
Magnetohydrodynamics and Turbulence

Alexander Schekochihin, Part III (CASM) Michaelmas Term 2006

EXAMPLE SHEET II

These problems will be discussed in the 2nd Example Class (28.11.05, 14:30 in MR4).
Problems marked with ∗ are optional: omit them if you are in a hurry. I probably will not have

time discuss them unless you ask me to do so.
There will be another Example Class in Easter Term — we shall deal any questions you might have

before the exam.

1. Uniform Collapse. A simple model of star formation envisions a sphere of galactic plasma with
density n = 1 cm−3 undergoing a gravitational collapse to a spherical star with density n = 1026 cm−3.
The magnetic field in the galactic plasma is ∼ 3 × 10−6 G. Assuming that flux is frozen, estimate
the magnetic field in a star.

2.∗ Flux Concentration. Consider a simple 2D model of incompressible convective motion:
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1. In the neighbourhood of the stagnation point (0, 0, 0), linearise the flow, assume vertical mag-
netic field, B = (0, 0, B(t, x)) and derive an equation for B(t, x). Suppose B(0, x) = B0 = const
It should be clear to you from your equation that magnetic field is being swept towards
x = 0. What is the time scale of this sweeping? Given the magnetic Reynolds number
Rm = UL/η � 1, show that flux conservation holds on this time scale.

2. Find a steady solution of your equation. Use flux conservation and B(x) = B(−x) to determine
the constants of integration (in terms of B0 and Rm). What is the width of the region around
x = 0 where the flux is concentrated? What is the magnitude of the field there?

3. Can you think of a heuristic argument based on the induction equation that would tell you
that these answers were to be expected?

3. Zeldovich Antidynamo Theorem. Consider the case of an arbitrary 2D velocity field: u =
(ux, uy, 0). Assume incompressibility. Show that, in a finite system (specifically, you may work in a
periodic box), this velocity field is not a dynamo, i.e., any initial magnetic field will always eventually
decay. This is one of the classical antidynamo results: the Zeldovich Theorem.
Hint. Consider separately the equations for Bz and for the (x, y)-plane magnetic field. Show that
Bz decays (consider time evolution of the volume integral of B2

z ), then write Bx, By in terms of one
scalar function (this is possible because ∂Bx/∂x + ∂By/∂y = 0) and show that it decays as well.

4.∗ X-Point Collapse. Let us set up the following initial magnetic-field configuration:

B0(r0) = B0ẑ + ẑ ×∇0ψ(x0, y0), (2)

where r0 = (x0, y0, z0), B0 = const, and

ψ(x0, y0) =
1

2
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0

)

. (3)

1. Draw the field lines in the (x0, y0) plane to see that this is an X-point.
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2. Use Lagrangian MHD

ρ0
∂2r

∂t2
= −J (∇0r)
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where r(t, r0) = (x, y, z) and J = | det∇0r|, and seek solutions in the form

x = ξ(t)x0, y = η(t)y0, z = z0. (5)

Show that ξ(t) and η(t) satisfy the following equations
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3. Consider the possibility that, as time goes on, η(t) → 0 (becomes small) and ξ(t) = ξc + . . .,
where ξc is some constant. Find solutions that satisfy this assumption. The answer is

ξ(t) ≈ ξc +
9

4

(

2

9ξc

)1/3

(tc − t)4/3 , (8)

η(t) ≈
(

9ξc
2

)1/3

(tc − t)2/3 (9)

as t → tc, where tc is some finite time constant. This is called the Syrovatskii solution for the
X-point collapse.

4. Calculate the magnetic field as a function of time and convince yourself that the initial X-point
configuration collapses explosively (in a finite time) to a sheet along the x axis. What do you
think happens after t reaches tc?

5. Now do a similar calculation for incompressible Lagrangian MHD (J = 1). Remember that
total pressure is now determined by the condition J = 1. Show that the solution in this case is

ξ(t) = eS(t), η(t) = e−S(t), (10)

where S(t) is an arbitrary function of time. If, e.g., S(t) = Λt, show that this means the
X-point collapses exponentially. This is called the Chapman-Kendall solution.

5. Conservation Laws for Incompressible MHD. Consider equations of incompressible MHD:

∂u

∂t
+ u · ∇u = −∇p

ρ
+

B · ∇B

4πρ
+ ν∇2u + f , ∇ · u = 0, (11)

∂B

∂t
+ u · ∇B = B · ∇u + η∇2B, (12)

where f is some forcing function and ρ = const. Derive the evolution equations for the kinetic energy
∫

d3x ρu2/2, magnetic energy
∫

d3xB2/8π and cross-helicity
∫

d3xu ·B directly from these equations
and make sure your result is consistent with the incompressible limit of the more general equations I
derived in class (you should find the incompressible derivation much simpler). Assume that all sur-
face integrals vanish. Can you interpret all terms in your energy equations? Under what assumption
are the total energy (kinetic + magnetic) and cross-helicity conserved? When energy is ”lost” in this
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system, where does it go?

6. Kinetic Alfvén Waves. There is an approximation, often used at very small scales, in which
one assumes that magnetic field lines are frozen not into the mass flow ui (ion velocity — it satisfies
the usual Navier-Stokes equation with a Lorentz force) but into the electron flow velocity ue, which
can be expressed in terms the ion velocity ui and the current density j = en(ui − ue), where e is
electron charge and n = ni = ne is the ion/electron density. This is called the Electron (or Hall)
MHD.

1. Under the above assumption, write a closed system of equations for B and ui, assuming in-
compressibility and neglecting viscosity and Ohmic diffusion.

2. Consider the static equilibrium with a straight uniform magnetic field B0 = B0ẑ = const.
Derive the dispersion relation for waves in this system. You will find the following definitions
useful: vA = B0/(4πnmi)

1/2 is the Alfvén speed (mi is the ion mass), di = c(mi/4πe
2n)1/2 is

called the ion inertial scale or ion skin depth (e is the elementary charge, n number density of
ions/electrons).

3. Obtain an explicit formula for the frequency ω = ω(k) from your dispersion relation. Under
what conditions do you recover the Alfvén waves?

4. Assume kdi � 1 (k is the absolute value of the wave vector) and find the corresponding limiting
form of the dispersion relation. The waves you have obtained are called the kinetic Alfvén waves
(KAW).

7. KAW Turbulence. Interstellar and solar-wind turbulence at scales smaller than di (see Problem
6) can be described by an approximation whereby the magnetic field is frozen into the electron flow
ue, while the ions can be considered motionless, ui = 0.

1. Show that this turbulence obeys the following equation (a trvial task if you have done Prob-
lem 6):

∂B

∂t
= − c

4πen
∇× [(∇× B) × B] . (13)

Consider a static equilibrium with a straight uniform magnetic field in the z direction, so that
B = B0ẑ + δB. Show that the linear waves in this system have the dispersion relation

ω(k) = ±k‖vAkdi, (14)

where vA = B0/
√

4πnmi, k = (k⊥, 0, k‖), k = |k|. These waves are called KInetic Alfvén Waves
(KAW). You have, in fact, already obtained this dispersion relation in Problem 6 as a limiting
case of the more general dispersion relation taht held for non-zero ui.

2. Now your task is to work out scalings for the KAW turbulence in a way similar to how this
is done for the Alfvén-wave turbulence. As usual, assume that interactions in scale space are
local and the energy flux is constant:

ε ∼
(

δBl

B0

)2
v2

A

τl
∼ const, (15)

where τl is the cascade time, which you will have to determine. In terms of the typical magnetic-
field fluctuation δBl of scale l, what is the characteristic time associated with the nonlinearity
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in Eq. (13)? Formulate the assumption of weak interactions. Under this assumption, calculate
τl and show that

δBl

B0

∼
(

ε

v3
Adi

l3⊥
l‖

)1/4

, (16)

where l⊥ and l‖ are characteristic scales perpendicular and parallel to the background field,
respectively.

3. If the turbulence were isotropic, what would be scaling of the spectrum of the magnetic field
with the wavenumber?

4. Now let us assume that the turbulence is anisotropic, l‖ � l⊥, and critically balanced, i.e., the
interactions are strong and the time for a wave to cascade is comparable to the wave period.
Show that in this case, δBl ∝ l

2/3
⊥ and l‖ ∝ l

1/3
⊥ . This is the picture confirmed by numerical

simulations.

8. Reduced MHD. In my lectures on RMHD, I left the derivation of some of the results as an
exercise:

1. derivation of the equations for φ and ψ;

2. derivation of the equations for Elsasser variables ζ± and z±‖ ;

3. derivation of the 5 conservation laws.

Work them out.
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