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Hybrid-kinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are
performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear
S. For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and
saturate with energies ∝S1=2; the pressure anisotropy is pinned at the stability threshold by particle scattering
off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor
scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles
trapped in magnetic mirrors. After one shear time, saturated order-unity magnetic mirrors are formed and
particles scatter off their sharp edges. Both instabilities drive sub-ion-Larmor–scale fluctuations, which appear
to be kinetic-Alfvén-wave turbulence. Our results impact theories of momentum and heat transport in
astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.
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Introduction.—Describing the large-scale behavior of
weakly collisional magnetized plasmas, such as the solar
wind, hot accretion flows, or the intracluster medium
(ICM) of galaxy clusters, necessitates a detailed under-
standing of the kinetic-scale physics governing the dynam-
ics of magnetic fields and the transport of momentum and
heat. This physics is complicated by the fact that such
plasmas are expected to exhibit particle distribution func-
tions with unequal thermal pressures in the directions
parallel (∥) and perpendicular (⊥) to the local magnetic
field [1–3]. This pressure anisotropy can trigger fast
microscale instabilities [4–9], whose growth and saturation
impact the structure of the magnetic field and the effective
viscosity of the plasma. While solar-wind observations
suggest that these instabilities are effective at regulating
the pressure anisotropy to marginally stable levels [10–15],
it is not known how this is achieved.
We address this question with nonlinear numerical

simulations of the firehose and mirror instabilities. We
leverage the universal physics at play in turbulent β ≫ 1
astrophysical plasmas such as the ICM [16,17] and Galactic
accretion flows [18,19]—magnetic field being changed by
velocity shear, coupled with adiabatic invariance—to drive
self-consistently a pressure anisotropy beyond the insta-
bility thresholds. Our setup represents a local patch of a
turbulent velocity field, in which the magnetic field is
sheared and its strength changed on a time scale much
longer than that on which the unstable fluctuations grow.
This approach is complementary to expanding-box models
of the β ∼ 1 solar wind [20] used to drive firehose [21,22]
and mirror or ion-cyclotron [23] instabilities.
Hybrid-kinetic equations in the shearing sheet.—A non-

relativistic, quasineutral, collisionless plasma of electrons

(mass me, charge −e) and ions (mass mi, charge Ze) is
embedded in a linear shear flow, u0 ¼ −Sxŷ, in (x, y, z)
Cartesian coordinates. In a frame comoving with the shear
flow, the equations governing the evolution of the ion
distribution function fiðt; r; vÞ and the magnetic field B are,
respectively, the Vlasov equation

dfi
dt

þ v ·∇fiþ
�
Ze
mi

�
E0 þ v

c
×B

�
þSvx ŷ

�
·
∂fi
∂v ¼ 0 (1)

and Faraday’s law

dB
dt

¼ −c∇×E0 − SBx ŷ; (2)

where d=dt≡ ∂=∂t − Sx∂=∂y. The electric field in the
comoving frame

E0 ¼ −
ui×B

c
þ ð∇×BÞ×B

4πZeni
−
Te∇ni
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(3)

is obtained by expanding the electron momentum equation
in ðme=miÞ1=2, enforcing quasineutrality

ne ¼ Zni ≡ Z
Z

d3v fi; (4)

assuming isothermal electrons, and using Ampère’s law to
solve for the mean velocity of the electrons

ue ¼ ui −
j

Zeni
≡ 1

ni

Z
d3v vfi −
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(5)
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in terms of the mean velocity of the ions ui and the current
density j [24,25]. This constitutes the “hybrid” description
of kinetic ions and fluid electrons [26,27].
Adiabatic invariance and pressure anisotropy.—The

final terms in Eqs. (1) and (2) represent the stretching of
the phase-space density and the magnetic field in the y
direction by the shear flow. Conservation of the first
adiabatic invariant μ≡miv2⊥=2B then renders fi aniso-
tropic with respect to the magnetic field. If E0 ¼ 0, the ratio
of the perpendicular and parallel pressures is

p⊥
p∥

≡
R
d3v μBfiR
d3vmiv2∥fi

¼
�
1 − 2

BxBy0

B2
0

Stþ B2
x

B2
0

ðStÞ2
�
3=2

;

(6)

where the subscript “0” denotes initial values [28].
Method of solution.—We solve Eqs. (1)–(5) using the

second-order–accurate particle-in-cell code PEGASUS [29].
We normalize magnetic field to B0, velocity to the initial
Alfvén speed vA0 ≡ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πmini0

p
, time to the inverse of

the initial ion gyrofrequency Ωi0 ≡ ZeB0=mic, and dis-
tance to the initial ion skin depth di0 ≡ vA0=Ωi0. The ion
Larmor radius ρi ¼ β1=2, where β≡ 8πniTi=B2. Np par-
ticles are drawn from a Maxwell distribution with β0 ¼ 200
and placed on a 2D grid Nx × Ny ¼ 11522 cells spanning
Lx × Ly ¼ 11522. The electrons are Maxwellian and
gyrotropic with Ti=ZTe ¼ 1. A δf method reduces the
impact of discrete-particle noise on the moments of fi
[30,31]. Orbital advection updates the particle positions
and magnetic field due to the background shear [32]. The
boundary conditions are shearing periodic: fðx; yÞ ¼
fðx� Lx; y ∓ SLxtÞ. We scan S ¼ ð1; 3; 10; 30Þ × 10−4.
These parameters guarantee a healthy scale separation
between the grid scale, the ion Larmor radius, the wave-
lengths of the instabilities, and the box size. In what
follows, h · i denotes a spatial average over all cells.
Firehose instability.—We choose Np ¼ 1024NxNy and

set B0 ¼ ð2x̂þ 3ŷÞ= ffiffiffiffiffi
13

p
, so that hByi ¼ hBxi at St ¼ 1=2.

As B decreases, adiabatic invariance drives p⊥=p∥ < 1
[Eq. (6)], with plasma becoming firehose unstable when
Λf ≡ 1 − p⊥=p∥ − 2=β∥ > 0. Exponentially growing,
Alfvénically polarized (jδB⊥j ≫ δB∥), oblique modes with
growth rate γ ≃ k∥ρiðΛf=2Þ1=2 and k∥ρi ≈ k⊥ρi ≈ 0.4 then
appear [Fig. 1(a); cf. Refs. [33,34] ]. Figure 2 shows their
spatial structure. Λf continues to grow, driven by shear
[Λf ∼ St; Fig. 1(b)], until the perturbations become large
enough to reduce the pressure anisotropy to its marginally
stable value (Λf → 0).
It has been proposed [24,35] that they do this by

canceling the rate of change of the mean field:
ð1=2ÞdhjδB⊥j2i=dt ≈ −d ln jhBij=dt ∼ S, giving rise to
secular evolution, hjδB⊥j2i ∼ St. Matching γ ∼ Λ1=2

f ∼
ðStÞ1=2 with the rate of growth in the secular phase
(γ ∼ 1=t), we find hjδB⊥j2i ∼ St ∼ Λf ∼ S2=3 at the tran-
sition from linear to nonlinear evolution (cf. Refs. [36,37];

“quasilinear saturation”). This scenario is indeed what we
observe: the evolution of hjδB⊥j2i and Λf is shown in
Fig. 1; note hΛfimax ∝ S2=3 [inset in Fig. 1(b)]. To test the
idea [24,35] that, during the secular phase, the average B
seen by particles streaming along the field is constant,
we plot in Fig. 3 a representative particle’s μ and B
(evaluated at the particle’s position) for S ¼ 3 × 10−4.
During the secular phase, the particle nearly conserves μ
and B≃ const along its trajectory, as expected.
However, this secular growth is not sustainable: the

magnetic fluctuation energy saturates at a low level ∝S1=2
[inset of Fig. 1(a)] in a state of firehose turbulence. During
this saturated state, particles scatter off fluctuations with
k∥ρi ∼ 1, μ conservation is broken, and B decreases at a rate

FIG. 1 (color online). Evolution of firehose instability. (a)
Energy in perpendicular magnetic fluctuations hjδB⊥j2i,
whose saturated value ∝S1=2 (inset). (b) Firehose stability
parameter hΛfi, whose maximum value ∝S2=3 (inset; see text
for explanation).

FIG. 2 (color online). Spatial structure of the firehose instability
with S ¼ 3 × 10−4. δBz=B0 (color) and magnetic-field lines are
shown in the linear (left) and saturated (right) regimes.
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approaching −d ln jhBij=dt ∼ S (Fig. 3). The production of
pressure anisotropy is no longer adiabatically tied to the
rate of change of the magnetic field and marginality
(Λf ≃ 0) is maintained independently of S via anomalous
particle scattering. We calculate the mean scattering rate
νscatt by tracking 4096 randomly selected particles, con-
structing a distribution of times taken by each to change its
μ by a factor of e, and taking the width of the resulting
exponential function to be ν−1scatt. In a collisional, incom-
pressible plasma without heat flows, the pressure
anisotropy would be p⊥=p∥ − 1 ¼ ð3=νÞðd ln jhBij=dtÞ,
where ν is the collision rate [24,38]. The effective scattering
rate needed to maintain Λf ¼ 0 at saturation would then be
νf ≡ −3ðβ∥;sat=2Þðd ln jhBij=dtÞsat ∼ Sβ. Remarkably, we
find νscatt ≃ νf in the saturated state (Fig. 4).
Mirror instability.—We choose Np ¼ 625NxNy and set

B0 ¼ ð2x̂ − ŷÞ= ffiffiffi
5

p
, so that hByi ¼ −hBxi at St ¼ 1=2.

As B increases, adiabatic invariance drives p⊥=p∥ > 1
[Eq. (6)], with plasma becoming mirror unstable when
Λm ≡ p⊥=p∥ − 1 − 1=β⊥ > 0 [39]. Near threshold, lin-
early growing perturbations have γ ∼ Λ2

m, k∥ρi ∼ Λm, and
k⊥ρi ∼ Λ1=2

m [40]—they grow slower than firehose modes,
are more elongated in the magnetic-field direction, and
have δB∥ ≫ jδB⊥j. Figure 5 shows their spatial structure.
The saturation scenario is analogous to the firehose: Λm

continues growing [Fig. 6(b)] until the mirror perturbations
are large enough to drive Λm → 0, at which point the

perturbations’ exponential growth gives way to secular
evolution with hδB2

∥i ∝ t4=3 [Fig. 6(a), discussed below].
As Λm → 0, the dominant modes shift to longer wave-
lengths (k∥ρi ≪ 1) and become more elongated in the
mean-field direction. Excepting the (nonasymptotic)
S ¼ 10−3 case, this secular phase appears to be universal,
lasting until δB=B0 ∼ 1 at St≳ 1, independently of S. The
final saturation is caused by particle scattering off sharp
(δB=B0 ∼ 1, k∥ρi ∼ 1) bends in the magnetic field, which
occur at the boundaries of the magnetic mirrors.

FIG. 3. Evolution of μ and B for a representative particle in the
firehose simulation with S ¼ 3 × 10−4.

FIG. 6 (color online). Evolution of mirror instability versus S.
(a) Energy in parallel fluctuations of the magnetic field hδB2

∥i. (b)
Mirror stability parameter hΛmi, whose maximum value ∝S1=2.

FIG. 5 (color online). Spatial structure of the mirror instability
with S ¼ 3 × 10−4. δB∥=B0 and (last panel) rescaled δni=ni0 are
shown (color) with magnetic-field lines in the shearing plane.

FIG. 4 (color online). Mean scattering rate νscatt for (left) firehose
and (right) mirror instabilities in the secular (crosses) and saturated
(plus signs) phases versus Sβ0. The collision rates required to
maintain marginal stability in the saturated phase, νf and νm,
respectively, are shown for comparison. See text for definitions.
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As foreseen by Refs. [41–43], trapped particles play
a crucial role in the nonlinear evolution. Following
Refs. [25,35], we expect the pressure anisotropy to be pinned
at marginal stability by an increasing fraction (∼jδB∥j1=2) of
particles becoming trapped in magnetic mirrors, thereby
sampling regions where the increase of the mean field is
compensated by the decrease in the perturbed field, viz.,
−dδB∥=dt ∼ dhjδB∥j3=2i=dt ∼ d ln jhBij=dt ∼ S, where the
overbar denotes averaging along particle trajectories (i.e.,
bounce averaging for trapped particles). It follows that
hδB2

∥i ∼ ðStÞ4=3, as is indeed seen in Fig. 6(a).
Figure 7 displays μ, B, and v∥ for representative passing

and trapped particles in the simulation with S ¼ 3 × 10−4.
In the linear phase, both particles conserve μ very well.
During the secular phase (St≃ 0.2–1.4), one of the
particles becomes trapped and bounces while nearly
conserving μ; B≃ const along its path, despite the growing
mean field. The other remains passing, with δB∥ ≈ 0. At
the end of the secular phase, the trapped particle scatters out
of the mirror and becomes passing.
The mean scattering rates νscatt are different for the

trapped and passing populations. During the secular phase,
the trapped particles (∼70% towards the end of the secular
phase [44]) have νscatt ≈ 0.002 (Fig. 4), while the passing
particles have νscatt ≈ 0.03. Excepting the S ¼ 10−3 case,
these values are independent of S, indicating that particle
scattering is irrelevant for St≲ 1 and S ≪ 1. At saturation
(St≳ 1), the percentage of trapped particles drops to ∼30%
(with νscatt ≈ 0.004) and the total νscatt ≃ νm, where νm ≡
3β⊥; satðd ln jhBij=dtÞsat is the collisionality required to
maintain Λm ¼ 0 at saturation (by the same argument as
for the firehose instability).
Firehose- and mirror-driven turbulence.—The saturated

state of both instabilities is characterized by super-Larmor-
scale driving and sub-Larmor-scale fluctuations. Figure 8
shows 1D magnetic fluctuation spectra for firehose and
mirror instabilities at saturation versus k∥ and k⊥ for

S ¼ 3 × 10−4. Energy is injected at successively larger
scales as marginality is approached (cf. Refs. [21,37]) and
several power laws are established. Firehose modes with
kρi < 1 satisfy jδBz;kj2 ∝ k−3, a spectrum reminiscent of
that predicted for parallel-firehose turbulence [24]. Mirror
modes with kρi < 1 satisfy jδB∥;k∥ j2 ∝ k−11=3∥ . This scaling
is obtained by an argument analogous to that proposed in
Ref. [24]: seek a power-law spectrum, jδB∥;k∥ j2 ∼ k−α∥ ;

estimate γpeak ∼ Λ2
m ∼ 1=t and k∥;peak ∼ Λm ∼ 1=t1=2 for

the energy-containing mode in the secular phase; recallP
k∥ jδB∥;k∥ j2 ∼ ðStÞ4=3; and demand that this be consistent

with
P

k∥ jδB∥;k∥ j2 ∼ k1−α∥;peak ∼ t−ð1−αÞ=2. This procedure
yields α ¼ 11=3. Finally, the k-shell-averaged density
fluctuation spectra [Fig. 8(c)] follows jδBjjj2, as expected
for pressure-balanced mirrors.
Both spectra indicate that energy is removed at sub-

Larmor scales by what appears to be a turbulent cascade,
whose spectral slope and polarization of the fluctuations
(δni ∼ β−1δB∥ [45,46]) approximately matches observa-
tions of kinetic-Alfvén-wave (KAW) turbulence in gyro-
kinetic simulations [47] and the solar wind [48–50], as well
as of “mirror turbulence" in the magnetosheath [51]. This
marks the first time in a simulation of mirror or firehose
turbulence that a KAW cascade has been observed.
Nevertheless, we caution that our simulations were per-
formed in 2D; a proper study of this cascade requires 3D
geometry [45,47,52].

FIG. 7 (color online). Evolution of μ, B, and v∥ (evaluated at
particle position) for representative passing (red) and trapped
(blue) particles in the mirror simulation with S ¼ 3 × 10−4.

FIG. 8 (color online). 1D magnetic fluctuation spectra for (a)
firehose and (b) mirror instabilities versus k∥ and k⊥, and (c) k-
shell-averaged density fluctuation spectra for firehose and mirror
versus k, all in the saturated state (St ¼ 1) of the S ¼ 3 × 10−4

simulations.

PRL 112, 205003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

205003-4



Summary.—We have presented numerical simulations of
firehose and mirror instabilities driven by a changing
magnetic field in a local shear flow. Both instabilities start
in the linear regime with exponential growth, a process that
is well understood analytically. The theoretical expectation,
that after linear saturation the growth becomes secular as
the pressure anisotropy is persistently driven [24,25,35], is
borne out by our simulations. For the firehose, the marginal
state is initially achieved via μ-conserving changes in the
magnetic field, but is subsequently maintained (indepen-
dent of S) by particle scattering off k∥ρi ∼ 1 fluctuations.
For the mirror, marginal stability is achieved and main-
tained during the secular phase by particle trapping in
magnetic mirrors. Saturation occurs once δB=B0 ∼ 1 at
St≳ 1 via particle scattering off the sharp ends of the
mirrors. For both instabilities, the mean scattering rate at
saturation adjusts to maintain marginal stability, effectively
reducing the viscosity to v2th=νscatt ∼ v2A; sat =S.

Support for M.W. K. was provided by NASA through
Einstein Postdoctoral Fellowship Grant No. PF1-120084,
issued by the Chandra X-ray Observatory Center, which is
operated by the Smithsonian Astrophysical Observatory for
and on behalf of NASA under Contract No. NAS8-03060.
The Texas Advanced Computer Center at The University of
Texas at Austin provided HPC resources under Grants
No. TG-AST090105 and No. TG-AST130002, as did the
PICSciE-OIT TIGRESS High Performance Computing
Center and Visualization Laboratory at Princeton
University. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by NSF Grant No. OCI-1053575. M.W. K. and
A. A. S. thank Merton College, Oxford and the Max-
Planck–Princeton Center for Plasma Physics for travel
support. This work benefited from conversations with
Ian Abel, Chris Chen, Geoffroy Lesur, Greg Hammett,
Peter Porazik, Eliot Quataert, Francois Rincon, Prateek
Sharma, and especially Steve Cowley.

*mkunz@princeton.edu
[1] E. Marsch, R. Schwenn, H. Rosenbauer, K.-H.

Muehlhaeuser, W. Pilipp, and F. M. Neubauer, J. Geophys.
Res. 87, 52 (1982).

[2] A. A. Schekochihin and S. C. Cowley, Phys. Plasmas 13,
056501 (2006).

[3] P. Sharma, G. W. Hammett, E. Quataert, and J. M. Stone,
Astrophys. J. 637, 952 (2006).

[4] M. N. Rosenbluth, LANL Report No. LA-2030, 1956.
[5] S. Chandrasekhar, A. N. Kaufman, and K. M. Watson, Proc.

R. Soc. A 245, 435 (1958).
[6] E. N. Parker, Phys. Rev. 109, 1874 (1958).
[7] A. A. Vedenov and R. Z. Sagdeev, Sov. Phys. Dokl. 3, 278

(1958).
[8] A. Barnes, Phys. Fluids 9, 1483 (1966).
[9] A. Hasegawa, Phys. Fluids 12, 2642 (1969).

[10] S. P. Gary, R. M. Skoug, J. T. Steinberg, and C.W. Smith,
Geophys. Res. Lett. 28, 2759 (2001).

[11] J. C. Kasper, A. J. Lazarus, and S. P. Gary, Geophys. Res.
Lett. 29, 1839 (2002).

[12] P. Hellinger, P. Trávníček, J. C. Kasper, and A. J. Lazarus,
Geophys. Res. Lett. 33, L09101 (2006).

[13] L. Matteini, S. Landi, P. Hellinger, F. Pantellini, M.
Maksimovic, M. Velli, B. E. Goldstein, and E. Marsch,
Geophys. Res. Lett. 34, L20105 (2007).

[14] S. D. Bale, J. C. Kasper, G. G. Howes, E. Quataert, C.
Salem, and D. Sundkvist, Phys. Rev. Lett. 103, 211101
(2009).

[15] L. Matteini, P. Hellinger, B. E. Goldstein, S. Landi, M.
Velli, and M. Neugebauer, J. Geophys. Res. 118, 2771
(2013).

[16] A. A. Schekochihin, S. C. Cowley, R. M. Kulsrud, G. W.
Hammett, and P. Sharma, Astrophys. J. 629, 139 (2005).

[17] M.W. Kunz, A. A. Schekochihin, S. C. Cowley, J. J. Binney,
and J. S. Sanders, Mon. Not. R. Astron. Soc. 410, 2446
(2011).

[18] E. Quataert, W. Dorland, and G.W. Hammett, Astrophys. J.
577, 524 (2002).

[19] M. A. Riquelme, E. Quataert, P. Sharma, and A. Spitkovsky,
Astrophys. J. 755, 50 (2012).

[20] R. Grappin and M. Velli, J. Geophys. Res. 101, 425 (1996).
[21] L. Matteini, S. Landi, P. Hellinger, and M. Velli, J. Geophys.

Res. 111, A10101 (2006).
[22] P. Hellinger and P. M. Trávníček, J. Geophys. Res. 113,

A10109 (2008).
[23] P. Hellinger and P. Trávníček, J. Geophys. Res. 110,

A04210 (2005).
[24] M. S. Rosin, A. A. Schekochihin, F. Rincon, and S. C.

Cowley, Mon. Not. R. Astron. Soc. 413, 7 (2011).
[25] F. Rincon, A. A. Schekochihin, and S. C. Cowley (to be

published).
[26] J. A. Byers, B. I. Cohen, W. C. Condit, and J. D. Hanson,

J. Comput. Phys. 27, 363 (1978).
[27] D.W. Hewett and C.W. Nielson, J. Comput. Phys. 29, 219

(1978).
[28] G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. R. Soc.

A 236, 112 (1956).
[29] M.W. Kunz, J. M. Stone, and X.-N. Bai, J. Comput. Phys.

259, 154 (2014).
[30] S. E. Parker and W.W. Lee, Phys. Fluids B 5, 77 (1993).
[31] G. Hu and J. A. Krommes, Phys. Plasmas 1, 863

(1994).
[32] J. M. Stone and T. A. Gardiner, Astrophys. J. Suppl. Ser.

189, 142 (2010).
[33] P. H. Yoon, C. S. Wu, and A. S. de Assis, Phys. Fluids B 5,

1971 (1993).
[34] P. Hellinger and H. Matsumoto, J. Geophys. Res. 105,

10519 (2000).
[35] A. A. Schekochihin, S. C. Cowley, R. M. Kulsrud, M. S.

Rosin, and T. Heinemann, Phys. Rev. Lett. 100, 081301
(2008).

[36] V. D. Shapiro and V. I. Shevchenko, Sov. Phys. JETP 18,
1109 (1964).

[37] K. B. Quest and V. D. Shapiro, J. Geophys. Res. 101, 24457
(1996).

[38] S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965).

PRL 112, 205003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

205003-5

http://dx.doi.org/10.1029/JA087iA01p00052
http://dx.doi.org/10.1029/JA087iA01p00052
http://dx.doi.org/10.1063/1.2179053
http://dx.doi.org/10.1063/1.2179053
http://dx.doi.org/10.1086/498405
http://dx.doi.org/10.1098/rspa.1958.0094
http://dx.doi.org/10.1098/rspa.1958.0094
http://dx.doi.org/10.1103/PhysRev.109.1874
http://dx.doi.org/10.1063/1.1761882
http://dx.doi.org/10.1063/1.1692407
http://dx.doi.org/10.1029/2001GL013165
http://dx.doi.org/10.1029/2002GL015128
http://dx.doi.org/10.1029/2002GL015128
http://dx.doi.org/10.1029/2006GL025925
http://dx.doi.org/10.1029/2007GL030920
http://dx.doi.org/10.1103/PhysRevLett.103.211101
http://dx.doi.org/10.1103/PhysRevLett.103.211101
http://dx.doi.org/10.1002/jgra.50320
http://dx.doi.org/10.1002/jgra.50320
http://dx.doi.org/10.1086/431202
http://dx.doi.org/10.1111/j.1365-2966.2010.17621.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17621.x
http://dx.doi.org/10.1086/342174
http://dx.doi.org/10.1086/342174
http://dx.doi.org/10.1088/0004-637X/755/1/50
http://dx.doi.org/10.1029/95JA02147
http://dx.doi.org/10.1029/2006JA011667
http://dx.doi.org/10.1029/2006JA011667
http://dx.doi.org/10.1029/2008JA013416
http://dx.doi.org/10.1029/2008JA013416
http://dx.doi.org/10.1029/2004JA010687
http://dx.doi.org/10.1029/2004JA010687
http://dx.doi.org/10.1111/j.1365-2966.2010.17931.x
http://dx.doi.org/10.1016/0021-9991(78)90016-5
http://dx.doi.org/10.1016/0021-9991(78)90153-5
http://dx.doi.org/10.1016/0021-9991(78)90153-5
http://dx.doi.org/10.1098/rspa.1956.0116
http://dx.doi.org/10.1098/rspa.1956.0116
http://dx.doi.org/10.1016/j.jcp.2013.11.035
http://dx.doi.org/10.1016/j.jcp.2013.11.035
http://dx.doi.org/10.1063/1.860870
http://dx.doi.org/10.1063/1.870745
http://dx.doi.org/10.1063/1.870745
http://dx.doi.org/10.1088/0067-0049/189/1/142
http://dx.doi.org/10.1088/0067-0049/189/1/142
http://dx.doi.org/10.1063/1.860785
http://dx.doi.org/10.1063/1.860785
http://dx.doi.org/10.1029/1999JA000297
http://dx.doi.org/10.1029/1999JA000297
http://dx.doi.org/10.1103/PhysRevLett.100.081301
http://dx.doi.org/10.1103/PhysRevLett.100.081301
http://dx.doi.org/10.1029/96JA01534
http://dx.doi.org/10.1029/96JA01534


[39] Technically, this instability parameter is for cold electrons
[40], but it is close enough to reality for simplicity to
outweigh precision in our treatment.

[40] P. Hellinger, Phys. Plasmas 14, 082105 (2007).
[41] D. J. Southwood and M. G. Kivelson, J. Geophys. Res. 98,

9181 (1993).
[42] M. G. Kivelson and D. J. Southwood, J. Geophys. Res. 101,

17365 (1996).
[43] F. G. E. Pantellini, J. Geophys. Res. 103, 4789 (1998).
[44] This is consistent with the fraction of trapped particles being

fT ¼ ð1 − Bmin=BmaxÞ1=2. For Bmax=Bmin ≃ 1.8.
[45] A. A. Schekochihin, S. C. Cowley, W. Dorland, G. W.

Hammett, G. G. Howes, E. Quataert, and T. Tatsuno,
Astrophys. J. Suppl. Ser. 182, 310 (2009).

[46] S. Boldyrev, K. Horaites, Q. Xia, and J. C. Perez, Astrophys.
J. 777, 41 (2013).

[47] G. G. Howes, J. M. TenBarge, W. Dorland, E. Quataert, A.
A. Schekochihin, R. Numata, and T. Tatsuno, Phys. Rev.
Lett. 107, 035004 (2011).

[48] F. Sahraoui, M. L. Goldstein, G. Belmont, P. Canu, and L.
Rezeau, Phys. Rev. Lett. 105, 131101 (2010).

[49] O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J.
Mitchell, S. J. Schwartz, and P. Robert, Phys. Rev. Lett. 103,
165003 (2009).

[50] C. H. K. Chen, S. Boldyrev, Q. Xia, and J. C. Perez, Phys.
Rev. Lett. 110, 225002 (2013).

[51] F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin,
J. L. Pinçon, and A. Balogh, Phys. Rev. Lett. 96, 075002
(2006).

[52] S. Boldyrev and J. C. Perez, Astrophys. J. Lett. 758, L44
(2012).

PRL 112, 205003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

205003-6

http://dx.doi.org/10.1063/1.2768318
http://dx.doi.org/10.1029/92JA02837
http://dx.doi.org/10.1029/92JA02837
http://dx.doi.org/10.1029/96JA01407
http://dx.doi.org/10.1029/96JA01407
http://dx.doi.org/10.1029/97JA02384
http://dx.doi.org/10.1088/0067-0049/182/1/310
http://dx.doi.org/10.1088/0004-637X/777/1/41
http://dx.doi.org/10.1088/0004-637X/777/1/41
http://dx.doi.org/10.1103/PhysRevLett.107.035004
http://dx.doi.org/10.1103/PhysRevLett.107.035004
http://dx.doi.org/10.1103/PhysRevLett.105.131101
http://dx.doi.org/10.1103/PhysRevLett.103.165003
http://dx.doi.org/10.1103/PhysRevLett.103.165003
http://dx.doi.org/10.1103/PhysRevLett.110.225002
http://dx.doi.org/10.1103/PhysRevLett.110.225002
http://dx.doi.org/10.1103/PhysRevLett.96.075002
http://dx.doi.org/10.1103/PhysRevLett.96.075002
http://dx.doi.org/10.1088/2041-8205/758/2/L44
http://dx.doi.org/10.1088/2041-8205/758/2/L44

