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The Unknown

As we know, 
There are known knowns.
There are things we know we know. 
We also know 
There are known unknowns. 
That is to say 
We know there are some things 
We do not know. 
But there are also unknown unknowns, 
The ones we don't know 
We don't know. 

D. H. Rumsfeld
12.02.02, DoD news briefing
as quoted by www.slate.com



Outline
We do not know very much about MHD turbulence.

I will ask a very basic question:
WHAT ARE THE KINETIC AND MAGNETIC ENERGY

SPECTRA?
and review very simple arguments that lead to various answers

(none of which has been compellingly proven to be true)
pointing out the difficulties that arise.

I will also show some of the numerical and observational evidence
available to us today.



MHD Turbulence: The Fundamental Problem
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Kolmogorov Turbulence

forcing

k–5/3

k0 kn ~ Re3/4k0

Kinetic energy

k

energy flux

e

Inertial range

tl ~ teddy~ l/ul ul ~ e1/3 l1/3 E(k) ~ e2/3 k–5/3      K41 

e ~ ul
2 tl
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Energy at 
scale l 

Cascade time
(rate of transfer)

 
 
•  Scale invariance
• Locality in k space

Only one time scale available at each l: the eddy-turnover time

Kolmogorov spectrum fixed by dimensional analysis



MHD Turbulence à la Kolmogorov
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MHD Turbulence à la Kolmogorov
• Strong mean field B0
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

e ~ ul
2 tl

–1 = const

Energy at 
scale l 

Cascade time
(rate of transfer)

Two time scales available:
       turnover time: teddy~ l^/ul
          Alfvén time: tA~ l|| /vA
          vA = B0/(4pr)1/2

tl ~?
Cannot fix scalings solely 
by dimensional analysis!

forcing

k–??

k0 kn

Kinetic energy

k

energy flux

e

Inertial range

Magnetic energy



Interaction of Alfvén Wave Packets — I

[Iroshnikov 1964, Sov. Astron. 7, 566; Kraichnan 1965, Phys. Fluids 8, 1385]

Assume weak interactions: teddy >> tA 

• Wave packet passes through another:
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Interaction of Alfvén Wave Packets — I

[Iroshnikov 1964, Sov. Astron. 7, 566; Kraichnan 1965, Phys. Fluids 8, 1385]

Assume weak interactions: teddy >> tA 

• Wave packet passes through another:

• Its amplitude gets a kick:

• Sum of kicks over time t: 

• Cascade time: 



Iroshnikov-Kraichnan Turbulence

forcing

k–3/2
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Additional physical assumptions:
•  weak interactions: teddy >> tA

[Iroshnikov 1964, Sov. Astron. 7, 566; Kraichnan 1965, Phys. Fluids 8, 1385]



Iroshnikov-Kraichnan Turbulence

forcing

k–3/2

k0 kn ~ Re2/3k0
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Additional physical assumptions:
•  weak interactions: teddy >> tA
•  isotropy: l|| ~ l^

E(k) ~ (evA)1/2 k–3/2     IK65

[Iroshnikov 1964, Sov. Astron. 7, 566; Kraichnan 1965, Phys. Fluids 8, 1385]



Observations: Spectrum is not k–3/2?

Solar wind
[Leamon et al. 1998]

Electron density in the ISM
[Armstrong et al. 1995, ApJ 443, 209]



DNS: MHD Turbulence is Anisotropic!

•  weak interactions: teddy >> tA
•  isotropy: l|| ~ l^

E(k) ~ (evA)1/2 k–3/2     IK65

Müller et al. 2003, 
PRE 67, 066302: 
perpendicular and

parallel spectra



DNS: MHD Turbulence is Anisotropic!

•  weak interactions: teddy >> tA
•  isotropy: l|| ~ l^

E(k) ~ (evA)1/2 k–3/2     IK65

Cho et al. 2002, 
ApJ 564, 291: 

contours of velocity
 correlation functions

l||

l^



Interaction of Alfvén Wave Packets — II



Interaction of Alfvén Wave Packets — II

Only counterpropagating waves interact:



Interaction of Alfvén Wave Packets — II

Only counterpropagating waves interact:

• Alfvén waves interact via k|| = 0 modes
• No cascade in k|| 



Iroshnikov-Kraichnan Turbulence
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Additional physical assumptions:
•  weak interactions: teddy >> tA



Weak MHD Turbulence
• Strong mean field B0
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

e ~ ul
2 tl

–1 = const

Energy at 
scale l 

Cascade time
(rate of transfer)

Additional physical assumptions:

E(k^) ~ (ek||vA)1/2 k^
–2 •  weak interactions: teddy >> tA

•  extreme anisotropy: l|| ~ l0

    (no cascade in k||)
[e.g., Galtier et al. 2000, JPP 63, 447; Lithwick & Goldreich 2003, ApJ 582, 1220]
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Weak MHD Turbulence
• Strong mean field B0
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

e ~ ul
2 tl

–1 = const

Energy at 
scale l 

Cascade time
(rate of transfer)

[e.g., Galtier et al. 2000, JPP 63, 447; Lithwick & Goldreich 2003, ApJ 582, 1220]

forcing

k^
–2

k0 kn

Kinetic energy

k

Magnetic energy

k*

teddy >> tA

teddy ~ tA

Weak interaction condition breaks down:



Goldreich-Sridhar Turbulence
• Strong mean field B0
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

e ~ ul
2 tl

–1 = const

Energy at 
scale l 

Cascade time
(rate of transfer)

Additional physical assumptions:
E(k^) ~ e2/3 k^

–5/3     GS95 

     k|| ~ e1/3vA
–1 k^

2/3

•  strong interactions: teddy ~ tA

              (critical balance)

[Goldreich & Sridhar 1995, ApJ 438, 763]
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Cho et al. 2003, 
ApJ 595, 812: 

l|| ~ l^
2/3

Goldreich-Sridhar Turbulence: DNS

E(k^) ~ e2/3 k^
–5/3     GS95 

     k|| ~ e1/3vA
–1 k^

2/3

•  strong interactions: teddy ~ tA

              (critical balance)

B0 ~ urms



Cho et al. 2003, 
ApJ 595, 812: 

E ~ k–5/3

Goldreich-Sridhar Turbulence: DNS

E(k^) ~ e2/3 k^
–5/3     GS95 

     k|| ~ e1/3vA
–1 k^

2/3

•  strong interactions: teddy ~ tA

              (critical balance)

B0 ~ urms



Maron & Goldreich 2001, 
ApJ 554, 1175: 
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Goldreich-Sridhar Turbulence: DNS

E(k^) ~ e2/3 k^
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•  strong interactions: teddy ~ tA

              (critical balance)

B0 = 100 urms
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–1 k^

2/3

•  strong interactions: teddy ~ tA

              (critical balance)
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spectra closer to k^
–3/2 

Spectra do not fit!

B0 = 100 urms



Goldreich-Sridhar Turbulence: DNS

E(k^) ~ e2/3 k^
–5/3     GS95 

     k|| ~ e1/3vA
–1 k^

2/3

•  strong interactions: teddy ~ tA

              (critical balance)

Müller et al. 2003, 
PRE 67, 066302: 

spectra closer to k^
–3/2 

Spectra do not fit!

B0 ≈ 5, 10urms



Issues With k|| = 0 (“Mean Modes”)
• Very important: they mediate interaction between Alfvén waves
  (in the weak-interaction limit, Alfvén waves are passive 
   with respect to k|| = 0 modes)

• They are not Alfvén waves themselves, rather, they are 2D MHD:
   liable to form long-lived low-k^ structures 
   some evidence of k–3/2 spectrum
   [2D MHD: Kinney et al. 1995, PoP 2, 3623; Biskamp & Swartz 2001, PoP 8, 3282]
   [3D RMHD: Kinney & McWilliams 1998, PRE 57, 7111]

• In simulations with strong B0,  do these modes get mixed up with
   the Alfvénic spectrum? 
   (I think this is certainly true in Müller et al. simulations)

• A numerical effect only?
   (existence of such modes depends on periodic boundaries)



Isotropic MHD Turbulence: No Mean Field
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Isotropic MHD Turbulence: No Mean Field

forcing

k–??
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• Strong large-scale field?
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space
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etc…



Isotropic MHD Turbulence: DNS (Decaying)
• Strong large-scale field?
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

e ~ ul
2 tl

–1 = const

Energy at 
scale l 

Cascade time
(rate of transfer)

etc…

Biskamp & Müller 2000, 
PoP 7, 4889:

E(k) ~ k–5/3 claimed



Isotropic MHD Turbulence: DNS (Decaying)
• Strong large-scale field?
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

e ~ ul
2 tl

–1 = const

Energy at 
scale l 

Cascade time
(rate of transfer)

etc…

Biskamp & Müller 2000, 
PoP 7, 4889:

E(k) ~ k–5/3 claimed

Magnetic

Kinetic

NB: decay controlled by helicity conservation



Isotropic MHD Turbulence: DNS (Forced)
• Strong large-scale field?
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

e ~ ul
2 tl

–1 = const

Energy at 
scale l 

Cascade time
(rate of transfer)

etc…
AAS et al. 2004, ApJ 612, 276
See also Maron et al. 2004, ApJ 603, 569
              Haugen et al. 2004, PRE 70, 016308



Isotropic MHD Turbulence: DNS (Forced)
• Strong large-scale field?
• Alfvénic state: ul ~ Bl
•  Scale invariance
• Locality in k space

AAS et al. 2004, ApJ 612, 276
See also Maron et al. 2004, ApJ 603, 569
              Haugen et al. 2004, PRE 70, 016308

Low Pm issues
[AAS et al. 2004, astro-ph/0412594]
Large Pm: small-scale dynamo
[AAS et al. 2004, ApJ 612, 276]

… outside the scope
of this lecture



Some Questions for Discussion
• Is there a universal scaling theory of MHD turbulence?
  …or are there distinct regimes? 
  — Anisotropic: strong B0 (what does “strong” mean?)
  — Decaying isotropic (helicity conservation etc.)
  — Forced isotropic (small-scale dynamo, Pm, etc.) 
  — Periodic or other boundary conditions (mean modes etc.)
      
• Is GS95 theory correct for strong B0?
   Are the basic assumptions right?
   — Are interactions local in k space?
   — Are elementary objects Alfvén waves?
   What about k|| = 0 modes?

• What else do we want to know?
   Correlation functions?
   Diagnostics of structure?



Inspiring Quote

…a considerable mathematical effort towards a detailed understanding of the mecha-
nism of turbulence is called for. The entire experience with the subject indicates that 
the purely analytical approach is beset with difficulties, which at this moment are still
prohibitive. The reason for this is … that our intuitive relationship to the subject is still
too loose -- not having succeeded at anything like deep mathematical penetration in
any part of the subject, we are still quite disoriented as to the relevant factors, and as
to the proper analytical machinery to be used. 

    Under these conditions there might be some hope to 'break the deadlock' by exten-
sive, but well-planned, computational efforts. It must be admitted that the problems in
question are too vast to be solved by a direct computational attack, that is, by an out-
right calculation of a representative family of special cases. There are, however, strong
indications that one could name certain strategic points in this complex, where relevant
information must be obtained by direct calculations. If this is properly done … there is a
reasonable chance of effective real penetrations in this complex of problems and gra-
dually developing a useful, intuitive relationship to it. This should, in the end, make an
attack with analytical methods, that is truly more mathematical, possible. 

                                                                                           John von Neumann 1949


