
Magnetohydrodynamics and Turbulence

Alexander Schekochihin, Part III (CASM) Michaelmas Term 2006

EXAMPLE SHEET I

These problems will be discussed in the 1st Examples Class.

1. Magnetic-field spectra in clusters of galaxies. Randomly tangled magnetic fields in galaxy
clusters can be measured because the polarisation angle of an electromagnetic wave propagating from
an extended radio source in a cluster rotates as it passes though magnetised intracluster medium.
Let z be the line-of-sight direction and (x, y) the coordinates in the plane perpendicular to it. The
rotation angle is ∆φ = λ2σ(x, y), where λ is the wavelength and

σ(x, y) = a0

∫ zobserver

zsource

dz neBz (1)

is called the rotation measure. Here a0 is a constant, ne is the electron density in the intracluster
medium and Bz is the projection of the magnetic field in the medium onto the line of sight. While
Bz is a (random) function of x, y, and z, you may assume that ne is constant. Let us assume that
we have a two-dimensional data set with values of σ(x, y) for all x and y. Your task is to determine
the spectrum of magnetic energy based on this information and some statistical assumptions.

1. Assuming spatial homogeneity of the field, the two-point correlation function of the magnetic
field depends only on the distance between points: 〈Bi(r)Bj(r

′)〉 = Cij(r − r′). Define the
Fourier transform

B̂(k) =
∫

d3r B(r) e−ik·r, r = (x, y, z). (2)

Show that 〈B̂i(k)B̂j(k
′)〉 = (2π)3δ(k + k′)Ĉij(k), where

Ĉij(k) =
∫

d3r Cij(r) e−ik·r. (3)

2. Now assume spatial isotropy and parity (mirror symmetry) of the field. Then the tensor Ĉij(k)

can be written in terms of one scalar function of k = |k|. If Ĉii(k) = 2H(k), what is the
expression for Ĉij(k) in terms of H(k) and k?

3. Suppose we have constructed from our data set the correlation function of the rotation measure,
i.e., CRM = 〈σ(r⊥1)σ(r⊥2)〉 is known for any two points r⊥1 = (x1, y1) and r⊥2 = (x2, y2). Show
that CRM and H(k) are related as follows

CRM(|r⊥1 − r⊥2|) = a2
0n

2
eL

∫

d2k⊥

(2π)2
H(|k⊥|) eik⊥·(r⊥1−r⊥2), k⊥ = (kx, ky), (4)

where L is the distance from the source to the observer. You are allowed to take the integration
limits in z to ±∞ wherever you need to and use the formula

∫ +∞

−∞
dz eikzz = 2πδ(kz).

4. Now show that the spectrum of the magnetic field can be recovered from the observed rotation-
measure correlation function as follows:

H(k) =
2π

a2
0n

2
eL

∫

∞

0
drrJ0(kr)CRM(r). (5)

You may use the formula
∫ 2π
0 dθ e±ia cos θ = 2πJ0(a).
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2. Scalar Turbulence: Obukhov-Corrsin Theory. Consider the evolution of passive scalar θ(t,x)
(this can be temperature, or concentration of an admixture like a dye or salt, or, in 2D hydrodynam-
ics, the vorticity field, or, in RMHD, the magnetic flux function, etc.):

∂θ

∂t
+ u · ∇θ = κ∇2θ + S, (6)

where u is the turbulent velocity field, κ is the scalar diffusivity, and S is the source function (scalar
”forcing”). We will assume that S varies at some (large) scale Lθ < L, where L is the outer scale of
the turbulence.

You are going to develop a dimensional theory of scalar turbulence à la the K41 theory I described
in my lectures.

1. Let us figure out when the diffusive term in Eq. (6) is negligible. Assume that the convective
term in Eq. (6) is dominated by interactions between velocity fluctuations δul and scalar fluc-
tuations δθl on comparable scales. Compare it with the diffisive term and show that the latter
is negligible if

κ

δull
� 1. (7)

2. Show that, for δul satisfying the K41 scaling, Eq. (7) reduces to l � lκ = Sc−3/4lν , where
lν = (ν3/ε)1/4 is the viscous scale, ε is the Kolmogorov flux, and Sc = ν/κ is called the Schmidt
number.

Note that, since you have used K41 inertial-range scaling for the cascade time, your estimates
are only correct for Sc � 1 (do you understand why that is?).

3. Show that an equivalent expression for the diffusive scale is lκ ∼ Pe−3/4Lθ (provided the
characteristic scale of the scalar source is Lθ < L), where Pe = δuLθ

Lθ/κ is called the Péclet
number (analog of the Reynolds number for scalars).

The scale range of l such that L > Lθ � l � lθ � lν is called the inertial-convective range. It
is non-empty if Re � Pe � 1.

4. Define the scalar variance Eθ = 〈θ2〉/2 (“energy” of the scalar field). Derive an evolution
equation for it and show that in the statistically stationary state, when Eθ = const, the average
injected scalar “power” is

εθ = 〈Sθ〉 = κ〈|∇θ|2〉. (8)

5. Find an argument (similar to K41) that leads to the relation, valid in the inertial-convective
range,

δθ2
l

τl

∼ εθ = const. (9)

What is the cascade time? Use the above relation to prove that

δθl ∼
(

εθ

ε

)1/2

δul. (10)
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6. So what is the scaling of δθl if u is the Kolmogorov turbulent velocity field? Show that the
spectrum of scalar variance, defined analogously to the spectrum of the velocity field, is

Eθ(k) ∼
εθ

ε1/3
k−5/3 (11)

(the Obukhov-Corrsin spectrum). Sketch the spectra of the kinetic energy and of the scalar
variance, indicating all relevant wavenumbers (scales) and slopes.

3. Scalar Turbulence: Batchelor Theory. What if Sc � 1? Then lκ we calculated in Question
2 is smaller than lν . Our dimensional theory only applies to l � lν . Let us figure out what the scalar
does at l � lν .

1. Use the scaling of δul in the viscous range (l � lν) derived in my lectures to show that Eq. (7)
reduces to l � lκ = Sc−1/2lν — the new expression for the diffusive scale in the limit Sc � 1.

The scale range lν � l � lκ is called the viscous-convective range (or subviscous range).

2. In a manner analogous to what you did in Question 2, show that, for l in the viscous-convective
range,

δθ ∼ εθ
1/2ε−1/4ν1/4, (12)

(independent of scale!) or, for the spectrum of scalar variance,

Eθ(k) ∼ εθε
−1/2ν1/2k−1 (13)

(the Batchelor spectrum). This spectrum is the result of these two properties of the viscous-
convective range: (i) flux of scalar variance is independent of l, (ii) cascade time is independent
of l (and equal to the turnover time of the viscous-scale eddies — confirm this is so!).

3. Thus, in the inertial-convective range, we have the Oboukhov-Corrsin spectrum, in the viscous-
convective range, we have the Batchelor spectrum. Sketch the spectra of the kinetic energy
and of the scalar variance in the case Sc � 1, indicating all relevant wavenumbers k ∼ 1/l and
slopes.
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