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The Coma Cluster
 © NASA

This is a cluster of galaxies…



M51 
The Whirlpool

 Galaxy 
© NOAO/AURA/NSF

This is a galaxy…



…and this is the Matrix

N3 
The Periodic Box
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Coma Cluster
from

Schuecker et al.
astro-ph/0404132



MHD Turbulence: The Fundamental Problem

                             Clusters are wonderful:
• amorphous plasma
• no rotation (nonhelical!)
• subsonic turbulence (from mergers/structure formation)
• tangled magnetic fields

                   … a case of “pure” turbulence

                         (more about them later…)



MHD Turbulence: The Fundamental Problem

Set ·BÒ = 0, start with small seed field. There are two main issues: 
1. Is there small-scale dynamo, i.e., does magnetic energy ·B2Ò grow? 
2. If it does,  how does it saturate: what is the long-term state of the 

    fully-developed isotropic MHD turbulence?

Can we simulate this problem in our box?
I.e., what are the scales ranges and what happens at smallest scales?



Two Scale Ranges in the Problem

forcing

k-5/3

k0 kn ~ Re3/4k0

Kinetic energy

kh ~ Pm1/2kn

Magnetic energy grows:
small-scale dynamo

k

A key parameter: magnetic Prandtl number
Pm = n/h ~ 2.6¥10-5 T4/n (ionised) or 1.7¥107 T2/n (with neutrals)
• Pm >>1: galaxies (1014), clusters (1029)
• Pm <<1: planets (10-5), stars (10-7…10-4), protostellar discs (10-8),
                  liquid-metal laboratory dynamos



Small-Scale Dynamo at Pm ≥ 1

Pm ≥ 1: it is well established numerically that an initial weak seed field
will grow at the smallest scales provided Rm > Rmc ~ 102

forcing

k-5/3

k0 kn ~ Re3/4k0

Kinetic energy

kh ~ Pm1/2kn

Magnetic energy grows:
small-scale dynamo

k
Pm >> 1
Rm >> Re >> 1

[Meneguzzi, Frisch & Pouquet 1981, PRL 47, 1060]



Small-Scale Dynamo: DNS

• ·B2Ò grows exponentially,
          then saturates  

• Field at the resistive 
   scale (kh ~ Pm1/2kn )

[AAS et al. 2004, ApJ 612, 276 and references therein]

Fairly sophisticated analytical treatment of this regime is possible



Numerical Approaches

forcing

k-5/3

k0 kn ~ Re3/4k0

Kinetic energy

kh ~ Pm1/2kn

Saturation?

k
Pm >> 1
Rm >> Re >> 1

Do we really need to resolve two scale ranges in saturation?



Numerical Approaches: Re >> 1, Pm ~ 1

forcing

k-5/3

k0 kn ~ Re3/4k0

Kinetic energy

~ kh ~ Pm1/2kn k

Do we really need to resolve two scale ranges in saturation?
Approach  I: Re >> 1, Pm ~ 1 (sacrifice subviscous range)

[Re scan in this regime: see
Haugen et al. 2003, ApJ 597, L141]



Numerical Approaches: Re ~ 1, Pm >> 1

forcing

k0 kn ~ k0

Kinetic energy

kh ~ Pm1/2kn k

Do we really need to resolve two scale ranges in saturation?
Approach   I: Re >> 1, Pm = 1 (sacrifice subviscous range)
Approach II: Re ~ 1, Pm >> 1 (sacrifice inertial range)

[Pm scan in this regime: see
AAS et al. 2003, ApJ 612, 276]



MHD Turbulence: Standard Picture
Standard approach: forget about dissipation scales and
                  assume • magnetic energy is large-scale dominated

• elementary motions are Alfvénic, 
                  so uk ~ Bk
• interactions are local in k space

forcing

k–??

k0 kn

Kinetic energy

k

energy flux

e

Inertial range

Magnetic energy Scaling arguments 
à la Kolmogorov



MHD Turbulence: Standard Picture
Standard approach: forget about dissipation scales and
                  assume • magnetic energy is large-scale dominated

• elementary motions are Alfvénic, 
                  so uk ~ Bk
• interactions are local in k space

• IK63/65: weak interactions, isotropy

• Weak turbulence: weak interactions, 
   no cascade in k|| (extreme anisotropy) 

• GS95: strong interactions/critical balance 
  (Alfvén time ~ turnover time)

E(k) ~ (evA)1/2 k–3/2

E(k) ~ (ek||vA)1/2 k^
–2

E(k) ~ e2/3 k^
–5/3

    k|| ~ e1/3vA
–1 k^

2/3 

With further assumptions, obtain various scaling laws…



Isotropic MHD Turbulence: DNS

[Maron et al. 2004, ApJ 603, 569; AAS et al. 2004, ApJ 612, 276;
Highest resolution to date (10243) : Haugen et al. 2003, ApJ 597, L141]

There is no evidence of scale-by-scale equipartition!
Excess of magnetic energy at small scales 



Isotropic MHD Turbulence: DNS

|u| |B|

Excess of magnetic energy at small scales 

[AAS et al. 2004, ApJ 612, 276]



Small-Scale Dynamo at Pm ≥ 1

forcing

k-5/3

k0 kn ~ Re3/4k0

Kinetic energy

kh ~ Pm1/2kn

Magnetic energy grows:
small-scale dynamo

k
Pm >> 1
Rm >> Re >> 1

Go back to small-scale dynamo and ask some basic questions…



Folded Structure: Common Sense

When Rm >> 1,  field “frozen” into the flow (cf. material lines).
The flow winds up the field into folds:

•  Direction reversals at the resistive scale, k^ ~ kh 
•   Field varies slowly along itself:  k|| ~ kflow

What sort of fields does the small-scale dynamo make?



Folded Structure: DNS (Pm >> 1)



Folded Structure: DNS (Pm >> 1)



Folded Structure: DNS (Pm >> 1)

                           Many ways of diagnosing this structure:
• Extreme flux cancellation [Ott & coworkers 1988-98,  Cattaneo 1994]
• Anisotropic two-point correlators [Chertkov et al. 1999, PRL 83, 4065]
• Statistics of field-line curvature 
  [AAS et al. 2002, PRE 65, 016305; 2004, ApJ, 612, 276]



Field Line Curvature Statistics

[AAS et al. 2002, PRE 65, 016305; 2004, ApJ, 612, 276
cf. work on material lines: e.g., Drummond & Münch 1991, JFM 225, 529]

More detailed information:
geometry of field lines described 

by the PDF of their curvature
K=b·—b

b

K



Curvature and Field Strength

[AAS et al. 2002, PRE 65, 016305; 2004, ApJ, 612, 276
cf. work on material lines: e.g., Drummond & Münch 1991, JFM 225, 529]

More detailed information:
geometry of field lines described 

by the PDF of their curvature
K=b·—b

Curvature and field strength
are anticorrelated



Curvature and Field Strength

[AAS et al. 2002, PRE 65, 016305; 2004, ApJ, 612, 276
cf. work on material lines: e.g., Drummond & Münch 1991, JFM 225, 529]

  …which is clear from simple
  geometry of field stretching
  (and can be shown both 
   analytically and 
   numerically)

Strong straight
field

Weak curved
field

Stretching

Curvature and field strength
are anticorrelated

More detailed information:
geometry of field lines described 

by the PDF of their curvature
K=b·—b



Characteristic Wavenumbers
The crudest diagnostics:

(direction reversals,  get this 
already from spectral theory)

(inverse “fold length”,  cannot
get it from  the spectrum!)

Compare them with the inverse 
Taylor microscale:



Folded Structure Preserved in Saturation

All the same features of field-line geometry and 
field-strength anticorrelation with curvature as in kinematic dynamo

[AAS et al. 2004, ApJ 612, 276]



Saturation via Anisotropy

[AAS et al. 2004, PRL 92, 084504]

Folds provide a direction in space
that is locally coherent at the scale 

of the flow 
l0l0 Rm–1/2

B·—B ~ k||B2



Saturation via Anisotropy

[AAS et al. 2004, PRL 92, 084504]

It is possible to construct a Fokker-Planck-type model 
of saturated spectra based on the idea that

saturation occurs via partial two-dimensionalisation
of the velocity gradients with respect to the local direction

of the folds 
This weakens stretching and enhances mixing, so dynamo saturates

 at marginally stable balance of the two

Folds provide a direction in space
that is locally coherent at the scale 

of the flow 
l0l0 Rm–1/2

B·—B ~ k||B2



A Fokker-Planck Model of Saturation

making velocity statistics depend on the local field direction bibj :

Can then derive an equation for magnetic-energy spectrum in (almost) the usual way:

where

Solution in the limit h Æ +0 is

“mixing rate”

g = 0 at some sufficiently small s^, s||  fi saturation purely by means of anisotropy!

Build on the Kazantsev formalism and model saturation by

[AAS et al. 2004, PRL 92, 084504]



Saturated Spectra: Theory vs. DNS
We can solve the model with simulation parameters:

 these nonasymptotic solutions fit an entire sequence of spectra
 in runs with Re ~ 1, Pm >>1

[AAS et al. 2004, PRL 92, 084504]



Saturated Spectra: Theory vs. DNS
We can solve the model with simulation parameters:

 these nonasymptotic solutions fit an entire sequence of spectra
 in runs with Re ~ 1, Pm >>1

This is a pleasant surprise:
apparently, the saturation

mechanism is simple 
and robust enough 
to be captured by 

such an elementary model!

[AAS et al. 2004, PRL 92, 084504]



MHD Turbulence: Multiscale Flow

forcing

k-5/3

k0 kh ~ Pm1/2knkn ~ Re3/4k0

Magnetic energy grows:
small-scale dynamo

Kinetic energy

k

We have thus far considered dynamo in a single-scale random flow
True turbulence has a range of scales



Onset of Back Reaction

B·—B ~ u·—u
  k||B2 ~ kn u2 

Kinematic growth 
     continues until

i.e.,           B2 ~ u2

Mag. energy ~ visc. eddies energy

forcing

k-5/3

k0 kh ~ Pm1/2knkn ~ Re3/4k0

Kinetic energy

k

[AAS et al. 2002, PRE 65, 016305]



Intermediate Nonlinear Growth

forcing

k-5/3

k0 kh ~ Pm1/2knkn ~ Re3/4k0

Kinetic energy

kks(t)

[AAS et al. 2002, NJP 4, 84; Maron et al. 2004, ApJ 603, 569]

Define stretching scale ls(t) :



Intermediate Nonlinear Growth

forcing

k-5/3

k0 kh ~ Pm1/2knkn ~ Re3/4k0

Magnetic energy grows
linearly in time

Kinetic energy

kks(t)

Supported by DNS
[AAS et al. 2004, ApJ 612, 276]

Define stretching scale ls(t) :

[AAS et al. 2002, NJP 4, 84; Maron et al. 2004, ApJ 603, 569]



Intermediate Nonlinear Growth

forcing

k-5/3

k0 kh ~ Pm1/2knkn ~ Re3/4k0

Magnetic energy grows
linearly in time

Kinetic energy

kks(t)

Supported by DNS
[AAS et al. 2004, ApJ 612, 276]

Define stretching scale ls(t) :



Intermediate Nonlinear Growth

forcing

k-5/3

k0 kh ~ Pm1/2knkn ~ Re3/4k0

Magnetic energy grows
linearly in time

Kinetic energy

kks(t)

Supported by DNS
[AAS et al. 2004, ApJ 612, 276]

selective decay

It is possible to construct a Fokker-Planck model of this
self-similar intermediate growth stage 

[AAS et al. 2002, NJP 4, 84]



Intermediate Nonlinear Growth

forcing

k-5/3

k0 kh  kn ~ Re3/4k0

Kinetic energy

kks(t)

Magnetic energy grows
linearly in time

[AAS et al. 2002, NJP 4, 84]

Supported by DNS
[AAS et al. 2004, ApJ 612, 276]

selective decay

It is possible to construct a Fokker-Planck model of this
self-similar intermediate growth stage 



Intermediate Nonlinear Growth

forcing

k-5/3

k0 kh  kn ~ Re3/4k0

Kinetic energy

kks(t)

Magnetic energy grows
linearly in time

Supported by DNS
[AAS et al. 2004, ApJ 612, 276]

[AAS et al. 2002, NJP 4, 84]

selective decay

It is possible to construct a Fokker-Planck model of this
self-similar intermediate growth stage 



Saturation

forcing

k0 kh ~ Re–1/4 Pm1/2 kn kn ~ Re3/4k0

Kinetic energy

k

Magnetic energy saturates

Nonlinear growth/selective decay/fold elongation continue until
             ls ~ l0                                     ·B2Ò ~ ·u2Ò 

                                              and  lh ~ Rm–1/2 l0 ~ Re1/4 Pm–1/2 ln
  

Supported by DNS
[AAS et al. 2004, ApJ 612, 276]

[AAS et al. 2002, NJP 4, 84]



Saturation

forcing

k0 kh ~ Re–1/4 Pm1/2 kn kn ~ Re3/4k0

Kinetic energy

k

Magnetic energy saturates

Nonlinear growth/selective decay/fold elongation continue until
             ls ~ l0                                     ·B2Ò ~ ·u2Ò 

                                              and  lh ~ Rm–1/2 l0 ~ Re1/4 Pm–1/2 ln
  

Supported by DNS
[AAS et al. 2004, ApJ 612, 276]

NB: lh  and ln  distinguishable only if Pm >> Re1/2 >> 1!!!



Saturation

We propose that 
• saturation is a balance between stretching and mixing by the 
    outer-scale motions and Ohmic diffusion of the folded field 

forcing

k0 kh ~ Re–1/4 Pm1/2 kn kn ~ Re3/4k0

Kinetic energy

k

Magnetic energy saturates

[Maron et al. 2004, ApJ 603, 569; AAS et al. 2004, ApJ 612, 276]



Alfvén Waves and Folded Fields

forcing

k0 kh ~ Re–1/4 Pm1/2 kn kn ~ Re3/4k0

Kinetic energy

k

Magnetic energy saturates

Alfvén waves

[AAS et al. 2004, ApJ 612, 276]

We propose that 
• saturation is a balance between stretching and mixing by the 
    outer-scale motions and Ohmic diffusion of the folded field 
• the fully developed isotropic MHD turbulence in the inertial range
    is a superposition of folded magnetic fields and Alfvén waves 



Alfvén Waves and Folded Fields

Dispersion relation:

[AAS et al. 2004, ApJ 612, 276]

We propose that 
• saturation is a balance between stretching and mixing by the 
    outer-scale motions and Ohmic diffusion of the folded field 
• the fully developed isotropic MHD turbulence in the inertial range
    is a superposition of folded magnetic fields and Alfvén waves 



DNS: Saturated Spectra

• Folds account for the predominance of large-k modes 
     in magnetic-energy spectra
• Alfvén waves should show up in the velocity spectra

[AAS et al. 2004, ApJ 612, 276]



DNS: Intermediate Growth

Slower than exponential
growth

[AAS et al. 2004, ApJ 612, 276]



DNS: Intermediate Growth

Slower than exponential
growth

Selective decay and
fold elongation

[AAS et al. 2004, ApJ 612, 276]



DNS: Intermediate Growth

Selective decay and
fold elongation

[AAS et al. 2004, ApJ 612, 276]



Alfvén Waves and Folded Fields

forcing

k0 kh ~ Re–1/4 Pm1/2 kn kn ~ Re3/4k0

Kinetic energy

k

Magnetic energy
Folds + waves

Alfvén waves

[AAS et al. 2004, ApJ 612, 276]

NB: The assumption of locality in k space has been abandoned! 



Cluster Turbulence
TURBULENCE

Coma cluster
[Schuecker et al., astro-ph/0404132]

• Driven by mergers
• Subsonic below outer scale
• Outer scale ~ 102…103 kpc
• Viscous scale ~ 10…30 kpc
• Re ~ 102…103 



Cluster Magnetic Fields
Faraday Rotation data from extended sources allows one to measure

spatial structure (spectra) of magnetic fields in clusters 

[picture courtesy of T. Enßlin] 



Cluster Magnetic Fields
MAGNETIC FIELDS

Hydra A Cluster
[Vogt & Enßlin 2004,

picture courtesy of T. Enßlin]

• B ~ 1…10 mG
  (equipartition 
   strength ~ 100 mG)
• Mostly disordered
• Scale ~ 1 kpc



Cluster MHD
TURBULENCE

Coma cluster
[Schuecker et al., astro-ph/0404132]

Viscous scale is around here (~10 kpc)

MAGNETIC FIELDS
Hydra A Cluster

[Vogt & Enßlin 2004,
picture courtesy of T. Enßlin]



Cluster MHD

Kinetic- and magnetic-energy spectra look (at least qualitatively) 
quite similar to ourspectra of simulated MHD turbulence

Does this mean we’ve got it right?



Cluster MHD

forcing

k-5/3

k0
1 Mpc

kn ~ Re3/4k0
30 kpc

(Re ~ 102)

Kinetic energy

k



Cluster MHD

forcing

k-5/3

k0
1 Mpc

kn ~ Re3/4k0
30 kpc

(Re ~ 102)

Kinetic energy

kh ~ Pm1/2kn
105 km

(Pm ~ 1029)
This is a ludicrous distance!

k



Cluster MHD

forcing

k-5/3

k0
1 Mpc

kn ~ Re3/4k0
30 kpc

(Re ~ 102)

Kinetic energy

kh ~ Pm1/2kn
105 km

(Pm ~ 1029)

k

1/lmfp~ Re k0
10 kpc

Collisionless plasma
physics here

What is the effective magnetic cutoff?



Cluster Plasma Physics

forcing

k-5/3

k0
1 Mpc

kn ~ Re3/4k0
30 kpc

(Re ~ 102)

Kinetic energy

kh ~ Pm1/2kn
105 km

(Pm ~ 1029)

k

1/lmfp~ Re k0
10 kpc

Collisionless plasma
physics here

with



Cluster Plasma Physics

forcing

k-5/3

k0
1 Mpc

kn ~ Re3/4k0
30 kpc

(Re ~ 102)

Kinetic energy

kh ~ Pm1/2kn
105 km

(Pm ~ 1029)

k

1/lmfp~ Re k0
10 kpc

Collisionless plasma
physics here

Magnetised plasma:
ri << lmfp

already for B ~ 10–18 G

with



Cluster Plasma Physics

forcing

k-5/3

k0
1 Mpc

kn ~ Re3/4k0
30 kpc

(Re ~ 102)

Kinetic energy

kh ~ Pm1/2kn
105 km

(Pm ~ 1029)

k

1/lmfp~ Re k0
10 kpc

Collisionless plasma
physics here

where

Magnetised plasma:
ri << lmfp

already for B ~ 10–18 G



MHD with Braginskii Viscosity

where

[Braginskii 1965, Rev. Plasma Phys. 1, 205]



MHD with Braginskii Viscosity

where

[Braginskii 1965, Rev. Plasma Phys. 1, 205]

Physics: conservation of the first adiabatic invariant

Changes in field strength ¤ pressure anisotropy



MHD with Braginskii Viscosity

where

[Braginskii 1965, Rev. Plasma Phys. 1, 205]

Physics: conservation of the first adiabatic invariant

Changes in field strength ¤ pressure anisotropy



MHD with Braginskii Viscosity

where

[Braginskii 1965, Rev. Plasma Phys. 1, 205]

Physics: conservation of the first adiabatic invariant

Changes in field strength ¤ pressure anisotropy

Can we solve/simulate this modified system of equations?



Firehose Instability
There is a very fast-growing 
instability (faster than —u!)

   g = k||(–3nBbb:—u – vA
2)1/2

valid both for kn << k|| < 1/lmfp
and k|| > 1/lmfp 

amplifies shear-Alfvén-polarised
perturbations

occurs in the regions
 of decreasing field: 

< 0

bends of the folds
[Rosenbluth 1956, LANL Report 2030;
 Vedenov & Sagdeev 1958, Doklady 3, 278; 
 Parker 1958, Phys. Rev. 109, 1874;
 Chandrasekhar et al. 1958, Proc. Roy. Soc. 245, 435]

l||
lB

Brms

Bbend



g =(2/p)1/2k|| ¥

[(3nBbb:—u/vth)(1–k||
2/2k^

2)
– vA

2(1+k||
2/k^

2)]

Mirror Instability
There is another instability (slower
than firehose, still faster than —u)

valid for k^ > k||/√2 >> 1/lmfp 
(collisionless regime)
occurs in the regions
 of increasing field: 

> 0

straight segments of the folds
[Rosenbluth 1956, LANL Report 2030;
 Vedenov & Sagdeev 1958, Doklady 3, 278; 
 Parker 1958, Phys. Rev. 109, 1874;
 Chandrasekhar et al. 1958, Proc. Roy. Soc. 245, 435]

l||
lB

Brms

Bbend



Mirror Instability
There is another instability (slower
than firehose, still faster than —u)

valid for k^ > k||/√2 >> 1/lmfp 
(collisionless regime)
occurs in the regions
of increasing field: 

> 0

straight segments of the folds

STABILISED
when vA

2 ~ u2

(at the viscous scale)

g =(2/p)1/2k|| ¥

[(3nBbb:—u/vth)(1–k||
2/2k^

2)
– vA

2(1+k||
2/k^

2)]
l||

lB

Brms

Bbend



Firehose Instability
There is a very fast-growing 
instability (faster than —u!)

   g = k||(–3nBbb:—u – vA
2)1/2

valid both for kn << k|| < 1/lmfp
and k|| > 1/lmfp 

amplifies shear-Alfvén-polarised
perturbations

occurs in the regions
of decreasing field: 

< 0

bends of the folds

NOT STABILISED:
in the bends vA

2 << u2

even in saturation

l||
lB

Brms

Bbend



Firehose Instability
There is a very fast-growing 
instability (faster than —u!)

   g = k||(–3nBbb:—u – vA
2)1/2

valid both for kn << k|| < 1/lmfp
and k|| > 1/lmfp 

amplifies shear-Alfvén-polarised
perturbations

occurs in the regions
of decreasing field: 

< 0

bends of the folds

So a simulation of MHD 
with Braginskii viscosity

will blow up at the grid scale! 

l||
lB

Brms

Bbend

[Maron 2002, unpublished]



Firehose Instability
There is a very fast-growing 
instability (faster than —u!)

   g = k||(–3nBbb:—u – vA
2)1/2

valid both for kn << k|| < 1/lmfp
and k|| > 1/lmfp 

amplifies shear-Alfvén-polarised
perturbations

occurs in the regions
of decreasing field: 

< 0

bends of the folds

Growth rate tails off
at k ~ ri

[Davidson & Völk 1968, Phys. Fluids 11, 2259]

l||
lB

Brms

Bbend



Effective Magnetic Cutoff
Curvature Kbend ~ 1/ri, bend

• Can show that BK1/2 ~ const
   throughout the fold, so
      Bbend/Brms ~ (ri, bend/l||)1/2

• But ri µ 1/B, so
   ri, bend/ri, rms ~ Brms/Bbend

• Also     lB/l|| ~ Bbend/Brms

l||
lB

Brms

Bbend



Effective Magnetic Cutoff
Curvature Kbend ~ 1/ri, bend

• Can show that BK1/2 ~ const
   throughout the fold, so
      Bbend/Brms ~ (ri, bend/l||)1/2

• But ri µ 1/B, so
   ri, bend/ri, rms ~ Brms/Bbend

• Also     lB/l|| ~ Bbend/Brms

Very crude estimates give

~ 10 pc

A bit too small, but not unreasonable…
NB: lB tends to decrease as instrument resolution increases
  [cf. Kim et al. 1990, ApJ 355, 29; Feretti et al. 1995, A&A 302, 680]

l||
lB

Brms

Bbend



Poetry in Lieu of Summary

James Clerk Maxwell on the inevitability of kinetic description
of cluster plasmas 

At quite uncertain times and places, 
   The atoms left their heavenly path,
And by fortuitous embraces,
   Engendered all that being hath.
And though they seem to cling together,
   And form “associations” here,
Yet, soon or late, they burst their tether,
   And through the depths of space career.

1874


