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1.  1.  RESUME OF PART 1:  THE LOWEST ORDER THEORYRESUME OF PART 1:  THE LOWEST ORDER THEORY

• Anomalous transport associated with micro-instabilities such as 
the electron drift wave

– driven by electron Landau resonance, with long parallel
wavelengths to minimise ion Landau damping

• Pressure driven MHD instability depends on competition between 
destabilising effect of a pressure gradient in a region of 
unfavourable curvature and the stabilising effect of field line 
bending

- so         plays an important role again and the most 
unstable modes have the smallest 

- find 

• This talk will explore how the stability and mode structure responds to 
realistic magnetic geometry and radial profiles

– leads to ballooning theory and more recent developments in this 
topic
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GEOMETRYGEOMETRY

Cylinder
● n(r), T(r) and  q(r):

● Fourier analyse: φ =φ(r)e-i(mθ-nz/R)

●

● For electron Landau drive and to minimise ion Landau damping

⇒ long parallel wavelength

● Shear                                mode localised around resonant surface

r0 : m = nq(r0)
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AxisymmetricAxisymmetric TorusTorus, , B(rB(r,,θθ))

● φ = φ(r, θ)einζ

● 2D (r,θ) – periodic in θ ; different poloidal m coupled
● High-n – simplify with eikonal

● Problem is to reconcile this with small k|| and periodicity

but not periodic!  ; shear ⇒ q(r) ≠ q(r0)
θ−ζ=⇒=∇⋅ )r(qS0SB
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Preview of Model Drift Wave Preview of Model Drift Wave EigenvalueEigenvalue EquationEquation

FLR Ion Sound        Radial variation        Toroidicity Electron         Eigenvalue
due to ω* or ΩE Drive Λ(Ω)

- X = nq′ (r – r0)

• Resonant surfaces

• Different cases, depending on magnitudes of ε, κ1, κ2
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SHEARED SLAB/CYLINDERSHEARED SLAB/CYLINDER

● Include magnetic shear, s ≠ 0, and density profile n(r)

● Eigenvalue equation

FLR         shear          density  electron Landau eigenvalue
profile                drive

Potential Q(X)

- 1D problem
- Seek localised (or ‘outgoing wave’) solutions
- κ2 << 1, have outgoing wave solutions: φ(x)=exp(-iσX2/2)
- Outgoing waves exhibit ‘shear damping’
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QUASI-MODES

● In periodic cylinder
k|| ∝ m – nq (r)

● Fix n, different m have resonant surfaces rm: n = q(rm)

● For large n, m they are only separated by

● Then each radially localised ‘m-mode’ ‘looks the same’ about its own 
resonant surface

● Each mode has almost same frequency – i.e. almost degenerate and 
satisfies
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● Roberts and Taylor realised it was possible to superimpose them to form 
a radially extended mode

– the twisted slicing or quasi-mode which maintains k|| << k⊥



TOROIDAL GEOMETRYTOROIDAL GEOMETRY

● In a torus new effects arise from inhomogeneous magnetic fields
– changes in mode structure from magnetic drifts: affects shear 

damping

● a vertical drift⇒ζ R
B~B 0
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● Doppler shift: ω → ω - k . vD

normal geodesic     curvatures

● φ (r) → φ(r,θ): two-dimensional

● Eigenvalue equation (absorb γe into Λ)

ε ~ 0(1)

1
R
r

x
siniscos TT <<=ε⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

θ+θε     ;    

⎟
⎠
⎞

⎜
⎝
⎛ +

θ∂
∂

−∝⎟
⎠
⎞

⎜
⎝
⎛ −+

θ∂
∂

−→⇒ Xi)r(nqmi
Rq
1k||

22
2 2

22 iX 2 is X 0
X X

cos sin ( )
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞− σ + − ε θ + θ − κ − Λ Ω ϕ =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂θ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦



EIKONAL SOLUTIONEIKONAL SOLUTION

● To minimise try                                                 to obtain

κ2 << ε - one-dimensional equation in θ

But solution must be periodic in θ over 2π
- must reconcile with secular terms!

● Solve problem with Ballooning Transformation (Connor, Hastie, 
Taylor)
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Potential Q(η)
- ∞ < η < ∞ ⇒ no longer need periodic solution!

● Often consider ‘Lowest Order’ equation, κ2 =0

– 1D Schrődinger equation with potential Q(η) with k a parameter, 
Λ(Ω) a ‘local’ eigenvalue

– k usually chosen to be 0 or π (to give most unstable mode)
– localisation of solutions in η reduces shear damping (waves reflected

by toroidal coupling)
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● Reconstructed φ(X,θ) is a quasi-mode
– ‘balloons’ in θ
– ‘m’ varies with X
– radially extended

⇒ determine slowly varying radial envelope A(m) by reintroducing 
κ2 << 1 in Part 2

– seen in gyro-kinetic simulations of ITG modes (e.g. W Lee)



SUMMARY OF PART 1SUMMARY OF PART 1

Shown how the ballooning transform allows one to use the simplification of a 
WKB ansatz for short wave-length (high-n) modes in a torus while allowing the 
most unstable long parallel wavelengths but still respecting both the toroidal
and poloidal periodicities

This provides an efficient calculational method for micro-instabilities and 
high-n MHD stability in a torus – the ‘lowest order theory’

The ‘higher order theory’ determines radial mode structures and normally 
provides only a small correction to mode frequencies

- its importance then is to justify choosing the most unstable value of k and 
to show there is a fully consistent theory for the radial variation

- Situations with low magnetic shear and finite rotation shear pose new 
problems for ballooning theory

- A subject for Part 2!



PART 2:  RADIAL MODE STRUCTUREPART 2:  RADIAL MODE STRUCTURE

● ‘Higher order’ theory: determines radial envelope A(X) (Taylor, Connor, 
Wilson)

● Reintroduce κ1,2 << 1 ⇒ k = k(X)
– yields radial envelope in WKB APPROXIMATION

– eigenvalue condition 

Conventional Version: ω* has a maximum

● Lowest order theory gives ‘local’ eigenvalue

● Expand Ω about k0 where shear damping is minimum
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Quadratic profile                                              Linear profile

● Implications
– mode width 

– mode localised about X = 0, i.e. Ω*max, , but covers many resonant 
surfaces

– spread in k: Δk ~ n-1/2 << 1
⇒ k ≅ k0 (minimum in shear damping)
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HIGHER ORDER THEORY: EXPANSION IN 1/n

x

1 2
0 1 21 2

2 2
0 0 0

0 1 2 2 2 2

L k x k x 0

d dA x exp inq k x dx k inq k
dx dx

i dL L k x
nq dx

1 1in n
n n
L L Li 1L L k x x

n q k x 2nq k x

/
/

/

: ( , , ; ) ( , , )

ˆ( ) ( ( ) ) ( , )

, , ;

: ....

( , , , ( ))

−

η Ω ϕ η =

′ ′ϕ = ϕ η ⇒ → +

⎛ ⎞
⇒ → η − Ω⎜ ⎟′⎝ ⎠

ϕ = ϕ + ϕ + ϕ +

∂ ∂ ∂∂ ∂
= η ω − − +

′ ′∂ ∂ ∂ ∂ ∂

∫

Ballooning equation

Expand

( )

0 1 21 2

x

1 1L L L
n n/

( )Ω−ω
Ω

≡ + +



0 0

0 0

0
0 1 1 0 1 1 2

0
0 1 01 2

0 0 0 00
0 0 0 0

1 1 11 2

L k x x 0

k x A x k

LiL L 0 where L
n q k x

Li AL 0
n q k x

L LL 0 L 0
k k k

i A with
n q x

/

/

/

: ( , , , ( ))

ˆ( , ), ( ) ( , )

:

,

ˆ

ˆ ˆ( )ˆ ˆBut

ˆˆ ˆ

η ω ϕ =

⇒ ω = ω ϕ = ϕ η

∂ ∂
ϕ + ϕ = = −

′ ∂ ∂

∂ ∂
∴ ϕ − ϕ =

′ ∂ ∂

∂ ϕ ∂ ∂ϕ
ϕ = ⇒ = ϕ + =

∂ ∂ ∂
∂∂

⇒ ϕ = − ϕ ϕ =
′ ∂

Lowest order

First order

00

k
ϕ
∂



Determining Determining kk00
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Second OrderSecond Order
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Radial EquationRadial Equation
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LIMITATIONS

1. Low magnetic shear

2. High velocity shear

3. The edge
- unfortunately characteristics of transport barriers!

ITB H-mode



FOURIER OR BALLOONING MODES?  FOURIER OR BALLOONING MODES?  -- (1)(1)

Introduce Fourier expansion and treat ε εand κ as perturbations

Seek solution 

i.e. φm satisfy lowest order ‘cylindrical’ equation with κ = 0

Coefficients Am are determined in first order through degenerate 
perturbation theory, by annihilating φ(1)
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FOURIER OR BALLOONING MODES?  FOURIER OR BALLOONING MODES?  -- (2)(2)

Applying annihilator 

We obtain a recurrence relation

Recurrence relation equivalent to Mathieu equation
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FOURIER OR BALLOONING MODES?  FOURIER OR BALLOONING MODES?  -- (3)(3)

Small ρ :   A0 = 1, A1= -2 ρ, A2 = ρ2/2……….; a = -2 ρ2 + 7 ρ4/2…..

A single Fourier mode with weak sidebands

Large ρ :  Am slowly varying in m

If ω unstable then  σ has a negative imaginary part
Since σ ~1/s, ρ << 1 for s << 1

Example with ρ real
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Fourier Amplitudes Fourier Amplitudes AAmm as function of real as function of real ρρ = = εε/2/2κκ



LOW MAGNETIC SHEAR (s << 1, ε finite)

● Two-scale analysis of ballooning equations η → (η, u): η periodic 
equilibrium scale, u = sη
⇒‘averaged’ eqn., independent of k ⇒ Ω independent of k!
– corresponds to uncoupled Fourier harmonics at each mth surface, 

localised within X ~ |s|: i.e. non-overlapping radially

● Recover k-dependence by using these as trial functions in variational
approach (Romanelli and Zonca)

– exponentially weak contribution

– becomes very narrow as |s| → 0, or k⊥ρi → 0
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● Estimate anomalous transport: χ γLin XM
2

suggests link between low
shear and ITBs

(Romanelli, Zonca)

● Presence of qmin acts as barrier to mode structures

Gyro-kinetic simulation by Kishimoto
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● Ballooning mode theory fails for sufficiently low s (or long wavelength)
– reverts to weakly coupled Fourier harmonics, amplitude Am, when 

– spectrum of narrows as mode centre moves towards qmin

● In practice, ballooning theory holds to quite low n
e.g. ITG modes with k⊥ρI ~ 0(1) largely unaffected by qmin
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THE WAVE-NUMBER REPRESENTATION

● More general contours of k (X, Ω)        (               )

(Romanelli, Zonca)

● ‘Closed’ contours already discussed; ‘passing’ contours sample all k
– WKB treatment in X-space still possible
– easier to use alternative, but entirely equivalent, Wave-number 

Representation (Dewar, Mahajan)

kk → θ



● satisfies ballooning eqn. on -∞ < θ < ∞, i.e. not periodic in θ

●

– φ is periodic in θ if S(k) is periodic in k: eigenvalue condition

Example

● Suppose linear profile:

⇒

● Periodicity of S yields eigenvalue condition
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Implications

● Re Ω related to local ω*(x): 

● Im

– k not restricted to near k0 (where γ is maximum): for the electron drift 
wave, all k contribute to give an average of the shear damping!

– some shear damping restored: more STABLE

e.g. ε = 4: γs(0) = - 0.02,

●

● Mode width:
(i) Ω real ⇒ ΔX ~ εn, or Δr ~ εa
(ii) Ω complex ⇒ ΔX ~ n1/2 ε1/2,   or Δr ~ (ε/n)1/2a
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; e.g. 
Shear damping as a function of k

Shear damping of electron drift wave
Shear damping of electron drift wave as function of k



SHEARED RADIAL ELECTRIC FIELDS

● Believed to reduce instability and turbulence – prominent near ITBs

● ω → ω - n ΩE (x) (Doppler Shift);   suppose ΩE = Ω′x

●

⇒ mode narrows as dΩE/dq increases, reducing estimates of ΔX and 
transport

● Are these modes related to conventional ballooning modes?
– introduce density profile variation

● Model:
i.e. γ has maximum at X = 0

XkcosiXii)0( qk
2
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E
1 E q
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dq
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● Wave-number representation produces quadratic eqn for dS/dk
– exp (inS) → φ(k)

- periodic S(k) is Floquet solution of Mathieu eqn: yields 
eigenvalue

Analytic solution for transition region 
possible (Connor)

⇒ continuous evolution from conventional mode to more STABLE    
‘passing’ mode

● for large dΩE/dq

⇒ reverts to Fourier modes!                     FULL CIRCLE?
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EXTENSIONS TO BALLOONING THEORY

● Have seen limitations imposed by low magnetic shear and high flow shear

● The presence of a plasma edge clearly breaks translational invariance
– have used 2D MHD code to study high-n edge ballooning modes; 

mode structure resembles ballooning theory ‘prediction’



● Non-linear theory
– the ‘twisted slices’ of Roberts and Taylor form a basis for flux-tube 

gyrokinetic simulations

Conventional ST
Tokamak

θ
x

y



– introducing non-linearities into the theory of high-n MHD ballooning 
modes predicts explosively growing filamentary structures, seen on 
MAST

Simulation Experiment



SUMMARY AND CONCLUSIONSSUMMARY AND CONCLUSIONS

● Problems of toroidal periodicity in the presence of magnetic shear
resolved by Ballooning theory

● Ballooning theory provides a robust and widely used tool, but its validity 
can break down for:

– Low magnetic shear
– Rotation shear
– Plasma edge

when the higher order theory is considered

● Re-emergence of Fourier modes in the torus for low s and high dΩE/dq

● Ballooning theory also provides a basis for some non-linear theories and 
simulations


