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THE STABILITY OF AN INCOMPRESSIBLE ELECTRICALLY
CONDUCTING FLUID ROTATING ABOUT AN AXIS WHEN
CURRENT FLOWS PARALLEL TO THE AXIS

D. H. MicHAEL

1. The problem of the stability of a fluid rotating about an axis to
an axisymmetric disturbance has been examined in the inviscid case by
Rayleigh [1], who derived a simple criterion based on an analogy with the
stability of plane stratified fluid of variable density. Later a complete
discussion of the stability of viscous motion between rotating cylinders for
small axisymmetric disturbances was given by G. I. Taylor [2]. More
recently, the problem of magneto-hydrodynamic stability has claimed the
attention of several workers, and, amongst other problems, the stability of
a rotating fluid, when a constant magnetic field is applied in the direction
of the axis of rotation, has been examined by Chandrasekhar [3].

In this note we are interested in the case in which a current is applied
in the direction of the axis, so that the magnetic lines form circles about the
axis, with the field strength an arbitrary function of the distance from the
axis. The main discussion is restricted to the case where the fuid is
inviscid and perfectly conducting, the intention being to look for a simple
modification to the Rayleigh criterion that applies in the absence of the
magnetic field.

2. The addition of electromagnetic stress in the fluid will not change
the monotonic nature of instability when it occurs, and it is quite easy,
from the following considerations, to find the distribution of current and
fieldstrength which give neutral stability when the fluid is at rest and the
disturbance is axisymmetric.

Assuming that the fluid obeys Ohm’s Law, the equation for the magnetic
field (Batchelor [4]) when the magnetic diffusivity A is zero, is

—g—t—H:(H.V)v, ' (1)

where H and v are the magnetic field and velocity vectors respectively and
gf represents the time rate following the particles of the fluid.

In this case let the  axis be the axis of symmetry, y the distance from
the axis and the applied field H(y) in the direction ¢ = i x k, where i and k
are unit vectors in the z and y directions respectively. Write

v = ui-vk+wd.
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When u, v, w are independent of ¢ equation (1) becomes

dH H
e —y—~fu, where H= H¢,

3 — dy d p— VL 2’ TS AN
and since V=g we have T (Hly)=0. = €

Hence HJy remains constant for each particle of fluid in any
axisymmetric motion, i.e. the strength of the line is proportional to its
length.

A case of special interest arises in which the applied current density

ji is uniform, so that H = Cy, ' being a constant proportional to j. In-

this case the value of H/y for all particles is the same, so that, whatever
axisymmetric motion be imposed on the fluid, the magnetic field strength
remains the same at every point. The effect of the electro-magnetic
stress in this case is simply to modify the hydrostatic pressure; and any
axisymmetric flow, viscous or inviscid, which is dynamically possible in
the absence of the magnetic field, is unaffected by this distribution of H.
Furthermore this magnetic field would give no opportunity for magnetic
diffusion and these conditions will hold whatever the diffusivity coefficient A.

From the point of view of stability, we can say that, if the fluid has any
axisymmetric motion, the stability of such motion is unaltered by the
addition of a uniform current parallel to the axis. In particular if the
fluid is in hydrostatic equilibrium with this current, the system is neutrally
stable to any axisymmetric disturbance.

These considerations, though of use in pointing out the state of neutral
stability as far as the magnetic field is concerned, do not provide us with a
definite criterion of stability. ~ This criterion is derived in the following
work by considering small disturbances to the steady velocity and magnetic
fields.

- 3. Restricting ourselves to the inviscid perfectly conducting case, the
equations for v and H in addition to equation (1) are

ov o 1 e

5¥+(V.V)V———?gradp—!—1—7; [Curl Hx H], (2)
Div v=0, (3)
Div H=0. (4)

The undisturbed vectors are

V= Uo(?/) ¢,
H=Hy(y)¢.
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Suppose that in a small disturbance these become

2 g 7
v = ui+ok+ (Up+w) 6,
H= (H0+h) ¢9

where u, v, w, h are independent of ¢.

The disturbance term in H has only a ¢ component because lines of H rdoct o
move with the fluid, and since initially the lines are circles about the axis, - o S
they will remain so for an axisymmetric motion. — Tu induckon g

Inserting these values in equations (1), (2) and (3), and neglecting

the squares and products of the disturbances, we derive the following
thf’a' + B0 O By T By gu,

-~

equations.
dH, H, |
aﬂL r T | (5) R
ot P 895 47Tp ax G N ((5{; .
SRy >r(rB;,() v‘ P o)
' w_oUs,_ Lo p h'd pH, ?
¢ Mo’ at 2 Y w= p '87/—.4:77' y @ (y 0) 47pr ay ( ) (7)
Debog + 8v ((‘3,43« s Ug/r )
t ow au, . U,
p/momw ﬁ+ <dy + ) 0, 8)
1
Vs +3, (50,25 2 (o) 52 —0. o)

Let the disturbance be resolved into Fourier components in the z

direction and consider the component of wavelength Zm which is pro-

B

portional to ei#=.
Equations (6) and (9) then become

0 1. .
= -—,; B0 g HoiBh, (10)

- ay (yo)+iBu=0. (11)
From equations (10), (11) and (5) we derive

(12)

y b= T[S - (B

oL, B
Then eliminating w and p from equation (7) by using (8) and (12), we
derive an equation for v,

S35 (E2 ) )=k 2 -2 2 (B0 ay

<H dH0> .
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TS
Sor = e
Hence, if v varies as ¢,

AD
T d 2 _‘ii 2mﬂg_ H,
k,zﬁﬂw(ydy@)) —¢v =135 gy (Uo¥) %mdy<y>}’
kA
1drl d '
or B‘(T["j;f ’W):l“?)—*“)\g(y)?f L (14)
_la s My 4 Ho\* N @durme - Lovauilie
where 90) = s gy (VoW g (), s
and )‘:lz" ex%mvmw ;;L“’.L

4

If the flow takes place between two cylinders at radii @ and b, the

Suc=0 or M _y boundary conditions are that'v = 0 ab y = a, y = b., The problem is then
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to find the characteristic values of A. If Ais real a.nd positive the system is
stable. Otherwise, if X is real and negative, or complex, then it is unstable.
If we write y = y*v, (14) becomes

d?x __ (3 2 N8 (i) )
T =L P v (15)
and ¥ =0 at y =0 and b.

If ¥ denotes the conjugate of y, multiply (15) by x and integrate through-
out the interval (a, b). We then have

8 (Lot akay = | [ (gt #) o 7 ] o (16

ro= dx dx .
where ', ¥' denote dy dy respectively.

The integrals in (16) are real so that A is real. Hence the instability
where it exists will be monotonic. Further, since the right-hand side of

b
(16) is positive the sign of A is that of S g(y) x x dy-
a

If g(y) has the same sign throughout (a, b), then A will have the sign
of g(y) and in this case the system will be stable or unstable according as
g(y) >0 org(y) <O.

Ir g(y) changes in sign, it has been established in Sturm-Liouville
theory, which applies here, that both positive and negative values of A
occur. (See Ince [5]). Hence in this case the system is unstable.\

Thus in general, if g(y) is anywhere negative, the system is unstable.

When H,=0 this immediately gives us the Rayleigh criterion for

stability, viz. gg_/ (Uy9)? > 0 at all points.
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"When U o = 0 the condition for stability is that

d -Ho 2 Eoen pur 5"—1()
wly) <o o
e stan 0
i.e. Hyly should continuously decrease in magnitude from the axis., The ., ®," o
neutral case, we have already noted, is when H/y is constant. If Hy=Fky® @ ex<4

the system is stable if % <1, which means that the current density
decreases in magnitude from the centre.

"If both U, and H, fields are independently stable, then the combined
fields will be stable. On the other hand, if the U, and H, fields are

—» chabiiy
)

independently unstable, the combined field will be unstable. But unstable <- Geod !

characteristics in one field may be overcome by the stability of the other.,

Suppose for example that the field H, is due to a line current down the

axis so that Hy = C,/y, C; being constant. This field is in itself stable.
The condition for stability with U, is that

1 d s MY d <Cl> 2

% dy(UOy) >%@ 2

9

2

i.e.

(Ugy)» > — !

dy oy’

Thus a velocity U, for which

d pwC,?
0> (Upgy)? > ——L
dy ( oY ) Y.
is in itself unstable but is rendered stable by the line current. On the

other hand if
4 2 %%
gy Uov? <=t

the line of current does not suffice to remove the hydrodynamic instability.

4. When the system is unstable the question arises as to what form
the instability will take.

Suppose now that g(y) is not everywhere positive, so that negative
characteristic values of A exist. Since the time wvariation is with
e*@/¥Nt the mode which will give the most rapid amplification in time is
the one with the numerically least negative value of \. This will ultimately
be the dominant mode, and since when A = 0 the sclutions are non-oscillatory,
the mode of maximum amplification will be one having no zeros between
a and b.

Thus ultimately the disturbance will appear like v = e#¢f(y) where
f(y) is of the same sign in the range (a, b). This means that, for any value
of z, the fluid is all moving either radially outwards or radially inwards
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and it is clear that this motion is of the same type as the cellular system of
vortices observed and described by Taylor [2]in the case where the cylinders
rotate in the same direction. We may infer from this that similar vortical
systems may be set up by unstable magneto-hydrostatic fields, and by
unstable combinations of rotating fluid with magnetic field.
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