical closure that assumes an instantaneous adjustment of
the pressure anisotropy to marginal level, but rather require a fully
kinetic treatment. This is a hard problem, but the good news is that
at least its numerical solution appears less challenging if no scale
separation between the motions and the instabilities is required.

5.2 Understanding observed magnetic field and ICM motions

As the field grows closer to the observed level, the instabilities
do become instantaneous and so the dynamics of the field and the
plasma can perhaps be described by MHD equations with a mi-
crophysical closure represented by one of the two models we have
studied. Understanding the structure of the saturated field – and of
the turbulence into which it is embedded – is a fascinating problem,
also quite open. In particular, it is entirely unclear what sets the
spatial scale of the observed magnetic field. Arguably this is actu-
ally a more interesting problem than the magnetogenesis as the field
appears to be of dynamically important strength everywhere it has
been measured, so theories of how it got there are not observation-
ally falsifiable (except perhaps in the laboratory; see, e.g. Spence,
Reuter & Forest 2009). In contrast, turbulence measurements in the

ICM over a range of scales are a growing industry (e.g. Schuecker
et al. 2004; Vogt & Enßlin 2005; Churazov et al. 2012; Sanders
& Fabian 2013), so a good understanding of its magnetofluid dy-
namics is quite indispensable – and not possible without a model
of how magnetic field can change in a moving weakly collisional
plasma. This point applies with even greater force to the multitudi-
nous observations and attendant modelling of various large- and
medium-scale ordered motions in the ICM, which invariably require
dragging magnetic field around (e.g. rising bubbles; see Churazov,
Ruszkowski & Schekochihin 2013, and references therein).

5.3 Heating of the ICM

An interesting and important non-trivial consequence of the closure
one assumes for the pressure anisotropy and for the evolution of
the magnetic field is the thermal stability of the ICM and hence the
existence or absence of the so-called cooling catastrophe (see Kunz
et al. 2011, and references therein). The viscous heating rate per
unit volume in a magnetized, subsonically moving plasma is

Qvisc = (p⊥ − p‖) γ ∼ νiip�2 ∼ νiip

β2
, (49)

where the last expression follows by assuming that the pressure
anisotropy is marginal with respect to firehose or mirror instabil-
ity conditions (cf. Lyutikov 2007). Thus, even though the viscous
heating comes from the dissipation of plasma motions, the final
expression for it does not appear to be related to them except via the
local value of β (which, one assumes, is set by the saturated level
of the magnetic field and, therefore, related to the kinetic-energy
density of the turbulence).

Under the assumptions of Model I, the collision rate in equation
(49) is the Coulomb collision rate and so we have a specific local
relationship between the heating and the local values of magnetic
field B, density n and temperature T of the ICM. Balancing Qvisc

with the radiative cooling rate of the ICM, which depends on n and
T, produces a definite relationship between these parameters and
the magnetic field and leads to a thermally stable equilibrium with
reasonable values of Qvisc and B for typical cluster-core conditions
(Kunz et al. 2011).

Turning to Model II, we must replace in equation (49) ν ii →
νeff ∼ σβ. Thus, the collisionality is no longer set by the equilibrium
state of the plasma but adjusts to the local rate of strain. Using
equation (41) and σ 0 ∼ (εν ii/p)1/2, we find simply that νeff ∼ εβ2/p
and so9

Qvisc ∼ ε. (50)

Thus, whatever energy is injected into turbulence will be dissipated
by heating, with no more microphysical constraints on the heat-
ing rate. This is a situation more familiar to those used to dealing
with standard fluid turbulence problems, although here it arises not
because the scale of the motions adjusts to accommodate a given dis-
sipation rate but because the collisionality of the plasma does. This
means that whatever determines the thermal stability of the ICM in
this scenario has to do with how large-scale energy is deposited into
the ICM turbulence – an outcome that may be conceptually satis-
fying to anyone who feels that microphysics should never matter
(although it does matter for deciding whether this scenario is in fact
correct).

9 In Model I, this equation also holds but is non-trivial and allows one to
determine the injection scale of the turbulence (Kunz et al. 2011), whereas
in Model II, it is automatic and provides no further information.
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5.4 A comment on existing numerical simulations
with microphysical closures

We are not aware of any studies so far to simulate the ICM under the
assumptions of Model I. The effective enhancement of the collision
rate that underpins Model II is more straightforward to implement
in MHD-CGL equations and this has been done by several groups
(Sharma et al. 2006; Kunz et al. 2012; Meng et al. 2012; Santos-
Lima et al. 2014). Relatively little qualitative difference with the
standard collisional MHD case was found, suggesting that the ef-
fect of plasma microphysics is simply to render collisionless plasma
effectively collisional (Santos-Lima et al. 2014). This is a tempting
conclusion, which, if true, would relieve the ICM modelling com-
munity of a serious headache. Putting aside the question of how
likely the firehose and especially mirror instabilities in fact are to
cause enhanced particle scattering (see Section 1.1), if they do, this
still appears to produce a highly complex situation with spatially
and temporally intermittent local viscosity and hence very different
field evolution than in collisional MHD (Section 4). However, one
can only capture this complexity in a numerical simulation if it is
the intermittent local viscosity and not numerical grid dissipation
or some other form of fixed-scale regularization that determines the
cutoff scale for the turbulence. If, on the other hand, a fixed-scale
regularization (effectively, a small isotropic viscosity similar to the
one present in the collisional MHD) is present and, given limited
resolution, overrides the plasma viscosity (much diminished owing
to enhanced collisionality), the effect of the microphysical closure
is simply to disconnect the pressure anisotropy from the stretching
rate and, therefore, from having any influence on the evolution of the
magnetic field – either directly or via its effect on the local viscosity
of the plasma. Note that the pressure anisotropy will still have a role
in modifying the tension force – an order-unity enhancement at the
mirror threshold (a prefactor of 3/2 when � = 1/β; see equation
21) and a full suppression at the firehose threshold (� = −2/β).
The latter effect appears potentially to be the more important, but in
turbulent and dynamo situations, the mirror-unstable regions tend
to dominate (Sharma et al. 2006; Santos-Lima et al. 2014).10

To conclude, the results presented above highlight the extent to
which weakly collisional magnetized plasmas have the potential to
surprise us and the importance of getting to grips with the rich mi-
crophysical world that, while unobservable directly (except perhaps
in the solar wind), underlies all observable large-scale dynamics and
thermodynamics of these plasmas.
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APPENDIX A : ZERO-DIMENSIONAL DY NA MO

Here we provide the full solution of the ‘zero-dimensional dynamo’
introduced in Section 2. The calculation is standard but, as far as
we know, is not readily available in textbooks in this form.

We wish to consider the following equations:

∂tB = σB, (A1)

∂t σ = −τ−1
c σ +

√
2D χ (t), (A2)

where in the Langevin equation (A2), τc is the correlation time
and D the diffusion coefficient [equation (6) has τc = 1/2σ0 and
D = 2σ 3

0 ].

A1 Fokker–Planck equation

The joint time-dependent PDF of σ and B is P (t, σ, B) = 〈P̃ 〉,
where P̃ = δ(σ − σ (t))δ(B − B(t)), where σ and B are random
variables, whereas B(t) and σ (t) are solutions of equations (A1) and
(A2). Then

∂t P̃ = −∂σ P̃∂t σ (t) − ∂BP̃∂tB(t)

= −∂σ

(
−τ−1

c σ +
√

2D χ
)

P̃ − ∂BσBP̃ . (A3)

Averaging this, we get

∂tP = −
√

2D ∂σ 〈χP̃ 〉 + τ−1
c ∂σ σP − σ∂BBP . (A4)

The average can be calculated by formally integrating equation
(A3),

P̃ (t) =
∫ t

dt ′
[
∂σ

(
τ−1

c σ −
√

2D χ (t ′)
)

− ∂BσB
]
P̃ (t ′), (A5)

and using the fact that χ (t) and P̃ (t ′) are uncorrelated for t ≥ t′

(P̃ only depends on the past values of χ , but not the present or the
future), 〈χ〉 = 0 and 〈χ (t)χ (t′)〉 = δ(t − t′):

〈χ (t)P̃ (t)〉 = −1

2

√
2D ∂σ P . (A6)

Combined with equation (A4), this gives the Fokker–Planck equa-
tion for the joint PDF:

∂tP = D ∂2
σ P + τ−1

c ∂σ σP − σ∂BBP . (A7)

A2 Moments of B

Now let Pn(σ ) = ∫ ∞
0 dBBnP (σ, B). Then P0(σ ) is the PDF of σ

and
∫

dσPn(σ ) = 〈Bn〉 are the moments of B. Pn satisfies

∂tPn = D ∂2
σ Pn + τ−1

c ∂σ σPn + nσPn. (A8)

If we look for solutions in the form

Pn = ψn(x) exp

(
γnt − σ 2

4Dτc

)
, x = σ − 2Dτ 2

c n√
2Dτc

, (A9)

then ψ(x) satisfies

ψ ′′
n − x2ψn = −(1 − 2γnτc + 2Dτ 3

c n2)ψn. (A10)

This is a Schrödinger equation for a harmonic oscillator. The non-
oscillating solution is the ground state, corresponding to the expres-
sion in the parentheses on the right-hand side (the energy) being
equal to 1. Then γn = Dτ 2

c n2 and ψn = Cne−x2/2, where Cn are
constants. Assembling this with equation (A9), we get

Pn = Ĉn√
2πDτc

exp

[
Dτ 2

c n2t − (σ − Dτ 2
c n)2

2Dτc

]
, (A11)

where some σ - and t-independent factors have been absorbed into
the new constant Ĉn. Note that for n = 0 and Ĉ0 = 1, this gives a
Gaussian distribution for σ , with 〈σ 2〉 = Dτc. For τc = 1/2σ0 and
D = 2σ 3

0 , we get 〈σ 2〉 = σ 2
0 , as stated in Section 2.

Integrating equation (A11) over σ , we obtain the time evolution
of the moments of the magnetic field:

〈Bn〉 = ĈneDτ2
c n2t . (A12)

For τc = 1/2σ0 and D = 2σ 3
0 , this becomes the expression quoted

in Section 2. We see that the constants Ĉn = 〈Bn
0 〉 are the moments

of the initial distribution of B. For simplicity, we may assume that
the field starts with the same value B0 in all realizations and that B
is normalized to that value; then all Ĉn = 1.

A3 PDF of B

The quickest way to calculate the PDF of B is to notice that there
was nothing in the calculation above that required n to be discrete
or even real. Therefore, letting n = iλ in equation (A12), we find

〈eiλ ln B〉 = e−Dτ2
c λ2t . (A13)

The left-hand side is the characteristic function (the Fourier trans-
form) of the PDF of ln B. Inverse-Fourier transforming in λ and
expressing the result as the PDF of B, we get

P (B) = 1

B
√

4πDτ 2
c t

exp

(
− ln2 B

4Dτ 2
c t

)
, (A14)

the lognormal distribution quoted in Section 2 (with 4Dτ 2
c = 2σ0).

Note that a typical realization grows subexponentially: ln B ∼
2τc

√
Dt even though all the moments 〈Bn〉 grow exponentially, a
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property that implies that a very large number of realizations must
be used in a numerical solution in order to capture the correct inter-
mittent dynamo behaviour over any given time t (cf. Artyushkova &
Sokoloff 2006). This is, however, a feature to some extent particular
to the zero-dimensional model: in 3D, a typical growing realization
does grow exponentially (see discussion and references at the be-
ginning of Section 3.3), although its growth rate is still different
from the growth rate of the magnetic energy and the point about the
necessity of good statistics stands.

A4 Time to saturation

In terms of the dimensionless quantities used in most of this paper,
M = ν ii/σ 0β0 and τ = 2σ 0t, the PDF of the magnetic energy is

P (τ,M|M0) = 1

M
√

4πτ
exp

[
− ln2(M/M0)

4τ

]
, (A15)

which is also the probability of reaching magnetic energy M at time
τ starting with M0 at τ = 0. Given P(τ , M|M0), one can calculate
the probability P1(τ |M0) of reaching the dynamical level M = 1
(equation 7) for the first time at time τ (the ‘first-passage time’) via
the standard relation

P (τ, 1|M0) =
∫ τ

0
dτ ′P1(τ ′|M0)P (τ − τ ′, 1|1). (A16)

Inverting the integral operator on the right-hand side via the Laplace
transform, we get

P1(τ |M0) = | ln M0|
2
√

πτ 3/2
exp

(
− ln2 M0

4τ

)
. (A17)

This immediately allows us to calculate the fraction of the realiza-
tions that eventually reach M = 1:

fmax =
∫ ∞

0
dτP1(τ |M0) = 1 (A18)

(i.e. they all do in this model). Note that the mean time for this to
happen,

〈τ 〉 = 1

fmax

∫ ∞

0
dττP1(τ |M0), (A19)

diverges because P1 ∼ τ−3/2 at τ � 1 (so the 100 per cent ‘dy-
namo efficiency’ implied by equation (A18) takes a long time to
consummate). The characteristic time for a typical realization to
reach dynamically relevant fields can be read off from the exponen-
tial factor in equation (A17): τ ∼ ln 2M0. However, the exponential
growth of the mean magnetic energy (equation A12) implies that
the realizations that dominantly contribute to 〈M〉 (and all other
moments) only require τ ∼ ln M0 (hence equation 8).11

11 This highlights the point that what is meant by a ‘dynamo’ and how fast
that dynamo is considered to be is to an extent a matter of definition: do we
wish the mean magnetic energy 〈B2〉 to grow exponentially? Do we wish a
typical realization to do so? In the rather simplistic zero-dimensional model
adopted here, all realizations do eventually reach the non-linear threshold
(7), albeit at subexponential rates (see Appendix A4), but in a standard
model of a more realistic 3D MHD dynamo taking into account also the
effect of resistivity, most realizations in fact decay superexponentially while
both the typical growing realizations and the magnetic energy grow expo-
nentially, albeit at different rates (Zeldovich et al. 1984; Chertkov et al. 1999;
Schekochihin et al. 2004; Schekochihin & Cowley 2007). In our treatment
of Model I, we encounter a case of very difficult field growth (Section 3.2).

APPENDI X B: MAG NETI C FI ELD STATI S TICS
A N D G ROW T H T I M E S I N M O D E L I W I T H
ONE-SCALE FLOW

Here we describe a very simple way to understand the behaviour of
the one-scale version of Model I (Sections 3.2 and 3.3). Let M0 ≤
M 	 1. Since σ̃ is order unity (equation 16), the rate of strain will
spend most of the time outside the stable interval [−2M, M] and so,
as σ̃ fluctuates between positive and negative values, the effective
stretching rate will be alternately pinned at the mirror or firehose
threshold. Thus, we may approximately replace equation (15) with

∂τM =
{

M2, σ̃ > 0,

−2M2, σ̃ < 0.
(B1)

Furthermore, let us take the long-time limit, τ � 1, treat τ as a
discrete counter with step size �τ ∼ 1 and σ̃ (τ ) as a sequence of
discrete independent trials with either positive or negative outcome,
each with probability p = 1/2 (this is reasonable because the corre-
lation time of σ̃ is order unity, but the crude nature of the model will
leave us with the need to fit the numerically obtained distribution to
the analytical result by choosing a suitable value of �τ , which will
indeed turn out to be of order unity; see Appendix B1). Integrating
equation (B1), we get

1

M0
− 1

M(τ )
= �τ

τ/�τ∑
i=1

xi, xi =
{

1, p = 1/2,

−2, p = 1/2.
(B2)

B1 PDF of M

The mean 〈xi〉 = −1/2 and the variance (〈x2
i 〉 − 〈xi〉2)1/2 = 3/2,

so, by Central Limit Theorem, the quantity

X = 2

3

√
τ

�τ

[
1

τ

(
1

M0
− 1

M

)
+ 1

2

]
(B3)

has the unit normal distribution

P (X) = 1√
2π

e−X2/2. (B4)

The PDF of X found in the numerical solution of equations (15) and
(16) is shown in Fig. B1; we find that �τ = 1.4 gives the best fit.
Thus, the PDF of the magnetic energy at time τ , having started with

Figure B1. PDF of the quantity X given by equation (B3). Several times
are shown for the case with M0 = 0.05, together with the unit normal PDF
(B4). The best fit is obtained for �τ = 1.4.
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M0 at time 0, is

P (τ,M|M0) = M−2

√
9πτ�τ/2

exp

[
− 2

9τ�τ

(
1

M0
− 1

M
+ τ

2

)2
]

.

(B5)

To understand the time evolution of this distribution, note that, from
equation (B3),

M = 1

1/M0 + τ/2 − 3X
√

τ�τ/2
. (B6)

We see that not much happens for τ 	 1/M0; for τ � 1/M0,
the typical realizations decay secularly with time. The growing
ones are due to the events with X � √

τ , which are increas-
ingly rare as time goes on (the mean tendency for M to decay
due to the asymmetry between the firehose and mirror thresh-
olds wins in the long run). The explosively growing realizations
are typically those with X ∼ √

τdyn ∼ 1/
√

M0 and their fraction is
f ∼ ∫ ∞√

τdyn
dXP (X) ∼ exp(−1/M0), in line with equation (14).

Finally, letting τ � 1 and averaging powers of M using equation
(B6) and the distribution (B4), we find that all moments of the
magnetic energy decay with time

〈Mn〉 ≈ 1

(1/M0 + τ/2)n
→ 0. (B7)

B2 Time to saturation

Since we know the M0 → M transition probability (B5), we can
calculate the probability to reach M = 1 in time τ in the way
described in Appendix A4 (via equation A16). The result is

P1(τ |M0) =
∣∣τdyn

∣∣√
9π�ττ 3/2

exp

[
− 2

9�ττ

(
τdyn + τ

2

)2
]

, (B8)

where τ dyn = 1/M0 − 1. Therefore, the fraction of realizations that
ever make it to M = 1 is (assuming M0 < 1)

fmax = exp

[
− 4

9�τ

(
1

M0
− 1

)]
(B9)

and the mean time for them to do it is

〈τ 〉 = 2

∣∣∣∣ 1

M0
− 1

∣∣∣∣ = 2|τdyn|. (B10)

These are the quantitative versions of the estimates (14) and (13),
respectively. Note that equation (B8) implies that at long times,
τ � τ dyn, the PDF of the time to M = 1 is ∝ τ−3/2exp ( − τ/18�τ )
(see the right-hand panel of Fig. 1).

B3 Case of non-zero mean stretching rate

The above calculations are easily generalized to the case of non-zero
mean stretching rate (Section 3.3), which amounts to letting xi = 1
with probability p > 1/2 and xi = −2 with probability 1 − p in
equation (B2). Then 〈xi〉 = 3p − 2, (〈x2

i 〉 − 〈xi〉2)1/2 = 9p(1 − p)
and so (B3) becomes

X =
√

τ

9p(1 − p)�τ

[
1

τ

(
1

M0
− 1

M

)
− (3p − 2)

]
, (B11)

which is distributed normally (equation B4). Therefore,

M = 1

1/M0 − (3p − 2)τ − 3X
√

p(1 − p)τ�τ/2
. (B12)

If p > 2/3, this explodes at τ = 1/(3p − 2)M0. Accordingly,
assuming τ � 1, we find that all moments of M explode

〈Mn〉 ≈ 1

[1/M0 − (3p − 2)τ ]n
. (B13)

The generalized version of equation (B8) for the probability of
reaching M = 1 at time τ is

P1(τ |M0) =
∣∣τdyn

∣∣√
18πp(1 − p)�ττ 3

exp

{
−

[
τdyn − (3p − 2)τ

]2

18p(1 − p)�ττ

}
.

(B14)

The fraction of the realizations that make it is the integral of the
above:

fmax = exp

[
− 2(2 − 3p)

9p(1 − p)�τ

(
1

M0
− 1

)]
, p <

2

3
, (B15)

fmax = 1, p ≥ 2

3
(B16)

and 〈τ 〉 = |τ dyn|/|3p − 2|. Thus, for p > 2/3, all realizations reach
M = 1 on the characteristic time-scale ∼τ dyn.

APPENDI X C : STO CHASTI C N ON-LI NEAR
PLASMA DY NA MO I N MODEL II

Here we derive some analytical results for the dynamo model given
by equations (38)–(40), to support the qualitative summary in Sec-
tion 4.3.3.

Consider equations (38) and (40). The expectation from the qual-
itative discussion in Section 4.2 is that the magnetic energy will, in
some typical sense, grow linearly in time at a rate that is of order
unity in rescaled variables, M ∼ τ (equation 43). In a stochastic
system, this will be a random process, so, anticipating the form it
will take, we introduce a new stochastic variable λ = σ̃M . Then
equations (38) and (40) become, for ξ |λ| > M2,

∂τM = λ, (C1)

∂τ λ = λ2 − √
ξ |λ| λ

M
+

√
2 (ξ |λ|)3/4

√
M

χ (τ ). (C2)

The Fokker–Planck equation for the joint PDF of M and λ is obtained
in the same fashion as it was done in Appendix A for the PDF of B
and σ . The result is

M
(
∂τP + λ∂MP

)
= ξ 3/2∂λ|λ|3/4∂λ|λ|3/4P

+ ∂λ

(√
ξ |λ| λ − λ2

)
P ≡ L̂P . (C3)

This equation has a self-similar solution

P (τ, M, λ) = 1

τ
f (m, λ) , m = M

τ
, (C4)

where f(m, λ) satisfies

− m∂m (m − λ) f = L̂f . (C5)

Note that the PDF of λ is, therefore, stationary, while the PDF of M
is self-similar, P (τ, M) = (1/τ )

∫
dλf (M/τ, λ).

The shape of these PDFs is not hard to work out. Equation (C5)
has the following simple solutions for m � λ and m 	 λ:

m � λ : f = 1

m
f0(λ), (C6)

m 	 λ : f = f0(λ), (C7)
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where f0 satisfies

L̂f0 = 0. (C8)

This solution suggests that if we integrate out the λ dependence, we
should get a PDF of M that is constant at M 	 τ and has an M−1

tail at M � τ – as is indeed confirmed by the numerical simulations
(see the right-hand panel of Fig. 6). Note that, technically speaking,
this PDF is not normalizable, but, as we explained in Section 4.3.3,
implicitly we assume a cutoff at M ∼ 1.

The PDF of λ, which is the solution of equation (C8), is obtained
via direct integration, with a stipulation that f0 → 0 as λ → ∞.
Introducing a new variable x = |λ|/ξ , equation (C8) becomes

∂xx
3/4

(
∂x + 1 ∓ √

x
)
x3/4f ±

0 = 0, (C9)

where the upper (lower) sign is for λ > 0 (λ < 0). At the mirror
threshold (the upper sign),

f +
0 = const

x3/4
e

2
3 x3/2−x

∫ ∞

x

dy

y3/4
e− 2

3 y3/2+y ; (C10)

at the firehose threshold (the lower sign),

f −
0 = const

x3/4
e− 2

3 x3/2−x

[∫ x

0

dy

y3/4
e

2
3 y3/2+y + c0

]
. (C11)

The integration constants (the prefactors and c0) are fixed by nor-
malization and matching f ±

0 to the behaviour at x � M2/ξ 2, where
the rate of strain is within the stability interval and so equation (39)
must be used – we will not go into these complications here. The
distributions (C10) and (C11) are power laws both at small and
large x:

x 	 1 : f +
0 ∼ 1

x3/4
, f −

0 ∼ c0

x3/4
+ 4√

x
, (C12)

x � 1 : f +
0 ∼ f −

0 ∼ 1

x2
. (C13)

Fig. 6 (left-hand panel) shows f +
0 found in our numerical simula-

tions, with both power laws in reasonable agreement with theory.
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