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1. RESUME OF PART 1: THE LOWEST ORDER THEORY

« Anomalous transport associated with micro-instabilities such as
the electron drift wave

— driven by electron Landau resonance, with long parallel
wavelengths to minimise ion Landau damping

Vr; < k% < V1o
* Pressure driven MHD instability depends on competition between
destabilising effect of a pressure gradient in a region of

unfavourable curvature and the stabilising effect of field line
bending k2B

oC

2,
-so k. plays an important role again and the most

unstable modes have the smallest k.
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 This talk will explore how the stability and mode structure responds to
realistic magnetic geometry and radial profiles

— leads to ballooning theory and more recent developments in this
topic



GEOMETRY

Cylinder
e n(r), T(r)and q(r): q =
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# 0 = mode localised around resonant surface



Axisymmetric Torus, B(r,0)

"Magnetic axis”

° ¢ =q(r, )M
e 2D (r,0) — periodic in O ; different poloidal m coupled
e High-n - simplify with eikonal
~ inS(r,0

o(r,0) ~ (r,0)e"""

e Problem is to reconcile this with small k; and periodicity
B-VS=0=S=(—-q(r)0
but not periodic! ; shear = q(r) = q(r,)



Preview of Model Drift Wave Eigenvalue Equation
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SHEARED SLAB/CYLINDER

e Include magnetic shear, s # 0, and density profile n(r)

e Eigenvalue equation

d’ .
—+ 67X — 1, X iy, (X) = A(Q) pp(X) =0
dX
FLR shear density electron Landau eigenvalue
profile drive
\
Y

Potential Q(X)

- 1D problem

- Seek localised (or ‘outgoing wave’) solutions

- K, << 1, have outgoing wave solutions: @(x)=exp(-16X2/2)
- Outgoing waves exhibit ‘shear damping’



QUASI-MODES

e In periodic cylinder
kj oc m —nq (r)

e Fix n, different m have resonant surfacesr_:n=q(r,)

e Forlarge n, m they are only separated by

AX 1 o :>K2D0(y2)ul
n

e Then each radially localised ‘m-mode’ ‘looks the same’ about its own
resonant surface

e Each mode has almost same frequency — i.e. almost degenerate and
satisfies

K e

k.

<<1
n



e Roberts and Taylor realised it was possible to superimpose them to form
a radially extended mode

— the twisted slicing or quasi-mode which maintains k <<k,
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TOROIDAL GEOMETRY

e In atorus new effects arise from inhomogeneous magnetic fields
— changes in mode structure from magnetic drifts: affects shear

damping
o By a vertical drift
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e Doppler shift: ® »> o -k . vg
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OX R

normal geodesic  curvatures

e ¢ (r) > o(r,0): two-dimensional
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e Eigenvalue equation (absorb y, into A)
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EIKONAL SOLUTION

X
—ixe+ij kdX

e Tominimise k, try ¢~ ¢(0)e to obtain

2
{02 pvel +(0—k)* +2¢[cosO+s(0—k)sinO] + A(QQ) + szz}(p =0

K, << & - one-dimensional equation in 6

But solution must be periodic in 6 over 2n
- must reconcile with secular terms!

e Solve problem with Ballooning Transformation (Connor, Hastie,
Taylor)

o(X,0) = Ze‘im@ J. dne_i(x_m_k)”(@(n,X;k)

—00 | ~
P (X)




2
{02 % +(n—k)* +2e(cosn+s(n—k)sinn) + A + KzXz}(f)(n,X,k) =0
n

N /
Y

Potential Q(n)
- o0 < 1 <00 = no longer need periodic solution!

e Often consider ‘Lowest Order’ equation, k, =0

— 1D Schrédinger equation with potential Q(n) with k a parameter,
A(Q) a ‘local’ eigenvalue

— k usually chosen to be 0 or = (o give most unstable mode)

— localisation of solutions in n reduces shear damping (waves reflected
by toroidal coupling)



e Reconstructed ¢(X,0) is a quasi-mode
— ‘balloons’ in 6
— ‘m’ varies with X
— radially extended

— determine slowly varying radial envelope A(m) by reintroducing
K, << 1in Part 2

— seen in gyro-kinetic simulations of ITG modes (e.g. W Lee)

N




SUMMARY OF PART 1

® Shown how the ballooning transform allows one to use the simplification of a
WKB ansatz for short wave-length (high-n) modes in a torus while allowing the
most unstable long parallel wavelengths but still respecting both the toroidal
and poloidal periodicities

®m This provides an efficient calculational method for micro-instabilities and
high-n MHD stability in a torus — the ‘lowest order theory’

®m The ‘higher order theory’ determines radial mode structures and normally
provides only a small correction to mode frequencies

- its importance then is to justify choosing the most unstable value of k and
to show there is a fully consistent theory for the radial variation

- Situations with low magnetic shear and finite rotation shear pose new
problems for ballooning theory

- A subject for Part 2!



PART 2: RADIAL MODE STRUCTURE

e ‘Higher order’ theory: determines radial envelope A(X) (Taylor, Connor,

Wilson)
e Reintroduce «,, << 1 = k = k(X)
— yields radial envelope in WKB APPROXIMATION

i [ k(X)dX
A(X)=e
— eigenvalue condition [ﬁkdX =0+ %)n

Conventional Version: . has a maximum

e Lowest order theory gives ‘local’ eigenvalue

Q=0.(0)-k,X* + ive (k)
. ~ / —— —
local' ®.(x) shear damping

e Expand Q about k, where shear damping is minimum

Q=0(0) - 16, X +iyy (k—ko)*  (yic ~€)
= k(X,Q)



Quadratic profile Linear profile

e Implications 1/4
3 - & 1/2 a
mode width X, ~| —| ~n'", = Ar~—5<<a

12
K, n

— mode localised about X =0, i.e. QO
surfaces

but covers many resonant

*max, ’

— spread ink: Ak ~n'12 << 1
= k =k, (minimum in shear damping)
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HIGHER ORDER THEORY: EXPANSION IN 1/n

Ballooning equation: L(n, k, x; Q)¢p(n, k,x)=0

¢ = A(x)exp(ing’ j k(x)dx) ¢(n,k) = d% N C;ix +ing’k

=L > L(n,k—%i,x; Qj
nq dx

Expand in n"'*: (|>:(p0+nll/2 (p1+i(p2+....
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Lowest order : L,(n,k,x,0(x))p, =0

= o=0(k,x),0, = A(X)d,(n.k)

First order:
1 OL, O
Lo, +L,p, =0, where L, = _n”zq’ 81(0 ~
1 OL, OA .
Lo - n“zq' 81(0 OX Po =
. o(L,p,) OL, . 3]
But Lo =0 = 0707, -0 +L. —2=0
oo ok ok 0T 0ok
i A, .. 0P
= O :_nTzq,g(Pl with @, :a—ko



Determining k,

Let jdn...... = < ...... >, where <(pLO\|J>= <\VL0(P>
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Second Order

Ly, +Lo, +L,0, =0 = (p,L,9,)+{p,L,9,)=0

oL
Consider 0, —>@®. )=0
<(Po ok (P0>

as 8_@20
ok
( ioL o) i o6 dA
Now L = — 0 — 0
(0oL1) <(P°[ nq’ ok axj( ng’ ok dx J>
From (1) 1 [ e 5 Lo, \|dA
g | \ P g2 o ) G5 G B )

(I)



Radial Equation

Combining (1) and (llI)

Dy

1 /. 0L, d’w.
m’q? \ " be oK
o X’ 0w
or, writing o = o, W ®, —
1 Jod’A

2n°q"” ok’ dx’

>

d’A
dx?
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LIMITATIONS
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FOURIER OR BALLOONING MODES? - (1)

Introduce Fourier expansion and treat ¢ eand k as perturbations

Seek solution
¢ =) A ™o (X-m); ¢,(X)=exp(-ic(X-m)’/2);
AY =—ic

i.e. @, satisfy lowest order ‘cylindrical’ equation with k=0

Coefficients A_ are determined in first order through degenerate
perturbation theory, by annihilating ¢



FOURIER OR BALLOONING MODES? - (2)

Applying annihilator

Jt: dX[ﬁ dOo_ (X)exp(im0)

We obtain a recurrence relation

oA +A)=(a—m))A,; p=i[l+ﬁjexp[—l—“j,

ic AW
a=|———
2 K



FOURIER OR BALLOONING MODES? - (3)

Smallp: A;=1,A=-2p,A,=p?/2.......... ;a=-2p%+7 pt2
A single Fourier mode with weak sidebands

Large p: A, slowly varying in m

d’A_

2

p +(m2—a+2p)Am:O

dm

:Am:exp(_1m2/2pl/2)’ azzp_lpl/Z,

:. A, essentially constant out to m [ +|p|
and then fall off exponentially

If ® unstable then ¢ has a negative imaginary part
Since o ~1/s,p<<1fors<<1

Example with p real

1/4



Fourier Amplitudes A as function of real p = &/2k




LOW MAGNETIC SHEAR (s << 1, ¢ finite)

e Two-scale analysis of ballooning equations n — (1, u): n periodic
equilibrium scale, u = sn

—'averaged’ eqn., independent of k = Q independent of k!

— corresponds to uncoupled Fourier harmonics at each mth surface,
localised within X ~ |s|: i.e. non-overlapping radially

e Recover k-dependence by using these as trial functions in variational
approach (Romanelli and Zonca)

— exponentially weak contribution
Q=0Q.(0)-«,X* +iexp(—c/|s )74 (k-k,)’

1
e | S _
= Xy ~ (—) exp(—ﬂj Serit °© (kp;) ’
Ky s
— becomes very narrow as |s| - 0, ork p, > 0
* %k
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e Estimate anomalous transport: y o« v, X2

X

suggests link between low
shear and ITBs

(Romanelli, Zonca)

[ T
1
Scrit S

e Presence of q_,. acts as barrier to mode structures

Gyro-kinetic simulation by Kishimoto
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e Ballooning mode theory fails for sufficiently low s (or long wavelength)
— reverts to weakly coupled Fourier harmonics, amplitude A_, when

np. L

—1 <« - n
2
r 4sq°R
A
1 ® 5 A
° 1 ] 1 L J
)
A 0.6
) o * .
[ ] 0.2
. . . . s
‘eesegecsene® . 0ee ee————%sgesssgsssegese - - ®esesssesvegsvesessse

— spectrum of A narrows as mode centre moves towards q,;,

e In practice, ballooning theory holds to quite low n
e.g. ITG modes with k,p, ~ 0(1) largely unaffected by q,,;,



THE WAVE-NUMBER REPRESENTATION

More general contours of k (X, Q) (k—>6,)

WA

RA

‘Closed’ contours already discussed; ‘passing’ contours sample all k

— WKB treatment in X-space still possible

(Romanelli, Zonca)

— easier to use alternative, but entirely equivalent, Wave-number

Representation (Dewar, Mahajan)



0(X,0) = T dk(6, k) exp[-iX(0 — k) - S(k)]

° (f)(@,k) satisfies ballooning eqn. on -0 <0 <, i.e. not periodic in 0

eP(O+2m,k+21m)=0(0,k)

— @ is periodic in 0 if S(K) is periodic in k: eigenvalue condition

Example

: 1 1
e Suppose linear profile: Q2=Q:(0)+1, X+1y,(k) , ®~— "O(_

nq L n

LR HQ- Q.0 (k) =0

e Periodicity of S yields eigenvalue condition

§dk[Q — Q. —iy, (k)] =21/,

J



Implications

e Re Q related to local .(x): Q_ +2nlx,
e Im Q—ngdk (k)
2n ’s

— k not restricted to near k, (where y is maximum): for the electron drift
wave, all k contribute to give an average of the shear damping!

— some shear damping restored: more STABLE

1
e.g. 6= 4:7,0)=-0.02, 5~ Prs(K)dk=-035

° Ak=27‘CZ>AX~LAy(k)~i>>1 if &>> Ky

Ky Ky

e Mode width:

(i) Qreal=> AX ~¢€n, orAr~e€a
(i) Q complex = AX ~n'2gl2 or Ar ~ (¢/n)'2a
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SHEARED RADIAL ELECTRIC FIELDS

e Believed to reduce instability and turbulence — prominent near ITBs

o —> ® -n Qg (x) (Doppler Shift); suppose Q. =Q'x
dQ _

= K; > Kg = Q, ~071)!

AX~8/Qq

= mode narrows as dQ./dq increases, reducing estimates of AX and

transport

Are these modes related to conventional ballooning modes?

— introduce density profile variation

Model: Q= Qu4(0)—iyg + iy, X> — iy, cosk—Q X

l.e. y has maximum at X =10



Wave-number representation produces quadratic eqn for dS/dk
— exp (inS) — ¢(k)
- periodic S(k) = (k) is Floquet solution of Mathieu eqgn: yields
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Analytic solution for transition region

possible (Connor)

q n

— continuous evolution from conventional mode to more STABLE

‘passing’ mode

e

<

X ~ <1
(dQ;, /dq) for large dQ2./dq

— reverts to Fourier modes!

FULL CIRCLE?



EXTENSIONS TO BALLOONING THEORY
e Have seen limitations imposed by low magnetic shear and high flow shear

e The presence of a plasma edge clearly breaks translational invariance

— have used 2D MHD code to study high-n edge ballooning modes;
mode structure resembles ballooning theory ‘prediction’
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e Non-linear theory

— the ‘twisted slices’ of Roberts and Taylor form a basis for flux-tube
gyrokinetic simulations

Conventional ST
Tokamak

* * ok
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— introducing non-linearities into the theory of high-n MHD ballooning
modes predicts explosively growing filamentary structures, seen on

MAST

Simulation



SUMMARY AND CONCLUSIONS

e Problems of toroidal periodicity in the presence of magnetic shear
resolved by Ballooning theory

e Ballooning theory provides a robust and widely used tool, but its validity
can break down for:

— Low magnetic shear
— Rotation shear
— Plasma edge
when the higher order theory is considered

e Re-emergence of Fourier modes in the torus for low s and high d€./dq

e Ballooning theory also provides a basis for some non-linear theories and
simulations



