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To play the good family doctor who warns about reading something prematurely,
simply because it would be premature for him his whole life long—I’m not the man

for that. And I find nothing more tactless and brutal than constantly trying
to nail talented youth down to its “immaturity,” with every other sentence

a “that’s nothing for you yet.” Let him be the judge of that! Let him
keep an eye out for how he manages.

Thomas Mann, Doctor Faustus

I nearly died but it was worth it.

Anonymous student feedback, 2022

1. The Language of the Game

It might not be an exaggeration to say that the ability of physical theory to make pre-
dictions and, consequently, both what we proudly call our “understanding of the world”
and our technological civilisation hinge on our ability to solve differential equations—or,
at least, to write them down and make intelligent progress in describing their solutions in
qualitative, asymptotic or numerical terms. Thus, what you are about to start learning
may well be the most “practically” important bit of mathematics for you as physicists—so
be excited!

I shall start by introducing some terms and notions that will form the language that
we will speak and by stating some general results that enable us to speak it meaningfully.
Then I shall move on to methods for solving and analysing various kinds of differential
equations.

1.1. What is an ODE?

[Literature: Pontryagin (1962, §1), Tikhonov et al. (1985, §§1.1-1.2), Arnold (2006, §§1.1-1.10),

Yeomans (2014, §II.0), Tenenbaum & Pollard (1986, §3), Bender & Orszag (1999, §1.1)]

A differential equation is an equation in which the unknowns are functions of one or
more variables and which contains both these functions and their derivatives. Physically,
it is a relationship between quantities and their rates of change—in time, space or
whatever other “independent variable” we care to introduce.

If more than one independent variable is involved, the differential equation is called a
partial differential equation (PDE). Those will not concern me—you will encounter them
next term, in CP4, and also, in a proper way, in the second-year Mathematical Methods
(Eßler 2009; Magorrian 2017; Lukas 2019).

It makes sense that this should happen after you have—hopefully—learned from me
how to handle ordinary differential equations (ODEs), which are differential equations
that involve functions of a single independent variable. They have the general form

F (x, y, y′, . . . , y(n)) = 0 , (1.1)

where x is the independent variable, y is the function (or “dependent variable”1) and y′,
y′′, . . . , y(n) are its first, second, . . . , nth derivatives.

The order of an ODE is the order of the highest derivative that it contains.
There can be more than one function involved: y1(x), y2(x), . . . , in which case there

would have to be more than one equation relating them and their derivatives (see §3.3).

1We shall see in what follows that what is an “independent” and what is a “dependent” variable
can be negotiable as we manipulate ODEs. If y is a function of x, x is a function of y. See §1.4.
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Figure 1. Gottfried Wilhelm von Leibniz (1646-1716), great German philosopher, inventor of
calculus and of monads (intrigued? look them up!), Newton’s (Fig. 11) bête noire.

I will denote the independent variable x, but also often t, when I particularly want to
think of my ODE as describing the evolution of some physical quantity with time (or
just when I feel like it). A derivative is the instantaneous rate of change of a quantity
with time (or the local rate of its change in space, or etc.). It is denoted, by convention,

dy

dt
≡ ẏ or

dy

dx
≡ y′. (1.2)

The tall-fraction notation, introduced by Leibniz (Fig. 1), underscores the derivative’s
meaning as the change in y per change in t (or x) and also signals that derivatives can
(with caution) be handled as fractions, e.g.,

dx

dy
=

1

y′
(1.3)

is the derivative of x with respect to y.

Example. Perhaps the most famous and most important ODE in the world is

ẏ = ay, (1.4)

where a is some constant. It describes a situation in which the rate of growth (when
a is real and positive) or decay (when a < 0) of some quantity is proportional to the
quantity itself, e.g., the growth of a population whose rate of increase is proportional to
the number of individuals in it (i.e., a monogamous population; what is the ODE for a
polygamous population?). This equation is first-order. It is also linear.

Generally, an ODE is linear if it has the form

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a2(x)y′′ + a1(x)y′ + a0(x)y = f(x) , (1.5)

or, to use Einstein’s convention of implied summation over repeated indices, here meant
to run from 0 to n,

ai(x)y(i) = f(x). (1.6)

When f(x) = 0, the linear ODE is called homogeneous [of which (1.4) is an example],
otherwise it is inhomogeneous. Homogeneous linear ODEs have the important property
that they do not change under an arbitrary rescaling y → λy ∀λ 6= 0.2 We shall see (§4)
that linear ODEs have many nice properties that make them much easier to solve than

2Nonlinear ODEs can also have this property, in which case they are easier to solve: see Q2.6.
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most nonlinear ones—and they also turn out to be useful in the analysis of the latter
(§§3.5.3, 8).

An example of nonlinear ODE is

ẏ = ay2, (1.7)

which describes the evolution of a radically polygamous (or rather “omnigamous”)
population, whose rate of increase is proportional to the number of all possible pairings.

Let me return to (1.4). You can probably guess quite easily what its solution is:

y = Ceat, (1.8)

where C is an arbitrary constant.3 The emergence of C highlights an important property
of ODEs: typically, they have an infinite number solutions, parametrised by arbitrary
constants.4 We shall see that the number of constants should be equal to the order of
the equation, but some more work is needed to make this obvious.

The solution (1.8) has been written in terms of the familiar exponential function. But
what is that? In fact, it is possible to introduce ex by definition as the function whose
derivative is equal to the function itself.

Exercise 1.1. Ponder or investigate how this can be done.

Thus, in a sense, (1.8) is the solution of (1.4) by definition. This illustrates a general
principle: so called “elementary functions” can be thought of as nothing but solutions of
some oft-encountered and useful ODEs. When an ODE cannot be solved in elementary
functions—or, more generally, in quadratures, which means in terms of integrals of
combinations of elementary functions—and most ODEs cannot be so solved!—one has
four options:

(i) Introduce a new function, defined as the solution of the previously unsolved ODE,
and study it in some way: e.g., work out a power series for it (see Q2.9), plot it, tabulate
it, make an app for computing it. These, usually in application to second-order linear
ODEs, are called special functions (a good textbook on them is Lebedev 1972).

(ii) Find approximate, or asymptotic, solutions (a graduate-level textbook: White 2010;
a cult-status, wild romp: Bender & Orszag 1999; a short classic introduction: Erdélyi
2003; see also Tikhonov et al. 1985, §7).

(iii) Find numerical solutions (a short introduction: Tikhonov et al. 1985, §6.1; an
ultimate “how-to” guide: Press et al. 2002; a mathematical theory: Samarskii 2001).

(iv) Study solutions qualitatively (§§3.5 and 8).

There is another way in which (1.4) is special: it is resolved with respect to derivative,
i.e., it is of the general form

ẏ = f(t, y) . (1.9)

This type of ODE allows for a vivid way of thinking of the multiplicity of an ODE’s
solutions, which we shall now discuss.

3It is obvious that there should be a multiplicative constant in the solution of any homogeneous
ODE because of the possibility of an arbitrary rescaling of y.
4In Q1.8, you get to play with an “inverse” problem: given an infinite, parametrised set of
functions, find an ODE whose solutions they are.
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(a) Integral curves of (1.9) (b) Integral curves of (1.4)

Figure 2. Integral curves of (1.9), an ODE that is resolved with respect to derivative: (a) general
case, (b) integral curves (1.8) of (1.4). The domain where f(t, y) is defined is (a) D , (b) the entire
plane R2. The ODE’s direction field is (1, f), shown by arrows in (a). The initial condition
is (t0, y0).

1.2. Integral Curves and the Cauchy Problem

[Literature: Pontryagin (1962, §1), Tikhonov et al. (1985, §1.1), Arnold (2006, §1.3),

Tenenbaum & Pollard (1986, §§4-5), Bender & Orszag (1999, §1.2)]

Let us suppose that the function f(t, y) is specified in some domain D within the R2

plane (t, y). Through each point of this domain, let us draw a line whose slope is f(t, y),

i.e., whose direction vector is (1, f) (if you like, you can normalise it by
√

1 + f2). This
is called the direction field of the ODE (1.9). Then solutions of (1.9) are curves y(t) that
are at each point in D tangent to its direction field (Fig. 2a). They are called integral
curves. Solving an ODE means finding all its integral curves.

For example, the integral curves of (1.4), parametrised by C in (1.8), are graphs of the
exponential function in the (t, y) plane that intersect the y axis at y = C (Fig. 2b). We
can pick a single one of these curves, i.e., make the solution unique if we append to (1.4)
an additional requirement that y(t = 0) = y0 for some given y0. Then the desired curve
(1.8) is the one with C = y0.

More generally, an initial condition (IC)—which, if we were speaking in terms of a
spatial variable x, rather than time t, we would call a boundary condition (BC)—is the
statement that

y(t0) = y0 for some (t0, y0) ∈ D . (1.10)

Equivalently, it is the statement that the integral curve that we seek must pass through
the point (t0, y0).

The problem of finding the solution of (1.9) that satisfies the initial condition (1.10)
is called the initial-value problem, or Cauchy problem (Fig. 3).

Does the Cauchy problem always have a solution? If we can find one, is it the only one
or are there others? In other words, is there an integral curve that passes through every
point (t0, y0) ∈ D and can these curves ever intersect?
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Figure 3. Baron Augustin-Louis Cauchy (1789-1857), great French mathematician, aristocrat
and rabid right-winger.

1.3. Existence and Uniqueness

[Literature: Pontryagin (1962, §§1, 2.4, 20), Tikhonov et al. (1985, §2.2), Arnold (2006,

§§2.1-2.3), Tenenbaum & Pollard (1986, §58), Coddington (1990, Ch. 5)]

The answer to these questions is given by the following existence and uniqueness
theorem.

Theorem 1. Let f(t, y) and ∂f/∂y exist and be continuous functions on some open
domain5 D ⊂ R2. Then

(a) ∀(t0, y0) ∈ D , ∃∆t such that the Cauchy problem

ẏ = f(t, y), y(t0) = y0 (1.11)

has a solution in the interval I = [t0 −∆t, t0 +∆t].6

(b) This solution is unique, i.e., if y1(t) and y2(t) are solutions of (1.11) on the intervals
I1 and I2, respectively, then y1(t) = y2(t) ∀t ∈ I1 ∩ I2 (they are the same in the
intersection of the intervals where they are solutions).

Thus, we are guaranteed that we can solve the initial-value problem for at least some
time after (and before) t0 and that if we have found a solution, we can rest assured that
it is the only one. We are in business!

Example. Let me illustrate how some of this can be broken and, therefore, why one
should not be dismissive about formulating mathematical results precisely and watching
for all the stated conditions to be satisfied. Consider the following Cauchy problem:

ẏ = y2/3, y(0) = 0. (1.12)

Clearly, y(t) = 0 is a solution. But y(t) = (t/3)3 is also a solution, as can be verified by
direct substitution. The two integral curves intersect at t = 0 (Fig. 4)! What has gone

5D being an open domain means that around ∀ point ∈ D , there is a circle of some radius such
that all points within the circle are also ∈ D . Thus, if you think of D as some bounded area, it
cannot include its own boundary. Obviously, the whole space R2 is very much an open domain.
6Formally, this means that ∃ a function y(t) such that y(t0) = y0 and ∀t ∈ I , (t, y(t)) ∈ D , ẏ(t)
is continuous and ẏ(t) = f(t, y(t)).
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Figure 4. Non-uniqueness: two solutions of (1.12), shown as bold lines, intersect at the origin.

wrong? This is easy to see:

f(t, y) = y2/3 ⇒ ∂f

∂y
=

2

3
y−1/3 =∞ at y = 0. (1.13)

Thus, ∂f/∂y does not exist at y = 0, the conditions of Theorem 1 are violated, and so
the Cauchy problem is under no obligation to have a unique solution.

1.4. Parametric Solutions

Before I move on, let me generalise slightly what I have just done. Casting aside the
bigoted language of “dependent” (y) and “independent” (x or t) variables, let me treat
everybody equally and write an ODE in the so-called symmetric form:

P (x, y)dx+Q(x, y)dy = 0 . (1.14)

We shall see (§2) that ODEs always end up in this form before getting integrated. Clearly,
any ODE of the form (1.9) can be recast in the form (1.14) (Q = −1, P = f), but not
necessarily vice versa because Q(x, y) may well vanish in some places, preventing one
from dividing by it and simply recasting (1.14) as

dy

dx
= −P (x, y)

Q(x, y)
≡ f(x, y). (1.15)

To be precise, what we shall assume is that P and Q are continuous functions in some
domain D ⊂ R2 and that |P (x, y)|+|Q(x, y)| > 0 ∀(x, y) ∈ D , i.e., that they do not vanish
simulatneously. This means that in some parts of D , where Q 6= 0, our equation (1.14)
can be written as (1.15), an ODE resolved with respect to dy/dx, and in others, where
P 6= 0, it can be resolved with respect to dx/dy:

dx

dy
= −Q(x, y)

P (x, y)
. (1.16)

The symmetric form (1.14) is a compact way of writing the two equations (1.15)
and (1.16) together.

Solutions of (1.14) can in general be thought of as determined parametrically in terms
of an auxiliary variable t: namely, (x(t), y(t)) is a solution of (1.14) if it is specified
in some interval I ⊂ R, and, ∀t ∈ I , x(t) and y(t) are continuously differentiable,
(x(t), y(t)) ∈ D , and

P (x(t), y(t))
dx

dt
+Q(x(t), y(t))

dy

dt
= 0. (1.17)
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Figure 5. Integral curves of (1.14), an ODE in symmetric form. The direction field is
(−Q,P ). The initial condition is (x0, y0).

One may be able to write such a parametric solution as y vs. x or as x vs. y in some sub-
intervals of I , provided ẋ 6= 0 or ẏ 6= 0 in these sub-intervals. For example, if ẋ 6= 0 in
some sub-interval, then x = x(t) can be inverted there to give t = t(x). Then y = y(t(x))
is the y vs. x solution.

Geometrically, we can think of (ẋ, ẏ) as components of a velocity field on D ⊂ R2, or,
formally, R3 if the third component is set to 0. Then (1.14) says−QP

0

×
ẋẏ

0

 = 0, (1.18)

i.e., the velocity field (ẋ, ẏ) is everywhere parallel to the vector field (−Q,P ). This means
that (−Q,P ) is the direction field of our equation and the integral curves in D are
everywhere tangent to this direction field (cf. §1.2, where Q = −1 and P = f). The
realm of possibilities here is slightly richer than for (1.9) because now the integral curves
can be vertical (Fig. 5). This was not allowed for (1.9) lest we had y′ =∞ in some places.

The Cauchy problem in this set up is the problem of finding an integral curve that
passes through some given point (x0, y0) ∈ D .

The existence and uniqueness result still holds because it is local—for any point
(x0, y0), we can always find a neighbourhood where either P 6= 0 or Q 6= 0, so (1.14) can
be written as either (1.16) or (1.15) and we are back to Theorem 1.

Example. Let me illustrate two points: how an ODE in the form (1.9) is usefully recast as (1.14)
and how the existence theorem, in general, only works locally, rather than on the entire D . Let
us go back to (1.7), the equation of omnigamous procreation, and set up a Cauchy problem
for it:

dy

dt
= ay2, y(t0) = y0. (1.19)

This can be rearranged to read

dy

y2
= adt, (1.20)

which has the symmetric form (1.14) with P = a and Q = −1/y2. Anticipating the integration
techniques to be properly discussed in §2, we integrate (1.20):∫ y

y0

dy

y2
= a

∫ t

t0

dt ⇒ y =
a−1

tc − t
, tc = t0 +

a−1

y0
. (1.21)

This solution blows up at a finite time tc and does not exist for t > tc (Fig. 6), even though the
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Figure 6. Explosion: integral curves of (1.19).

equation itself is perfectly well defined on the entire plane (t, y). At whatever point (t0, y0) on
the plane we set the initial condition, the solution will always exist in some neighbourhood of
this point, but not globally.

In physical terms, we have just encountered the interesting phenomen of explosion—defined
as a quantity becoming infinite in finite time. In the context of omnigenous populations, this
suggests that some regulating effect, which is not in the simple model (1.19) will switch
on before the time tc comes—Victorian morality or contraception or exhaustion of the food
supply. . . (cf. Q5.4).

It is clear that we are ready to start solving things. Thus, before I shower you with
more generalities, let me teach you some methods for actually solving ODEs.

2. Some Methods for Solving First-Order ODEs

“Solving” an ODE in a narrow, literal sense, is “integrating” it—and “integration”
means integration, literally.7 So here is the first, most basic method.

2.1. Equations in Full Differentials

[Literature: Pontryagin (1962, §2A), Arnold (2006, §6.6), Yeomans (2014, §II.5), Binney (2002,

§5.2), Tenenbaum & Pollard (1986, §9)]

Consider a first-order ODE in symmetric form (1.14). It is easy to integrate if the
left-hand side is a full differential of some function, viz., if ∃ Φ(x, y) such that

∀(x, y) ∈ D , P (x, y) =
∂Φ

∂x
and Q(x, y) =

∂Φ

∂y
. (2.1)

Then (1.14) is called an equation in full differentials and becomes

dΦ(x, y) = 0 ⇒ Φ(x, y) = C , (2.2)

where C is an artbitrary constant of integration. The level sets of Φ(x, y) are the integral
curves of (1.14). The equation has been “integrated”.

How do we check in general whether the relations (2.1) hold for any function Φ?
The necessary condition for that is easy to obtain: if these relations do hold, then,

7Keep in mind, however, that in learning how to “integrate” ODEs, we are dealing with a small
minority of them. Here is an example of a ludicrously simple equation that nevertheless cannot
be solved in quadratures: y′ = y2 + x, a Riccati equation (cf. §2.6).
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differentiating the first of them with respect to y and the second with respect to x,
we find that these derivatives must be equal:

∀(x, y) ∈ D ,
∂P

∂y
=
∂Q

∂x
. (2.3)

The fact that this is a necessary condition means that you can always use a failure of (2.3)
to rule out the existence of Φ. In the event, if D is simply connected (meaning that any
two points within it can be connected by a continuous curve all of which lies in D), one
can prove that (2.3) is also the sufficient condition for (2.1).

Example. Q1.2(a).

Example. Consider

2xydx+ (x2 − y2)dy = 0. (2.4)

It is instantly clear that (2.3) is satisfied, so we are in business. It must be the case that

∂Φ

∂x
= 2xy ⇒ Φ = x2y + φ(y), (2.5)

where φ(y) is the integration “constant”, as far as x dependence is concerned, but really a
function of y. We find it from

∂Φ

∂y
= x2 − y2 ⇒ ��x

2 + φ′(y) =��x
2 − y2 ⇒ φ(y) = −y

3

3
+ C. (2.6)

Thus, the solution is

Φ(x, y) = x2y − y3

3
= C (2.7)

(different C here than in the previous line).

2.1.1. Integrating Factor

[Literature: Tenenbaum & Pollard (1986, §10)]

Suppose now that (2.3) is not satisfied. Do we give up? Not necessarily. There is
sometimes a miraculous cure called an integrating factor: it is a function Λ(x, y) 6= 0
such that

Λ(x, y) [P (x, y)dx+Q(x, y)dy] = 0 (2.8)

is an equation in full differentials, i.e.,

∂ΛP

∂y
=
∂ΛQ

∂x
, or Q

∂Λ

∂x
− P ∂Λ

∂y
=

(
∂P

∂y
− ∂Q

∂x

)
Λ. (2.9)

Generally speaking, (2.9) is a PDE (first-order) and is not necessarily any easier to solve
than the original ODE (1.14), but remember that you do not require generality here—
all you need is a particular solution of (2.9). If you can deduce/intuit/guess it, you are
done.8 Good luck!

In what follows, you will see an endless procession of examples of integrating fac-
tors being used (see, e.g., §2.4.1—perhaps the most famous—and certainly the most
examinable!—such example).

Example. Q1.2(b).

8Sometimes it is useful to look for a solution in the form Λ = Λ(x) or Λ = Λ(y).
Example. Q1.5(a).
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Example. This one illustrates the merits of opportunism. Consider

(x2 + y2 + y)dx− xdy = 0. (2.10)

Spot that ydx− xdy = −x2d(y/x), so the above is

(x2 + y2)dx− x2d(y/x) = 0. (2.11)

The integrating factor is Λ = 1/(x2 + y2). Indeed, multiplying by it gives us an equation in full
differentials:

dx− d(y/x)

1 + (y/x)2
= 0 ⇒ x− arctan(y/x) = C. (2.12)

Q1.5(b) is a more sophisticated example of this kind of skulduggery.

2.2. Separable Equations

[Literature: Pontryagin (1962, §2.1), Tikhonov et al. (1985, §2.1.1), Arnold (2006, §2.6),

Yeomans (2014, §II.1), Tenenbaum & Pollard (1986, §6)]

A particularly simple and very useful special case of an ODE in full differentials is

P (x)dx+Q(y)dy = 0 . (2.13)

This is known as a separable ODE, referring to the possiblity (in fact, the manifest reality)
of x and y entering separately. It very clearly does satisfy (2.3) and can be integrated
instantly: ∫

dxP (x) +

∫
dy Q(y) = C. (2.14)

If we are solving a Cauchy problem and thus are looking for a solution that passes through
some point (x0, y0), the answer obviously is∫ x

x0

dxP (x) +

∫ y

y0

dy Q(y) = 0. (2.15)

Most cases of successful integration of ODEs culminate in the equation under scrutiny
being reduced to (2.13) via various manipulations involving rearranging things and/or
changing variables.

Example. Q1.2(c)

2.2.1. Separable Equations and Composite Solutions

Here is a simple example of rearranging things. Suppose our equation is

P1(x)Q1(y)dx+ P2(x)Q2(y)dy = 0 . (2.16)

Let us divide it through by Q1(y)P2(x) (an example of integrating factor):

P1(x)

P2(x)
dx+

Q2(y)

Q1(y)
dy = 0. (2.17)

The variables are separated, the equation is begging to be integrated.
You must be careful, however, about the possibility that Q1(y) = 0 at some y = y0

or/and P2(x) = 0 at some x = x0, in which case the reduction of (2.16) to (2.17) is
only allowed when y 6= y0, x 6= x0. Besides the solutions of (2.17), there are then other
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Figure 7. Integral curves of (2.18): a family of cubics and the axis y = 0. Examples of
composite solutions are shown as bold lines.

solutions of (2.16): clearly, if P2(x0) = 0, the line x = x0 is an integral curve, and so is
the line y = y0 if Q1(y0) = 0. There can be a number of such lines, one for each of the
zeros of P2 or Q1.

If the integral curves of (2.17) touch (i.e., intersect and have the same slope at the point
of intersection9 as) the lines x = x0 and y = y0, one can construct composite solutions
by gluing together at the points where they touch bits of those integral curves and the
lines x = x0 and y = y0.

Example. Let us consider (1.12) again:

dy

dx
= y2/3. (2.18)

First, y = 0 is a solution. Assuming y 6= 0, we can separate variables and integrate our
equation: ∫

dy

y2/3
=

∫
dx ⇒ y =

(x
3

+ C
)3
. (2.19)

These integral curves touch the line y = 0 at a multitude of points x = −3C and have
the same slope y′ = 0 there. Any number of composite solutions can now be constructed
by gluing together cubics and bits of the x axis.

The moral of the story is: do not lose these extra solutions when manipulating ODEs
(example: Q1.4).

Example. Consider

xy′ + y = y2 ⇒ x
dy

dx
= y(y − 1) ⇒ xdy = y(y − 1)dx. (2.20)

This equation is easily separable and, therefore, integrable:∫
dy

y(y − 1)
=

∫
dx

x
⇒ ln |x|+ C =

∫
dy

y − 1
−
∫

dy

y
= ln

∣∣∣∣y − 1

y

∣∣∣∣
⇒ y − 1

y
= Cx ⇒ y =

1

1 + Cx
. (2.21)

9They must always have the same slope at the point of intersection because integral curves by
definition are tangent to (−Q(x, y), P (x, y)) at every point (x, y) ∈ D [see (1.18)] and so there
is only one slope available at each point (but see §2.7.1).



Oxford Physics Lectures: Ordinary Differential Equations 15

Note that, here and henceforth, I change the integration constant at each step in some opportune
way, but keep calling it C.

Is (2.21) it, have I solved (2.20)? Not quite: to separate variables, I used the integrating factor
1/xy(y − 1), so should worry about dividing by 0.

First consider x = 0. This is a solution of the last equation in (2.20), but not of the first.
Indeed, the last step in (2.20), taking our equation from the form resolved with respect to
derivative, (1.9), to the symmetric form (1.14), made our equation a little more general: the line
x = 0 was not a solution of it in its original form but is a solution of the symmetric version
(cf. the discussion at the end of §1.4). Thus, x = 0 is not a legitimate solution of our original
equation.

Now consider y = 0 and y = 1. Both of these lines are solutions of our equation. One of them,
y = 1, is, in fact, already covered by (2.21) with C = 0, whereas y = 0 is new. Thus, the full set
of solutions is

y =
1

1 + Cx
, y = 0. (2.22)

2.2.2. Reduction to Separable Form by Linear Change of Variables

[Literature: Tikhonov et al. (1985, §2.1.1), Yeomans (2014, §II.1’), Binney (2002, §5.4)]

Another simple case of an ODE that can be made separable is

dy

dx
= f(ax+ by) , (2.23)

where a and b are constant coefficients. The change of (dependent) variable

z(x) = ax+ by(x) (2.24)

does the trick:

dz

dx
= a+ b

dy

dx
= a+ bf(z) ⇒

∫
dz

a+ bf(z)
=

∫
dx = x+ C. (2.25)

Here again keep in mind that ∀z0 such that a+ bf(z0) = 0, z = z0 is a solution and so,
besides the integral curves (2.25), (2.23) has solutions (integral curves) that are the lines

y(x) = −a
b
x+

z0
b
. (2.26)

Example. Q1.2(d).

Example. Consider

(x+ 2y)y′ = 1 ⇒ dy

dx
=

1

x+ 2y
≡ f(x+ 2y). (2.27)

Clearly, we must assume x + 2y 6= 0 in order for the equation to make sense. Following (2.24),
let z = x+ 2y, whence

dz

dx
= 1 + 2

dy

dx
= 1 +

2

z
. (2.28)

This is a separable equation:∫
dz

1 + 2/z
=

∫
dx ⇒ �x+ C =

∫
(z + 2− 2)

2 + z
dz =

∫
dz − 2

∫
dz

2 + z

= z − 2 ln |2 + z| = �x+ 2y − 2 ln |2 + x+ 2y|
⇒ 2 + x+ 2y = Cey. (2.29)
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This may not be the only solution because we have to consider separately the case when an
attempt to separate variables would have led to dividing by 0, viz.,

1 +
2

z
= 0 ⇒ z = −2 ⇒ x+ 2y = −2. (2.30)

This solution is, in fact, already captured by (2.29) with C = 0. The point of the last argument
is to show that C = 0 is allowed in (2.29).

2.3. Homogeneous Equations

[Literature: Pontryagin (1962, §2.2), Tikhonov et al. (1985, §2.1.1), Arnold (2006, §6.3),

Yeomans (2014, §II.2), Binney (2002, §5.1), Tenenbaum & Pollard (1986, §7)]

An ODE in the symmetric form (1.14) is called homogeneous10 if ∀λ 6= 0,

P (λx, λy)

P (x, y)
=
Q(λx, λy)

Q(x, y)
, (2.31)

i.e., P and Q scale in the same way when their arguments are scaled.11 Equivalently,
(1.14) does not change under the rescaling x→ λx, y → λy.

Since (2.31) works for ∀λ, it should work, e.g., for λ = 1/x. Assuming Q 6= 0 and
x 6= 0, we have

dy

dx
= −P (x, y)

Q(x, y)
= −P (λx, λy)

Q(λx, λy)

∣∣∣∣
λ=1/x

= −P (1, y/x)

Q(1, y/x)
. (2.32)

Thus, a homogeneous ODE can be reduced (with all the usual caveats about dividing by
zero) to

dy

dx
= f

(y
x

)
, (2.33)

which is sometimes quoted as the definition of a homogeneous first-order equation.
This equation is solved by the ansatz

y(x) = xz(x). (2.34)

This gives us

dy

dx
= z + x

dz

dx
= f(z) ⇒ xdz = [f(z)− z] dx

⇒
∫

dz

f(z)− z
=

∫
dx

x
= ln |x|+ C, (2.35)

assuming f(z) − z 6= 0. If the equation f(z0) = z0 has any roots, these give rise to
additional solutions, which are the lines

y(x) = z0x. (2.36)

Example. Q1.2(e). A slight generalisation of this scheme is explored in Q1.7.

10With respect to x and y simultaneously, so not quite the same as the homogeneity of linear
equations introduced after (1.5), but you can, hopefully, see the connection.
11This is sometimes written so: ∀λ 6= 0 ∃α such that P (λx, λy) = λαP (x, y) and
Q(λx, λy) = λαQ(x, y), with the same α for P and for Q.
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Example. Consider

xy′ =
√
x2 − y2 + y. (2.37)

Notice that this equation stays the same under the rescaling x → λx, y → λy and so is
homogeneous. It is rendered into the form (2.33) if it is divided through by x (assuming, of
course, x 6= 0):

dy

dx
=

√
1− y2

x2
+
y

x
≡ f

( y
x

)
. (2.38)

Making the ansatz (2.34), we get a separable equation:

dy

dx
= �z + x

dz

dx
=
√

1− z2 + �z ⇒
∫

dz√
1− z2

=

∫
dx

x

⇒ arcsin z = ln |x|+ C ⇒ y = x sin ln |Cx|, (2.39)

assuming 1− z2 6= 0. As usual, follow mathematical hygiene by considering separately the case

1− z2 = 0 ⇒ z = ±1 ⇒ y = ±x. (2.40)

These too are solutions, additional to (2.39), and we now have a complete set.

2.3.1. Reduction to Homogeneous Form by Linear Change of Variables

[Literature: Yeomans (2014, §§II.2′-2′′), Tenenbaum & Pollard (1986, §8)]

As usual, there are classes of ODEs that can be reduced to (2.33) via simple manipu-
lations. Consider, for example,

dy

dx
= f

(
a1x+ b1y + c1
a2x+ b2y + c2

)
. (2.41)

We can reduce this to (2.33) if we can somewhow get rid of the constants c1 and c2. Let
us do it by changing variables:

x = x0 + ξ, y = y0 + η, (2.42)

where x0 and y0 are some constants. Our aim will be accomplished if these constants
satisfy {

a1x0 + b1y0 + c1 = 0,
a2x0 + b2y0 + c2 = 0.

(2.43)

These are two lines on the R2 plane of points (x0, y0). If they intersect, i.e., if a1b2 6= a2b1,
then there is a solution (x0, y0) and (2.41) becomes

dy

dx
=

dη

dξ
= f

(
a1ξ + b1η

a2ξ + b2η

)
= f

(
a1 + b1η/ξ

a2 + b2η/ξ

)
≡ g

(
η

ξ

)
, (2.44)

assuming ξ 6= 0. We are back to (2.33).

Example. Q1.2(f).

If a1b2 = a2b1, the two lines (2.43) are parallel and there is no solution (x0, y0) for
which we can pull this trick. However, if the two lines are parallel, then ∃k such that
∀(x, y), a2x+ b2y = k(a1x+ b1y), so (2.41) becomes

dy

dx
= f

(
a1x+ b1y + c1

k(a1x+ b1y) + c2

)
≡ g(a1x+ b1y). (2.45)

This is (2.23), which we already know how to solve. Victory.
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Example. Consider

y′ =
y + 2

2x+ y − 4
. (2.46)

Chaging variables according to (2.42), we get

dy

dx
=

dη

dξ
=

y0 + 2 + η

2x0 + y0 − 4 + 2ξ + η
=

η

2ξ + η
=

η/ξ

2 + η/ξ
≡ g

(
η

ξ

)
, (2.47)

provided y0 + 2 = 0 and 2x0 + y0 − 4 = 0, or x0 = 3 and y0 = −2. We now have a homogeneous
equation, which is solved in the usual way. You can check that you now know how to do it: the
full set of solutions is

(y + 2)2 = C(x+ y − 1), y = 1− x. (2.48)

What if instead of (2.46), we are dealing with

y′ =
2x+ y + 2

2x+ y − 4
? (2.49)

To change it into a homogeneous equation via (2.42), we would require 2x0 + y0 + 2 = 0 and
2x0 +y0−4 = 0, which obviously cannot be satisfied simultaneously (the two lines are parallel).
This is the case where (2.45) works: the equation is of the form y′ = g(2x + y) and is solved
using the method described in §2.2.2. Check your answer:

(2x+ y − 2)2 = Cey−x. (2.50)

2.4. Linear Equations

[Literature: Tikhonov et al. (1985, §2.1.2), Arnold (2006, §3), Tenenbaum & Pollard (1986,

§11), Coddington (1990, Ch. 1)]

Linear equations (1.5) have special status because, in the vicinity of any given point,
any equation can be expanded and turned into a linear one (“linearised”; see §3.5.3). I
will spend quite a lot of time on their general properties in subsequent chapters (§§4–
6), but let us have a preview here by considering the Cauchy problem for the simplest,
first-order linear ODE:

ẏ = a(t)y + f(t) , y(0) = y0. (2.51)

I am setting the initial condition at t0 = 0 without loss of generality as I can always
declare the time at which the initial condition is set to be zero by definition.

The Cauchy problem (2.51) can be solved completely in two equivalent ways, which
are both quite instructive, so I will go through both.

2.4.1. Solution via Integrating Factor

[Literature: Yeomans (2014, §II.3), Binney (2002, §2.3)]

Let us recast (2.51) in the symmetric form (1.14),

dy − [a(t)y + f(t)] dt = 0, (2.52)

and look for an integrating factor. In general, it must satisfy (2.9), but we shall look for
(and easily find) one that depends just on t: Λ = Λ(t):

Λ̇ = −a(t)Λ ⇒
∫

dΛ

Λ
= −

∫
dt a(t)+C ⇒ Λ(t) = exp

[
−
∫ t

0

dt′ a(t′)

]
. (2.53)
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Figure 8. Joseph-Louis Lagrange (1736-1813), born Giuseppe Lodovico Lagrangia, great
Italian-French mathematician, astronomer, Euler’s (Fig. 22) protegé, Fourier’s teacher, senator
and count of the Napoleonic Empire.

The integration is from zero for future convenience—since I only need a solution, I can
integrate from wherever I like. Now multiplying (2.51) by Λ(t), we see that

Λ
dy

dt
=

d

dt
Λy − ydΛ

dt
=

d

dt
Λy + a(t)Λy (2.54)

and so our general linear equation (2.4) reduces to something that we can integrate
directly:

d

dt
Λ(t)y = Λ(t)f(t) ⇒ y(t) =

1

Λ(t)

[
C +

∫ t

0

dt′Λ(t′)f(t′)

]
. (2.55)

Since y(0) = C, the solution of the Cauchy problem (2.51) is achieved by setting C = y0.
So, finally,

y(t) = y0 e
∫ t
0
dt′a(t′) +

∫ t

0

dt′ e
∫ t
t′ dt

′′a(t′′)f(t′) . (2.56)

2.4.2. Solution via Variation of Constant

[Literature: Pontryagin (1962, §2B)]

Here is another way to obtain this result. Consider first the homogeneous version
of (2.51):

ẏ = a(t)y. (2.57)

It is separable:∫
dy

y
=

∫
dt a(t) ⇒ y(t) = C exp

[∫ t

0

dt′a(t′)

]
≡ CE(t), (2.58)

where C is the integration constant and I have introduced the notation E(t) for the
exponential function to make further algebra look more compact12 (also, I rather like
gothic letters). Once we know this solution of the associated homogeneous equation,
there is a nifty trick called the method of variation of constants (invented, apparently,
by Lagrange [Fig. 8]). It consists in turning C into a function ψ(t) and looking for the
solution of the inhomogeneous equation (2.51) in the form

y(t) = ψ(t)E(t). (2.59)

12Obviously, E(t) = 1/Λ(t) from (2.53).
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Substituting this into (2.51), we get

ẏ = ψ̇ E(t) +��
���ψ a(t)E(t) =���

��a(t)ψ E(t) + f(t) ⇒ ψ̇ =
f(t)

E(t)
. (2.60)

Integrating this and then substituting into (2.59) gives us

y(t) = E(t)

[
C +

∫ t

0

dt′
f(t′)

E(t′)

]
. (2.61)

The initial condition is enforced by C = y0 and we again have our solution (2.56).

2.4.3. CF + PI

When we study the linear equations of arbitrary order in §4.4, this will be a rather
obvious particular case. Still, let me flag a key insight here. The solution (2.61) consists
of the solution of the associated homogeneous equation (2.57) plus a certain particular
solution of the inhomogeneous equation (2.51). In fact, I claim that if I somehow found
(deduced, dreamed, intuited, guessed, stole) a particular solution of (2.51)—let us call it
yPI(t), where “PI” = “particular integral”—then the general solution of (2.51) is

y(t) = yCF(t) + yPI(t), (2.62)

where yCF(t), known as the “complementary function” (hence “CF”), is the general
solution of the associated homogeneous equation (2.57). That (2.62) is the general
solution follows from the fact that (2.62) is clearly a solution, but yCF(t) already has
a constant in it, which can be used to accommodate any initial condition—and so the
resulting solution is the solution because the solution of the Cauchy problem is unique.
Note, by the way, that we have thus explicitly shown that, for a linear equation, the
existence and uniqueness is global, rather than local—indeed, our solution is valid at
all t, not just in the vicinity of t = 0. This property, as well as the prescription (2.62),
will turn out to carry over to linear ODEs and systems of ODEs of any order (see §4).

Example. Q1.2(g).

Example. Consider

xy′ + (x+ 1)y = 3x2e−x. (2.63)

The associated homogeneous equation is (assuming x 6= 0)

dy

dx
= −x+ 1

x
y ⇒

∫
dy

y
= −

∫
dx

(
1 +

1

x

)
⇒ y = C

e−x

x
. (2.64)

To find the solution of the inhomogeneous equation (2.63), weaponise the constant: C → ψ(x).
Then

y′ = ψ′
e−x

x
−
�
�
�

ψ
e−x

x
−
�
�
�

ψ
e−x

x2
= −
��

��x+ 1

x
y + 3xe−x ⇒ ψ′ = 3x2 ⇒ ψ = x3 +C. (2.65)

Therefore, the solution of (2.63) is

y = (x3 + C)
e−x

x
. (2.66)

2.5. Bernoulli Equations

[Literature: Yeomans (2014, §II.4), Tenenbaum & Pollard (1986, §11D), Bender & Orszag

(1999, §1.6)]
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(a) Bernoulli (b) Riccati

Figure 9. (a) Jacob Bernoulli (1654-1705), Swiss mathematician, one of eight Bernoulli
mathematicians (all related to each other), Leibniz’s (Fig. 1) student and ally against Newton
(Fig. 11), discoverer of e and of the Law of Large Numbers. His younger brother Johann was
Euler’s (Fig. 22) adviser (as well as l’Hôpital’s). (b) Jacopo Francesco Riccati (1676-1754),
Venetian mathematician and lawyer, known for little else besides equation (2.70).

A few further tricks exist. Consider Bernoulli’s equation (Fig. 9a)

y′ + a(x)y = b(x)yn , (2.67)

where n 6= 0, 1, so the equation is nonlinear. If n > 1, y(x) = 0 is clearly a solution.
Putting it to one side, divide (2.67) by yn:

b(x)− a(x)y1−n =
y′

yn
=

d

dx

y1−n

1− n
. (2.68)

Letting z = y1−n, we turn this into

z′ + (1− n)a(x)z = (1− n)b(x). (2.69)

This is a linear equation: follow standard operating procedure (§2.4).

Example. Q1.2(h).

2.6. Riccati Equations

[Literature: Bender & Orszag (1999, §1.6)]

Now consider Riccati’s equation (Fig. 9b)

y′ = a(x)y2 + b(x)y + c(x) . (2.70)

Equations of this form are generally impossible to solve in quadratures. There is, however, one
loophole. If you can guess some particular solution of (2.70), let us call it y0(x), then the ansatz

y(x) = z(x) + y0(x) (2.71)

turns your Riccati equation into a Bernoulli equation (2.67) for z(x). Watch:

y′ = z′+��y
′
0 = az2+2azy0+��ay

2
0 +bz+��by0 +�c ⇒ z′ = [2a(x)y0(x) + b(x)] z+a(x)z2. (2.72)

You have an opportunity to try your hand at this method in Q1.9 (example). In §4.6, it will
turn into something very useful indeed.



22 A. A. Schekochihin

2.7. Equations Unresolved With Respect to Derivative

[Literature: Arnold (2006, §8.5)]

Let us go back to the most general form of ODE (1.1) and consider its first-order version:

F (x, y, y′) = 0 . (2.73)

What can you do about this equation? Well, obviously, if you can resolve (2.73) with respect
to y′, this gets you back to familar territory (1.9):

y′ = f(x, y). (2.74)

Note, however, that (2.73) can have more than one solution of the form (2.74)—e.g., if (2.73) is
quadratic in y′—so solving (2.73) may amount to solving several ODEs of the form (2.74).

2.7.1. Cauchy Problem

[Literature: Tikhonov et al. (1985, §§2.3.1, 2.3.3)]

What, you might wonder, about existence, uniqueness and all that? Do integral curves of
(2.73) intersect? Yes, they generally do intersect—basically because (2.73) generally corresponds
to more than one equation of the form (2.74). A generalisation of the Cauchy problem for this
case is to specify

y(x0) = y0 and y′(x0) = p0. (2.75)

Obvioulsy, not every set (x0, y0, p0) is legitimate as these numbers must satisfy F (x0, y0, p0) = 0.
Since, for any given (x0, y0), this equation generally has more than one root p0, the point of
(2.75) is to specify which root we are interested in. In other words, we ask for an integral curve
of (2.73) that passes through (x0, y0) and has a slope p0 there. Existence and uniqueness of
the solution of (2.73) with initial condition (2.75) turn out to be guaranteed, analogously to
Theorem 1, provided F , ∂F/∂y, ∂F/∂y′ are continuous in some neighbourhood of (x0, y0, p0)
and

∂F

∂y′
(x0, y0, p0) 6= 0. (2.76)

The necessity of the last condition is intuitively obvious: in the close vicinity of the point
(x0, y0, p0), our equation (2.73) is

∂F

∂x
(x0, y0, p0)(x− x0) +

∂F

∂y
(x0, y0, p0)(y − y0) +

∂F

∂y′
(x0, y0, p0)(y′ − p0) = 0. (2.77)

Unless (2.76) holds true, the above cannot be resolved for y′.

Example. Consider

xy′(xy′ + y) = 2y2. (2.78)

This is quadratic in xy′. Solving it gives us two equations:

xy′ = y or xy′ = −2y. (2.79)

Their solutions are

y = Cx and y =
C

x2
, (2.80)

respectively. If we ask for a solution with y(1) = 1, we get C = 1 in both cases, so both solutions
pass through the point (1, 1). To decide which of them to pick, we must specify y′(1) = 1 or
y′(1) = −2.

Note that places where the condition (2.76) is broken are interesting. A curve in the (x, y)
plane that satisfies

F (x, y, p) = 0,
∂F

∂p
(x, y, p) = 0 (2.81)

is called the p-discriminant curve of (2.73). If this curve is also a solution (an integral curve) of
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this equation, then it is a rather special solution, in every point of which uniqueness is violated.
This means that at its every point, this solution will be tangent to another integral curve of the
equation. You will find a cute example of this in Q1.10 and others in Q1.11.

2.7.2. Solution via Introduction of Parameter

[Literature: Tikhonov et al. (1985, §2.3.2)]

How do we solve equations like (2.73) if we cannot resolve them with respect to y′—or get
something horrible/intractable if we do? Some useful advice on this is as follows.

First suppose that you can resolve (2.73) with respect to y, rather than y′:

y = f(x, y′) . (2.82)

Then let p = y′ and rewrite (2.82) as

dy = p dx and y = f(x, p). (2.83)

This implies

p dx = dy =
∂f

∂x
dx+

∂f

∂p
dp ⇒

(
∂f

∂x
− p
)

dx+
∂f

∂p
dp = 0. (2.84)

The resulting ODE has the symmetric form (1.14). Suppose we can integrate it and get the
solution in the form

p = p(x,C), (2.85)

where C is an integration constant. Then the solution of (2.82) is

y = f(x, p(x,C)). (2.86)

This scheme is called the method of introduction of parameter.

Example. A useful and pretty class of ODEs that are solvable by this method is introduced in
Q1.10; see also Q1.11.

Example. Consider

y = xy′ − (y′)2 = xp− p2, (2.87)

where, as per the algorithm laid out above, a parameter was introduced: p = y′. Then

��pdx = dy = xdp+��pdx − 2pdp ⇒ (x− 2p)dp = 0. (2.88)

There are two ways in which this can be satisfied:

p =
x

2
⇒ y =

x2

4
, (2.89)

dp = 0 ⇒ p = C ⇒ y = C(x− C). (2.90)

In both cases, to get to the answer, the solution for p was substituted into (2.87). Note that
(2.89) is the p-discriminant curve of our equation and all the other integral curves (2.90) are
lines tangent to it.

Exercise 2.1. Work out how to solve (2.73) if it can be resolved with respect to x, i.e., how to
solve an ODE that has the form

x = f(y, y′) . (2.91)

Example. Q1.11(iii).

A more general/abstract version of the above is as follows. Consider the general first-order
ODE (2.73). The equation

F (x, y, p) = 0 (2.92)

defines a 2D surface in the 3D space R3 of points (x, y, p). Suppose the function F is such that
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Figure 10. Mathematical pendulum.

this surface can be smoothly parametrised, i.e., it is described by some continuously differentiable
functions

x = ξ(u, v), y = η(u, v), p = ζ(u, v), (2.93)

where (u, v) are auxiliary variables parametrising the surface (finding those and working out in
what ranges of their values they describe which bits of the surface is the key nontrivial task
here).13 Then

dy = p dx ⇔ ∂η

∂u
du+

∂η

∂v
dv = ζ

(
∂ξ

∂y
du+

∂ξ

∂v
dv

)
, (2.94)

leading to an ODE in the symmetric form (1.14):(
∂η

∂u
− ζ ∂ξ

∂u

)
du+

(
∂η

∂v
− ζ ∂ξ

∂v

)
dv = 0. (2.95)

Suppose we have found its solution

v = v(u,C). (2.96)

Then the original ODE (2.73) has the parametric solution

x(u) = ξ(u, v(u,C)), y(u) = η(u, v(u,C)). (2.97)

Obviously, the devil is in the detail—you have an opportunity to practice this detail in Q1.12
(example).

3. The Language of the Game: Going to Higher Order

Hopefully you now feel sufficiently empowered actually to solve things that you might
tolerate a resumption of conceptual/generalist discussion. It is time for us to consider how
to handle ODEs of order higher than first. Let me start with an example of a second-order
ODE, which is perhaps the second most important [after (1.4)] ODE in the world—and
possibly the most important one in physics.

3.1. Mathematical Pendulum

Consider a pendulum of length l, with a point mass m at the end, subject to acceler-
ation of gravity g (Fig. 10). The mass executes a trajectory that is parametrised by the

13In order for this approach to work, at every point (and its neighbourhood) at least one of
the mappings (u, v) → (x, y), (u, v) → (y, p) or (u, v) → (x, p) must be one-to-one. Formally,
this is expressed as the requirement that the Jacobians of these mappings do not all vanish
simultaneously: [∂(x, y)/∂(u, v)]2 + [∂(y, p)/∂(u, v)]2 + [∂(x, p)/∂(u, v)]2 > 0.
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Figure 11. Sir Isaac Newton FRS (1643-1727), who needs no introduction.

angle θ and follows the arc of the circle of radius l. The velocity, always tangent to this
circle, is lθ̇ and the acceleration is lθ̈. Newton’s (Fig. 11) Second Law reads

mlθ̈ = −mg sin θ ⇒ θ̈ = −ω2
0 sin θ , ω0 =

√
g

l
. (3.1)

This nonlinear, second-order ODE is the equation of mathematical pendulum (“mathe-
matical” because the rod is massless, the mass at the end of it is a point mass, and
there is no friction of any kind). It describes the pendulum’s oscillations around the
equilibrium θ = 0. If we further assume that these oscillations are small, θ � 1, then we
can approximate sin θ ≈ θ and turn our ODE into a linear one:

θ̈ = −ω2
0 θ . (3.2)

This is the famous equation of a simple harmonic oscillator (SHO), which describes not
just a gently peturbed pendulum but also countless other physical systems (or bits of
physical systems) ranging from a mass attached to a spring to an elementary excitation
in an (imaginary) box filled with radiation. Note that the linear ODE emerged as a result
of the nonlinear ODE being expanded in the vicinity of its equilibrium point (the steady
solution θ = 0). This is a sign of things to come, but first let us occupy ourselves with
our new toy (3.2).

The solution of (3.1) is (verified by substitution)14

θ(t) = A cos(ω0t+ φ), (3.3)

where A and φ are arbitrary constants (now there are two of them, as there must be, for
a second-order ODE—we shall shortly see why). We can fix these constants by setting
two initial conditions:

θ(0) = θ0 and θ̇(0) = Ω0. (3.4)

the intial angular displacement and the initial angular velocity, respectively.

3.2. Laws of Motion

The equation of the pendulum is, of course, a particular case of the much more gen-
eral differential equation that expresses Newton’s Second Law and, therefore, describes

14Cosine is a familiar elementary function, but again, in fact, you might think of it as,
by definition, the function that is the solution of (3.2), rendered familiar and, therefore,
“elementary”, by heavy use. You get to “derive” the cosine from a position of pretend ignorance
in Q2.9(c).
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everything in the (classical) world:

r̈ = f(t, r, ṙ) . (3.5)

This is why ODEs are so dominant in physics: the laws of motion are ODEs. Since they
are second-order ODEs, we better learn how to handle those.

Perhaps you already know from mechanics that, in order to solve (3.5) and thus predict
the future of the world, you need to know the initial position r(0) = r0 and the initial
velocity ṙ(0) = v0. It would appear that there must be some way of formulating a
Cauchy-style problem for second- (and, presumably, higher-) order ODEs and one must
also hope that an existence and uniqueness theorem is available. This better be true, or
what will become of the determinism of the natural world and of our ability to predict
its fate?

3.3. All ODEs Are (Systems of) First-Order ODEs

[Literature: Pontryagin (1962, §4), Tikhonov et al. (1985, §1.1), Arnold (2006, §§1.11-1.14,

8.1), Bender & Orszag (1999, §1.1)]

First of all, let me point out that all ODEs are, in fact, first-order ODEs, or systems
thereof. Indeed, (3.5) is nothing but{

ṙ = v,
v̇ = f(t, r,v).

(3.6)

Thus, instead of having 1 or 3 or n second-order equations for the n-dimensional vector r,
we have 2 or 6 or 2n first-order equations for the 2n-dimensional vector (r,v) (a second
order ODE that lives in Rn+1 is a first-order ODE that lives in R2n+1, the +1 being
time). For example, (3.2) is{

θ̇ = Ω,

Ω̇ = −ω2
0θ

⇔ d

dt

(
θ
Ω

)
=

(
0 1

−ω2
0 0

)
·
(
θ
Ω

)
, (3.7)

an example of a system of coupled, linear, homogeneous, first-order ODEs. More generally,

F (t, y, ẏ, ÿ, . . . , y(n)) = 0 (3.8)

can be recast as this system of n first-order ODEs:
F (t, y, p1, . . . , pn−1, ṗn−1) = 0,
ẏ = p1,
ṗ1 = p2,
. . .
ṗn−2 = pn−1

(3.9)

Thus, we can talk of n as the order of the original ODE or as the order of the
corresponding system of first-order ODEs (n = the number of these ODEs).

If we restrict our attention to ODEs that are resolved with respect to the highest
derivative,

y(n) = f(t, y, ẏ, . . . , y(n−1)), (3.10)

we see that both (3.10) and many other systems of ODEs that do not necessarily reduce
to a single higher-order equation can be written in the general form

ẏ = f(t,y) , (3.11)
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(a) Lipschitz (b) Picard

Figure 12. (a) Rudolf Otto Sigismund Lipschitz (1832-1903), German mathematician, student

of Dirichlet. (b) No, this is not Hercule Poirot, this is Charles Émile Picard FRS (1856-1941),
a brilliant French mathematician who proved the existence and uniqueness theorem with the
Lipschitz continuity condition (3.13). He had a French academic career par excellence (ENS,
chair at Sorbonne, Académie des sciences, seat 1 in Académie française, etc.), was a great
lecturer (according to Hadamard), and married Hermite’s daughter Marie, with whom he had
three children, all killed in World War I.

where y(t) is an n-dimensional vector function mapping some subset of R to some subset
of Rn and f is an n-dimensional “velocity field”—it is called the phase velocity, while y
is the “phase” of the physical system described by (3.11) (as in “phases of the moon”,
i.e., states of the system). Note that since y includes physical velocities, as in (3.6), f
includes the physical forces providing acceleration.

Naturally, the Cauchy (initial-value) problem for (3.11) is the problem of finding the
solution that satisfies

y(t0) = y0. (3.12)

3.4. Existence and Uniqueness

[Literature: Pontryagin (1962, §§3, 21), Tikhonov et al. (1985, §§2.4, 2.6-2.7), Tenenbaum &

Pollard (1986, §62), Coddington (1990, Ch. 6)]

It turns out, thank God, that the 1D existence and uniqueness Theorem 1 can be
generalised to the n-dimensional case.15

Theorem 2. Let all fi(t,y) and ∂fi/∂yj (i, j = 1, . . . , n) exist and be continuous on
some open domain D ⊂ Rn+1. Then

(a) ∀(t0,y0) ∈ D , ∃∆t such that the Cauchy problem (3.11–3.12) has a solution in the
interval I = [t0 −∆t, t0 +∆t].

(b) This solution is unique, i.e., if y1(t) and y2(t) are solutions of (3.11–3.12) on the
intervals I1 and I2, respectively, then y1(t) = y2(t) ∀t ∈ I1 ∩I2.

In fact, it turns out that this theorem can be made somewhat more general (meaning
that its assumptions can be weakened): f need not have all these derivatives but must
only satisfy the so-called Lipschitz continuity condition (Fig. 12): ∃L ∈ R such that

15Note that this theorem officially confirms that the general solution of an n-th-order ODE must
have n integration constants because n initial conditions are needed to pin down the solution
uniquely [cf. the argument around (4.31)].
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∀(t,y1) and (t,y2) ∈ D ,

|f(t,y1)− f(t,y2)| 6 L|y1 − y2| (3.13)

(any f that has all the first derivatives is Lipschitz-continuous, but not vice versa).
I shall not go any further into these matters, but this does not mean that you should

not: in fact, I urge those of you who wish to be mathematically competent to read about
the existence and uniqueness theorems and, indeed, work your way through their proofs
(Pontryagin 1962 is a good undergraduate textbook on this subject; Arnold 2006 takes
you to the next level of enlightenment). There are things that every physicist ought to
have done at least once (although possibly not more than once) in her life—and this is
one of them.

Thus, to sum up, ODEs in the form (3.11) are equations that express the rate of change
of a vector quantity y(t) (the “phase” of the system) as a function of t and y itself—and
they have unique solutions if the “phase” y0 where the system finds itself at some time t0
is specified.

You can hopefully now see why this is an important subject: evolution of systems with
given initial conditions is what we study in physics.

The rest of this chapter is an introduction to the ideas that we shall explore further
in §8. If you are impatient to learn how to solve higher-order linear equations, jump to §4
now and come back later.

3.5. Phase Space and Phase Portrait

Integral curves live in an (n+1)-dimensional space, so, for (systems of) ODEs of order n > 1,
drawing these curves becomes challenging, pending the invention of a 3D iPad. It also turns
out that, unless the equations are linear and have constant coefficients, finding their solutions
in elemetary functions or even quadratures is usually impossible.

Example. Consider the linear, homogeneous, second-order equation, which looks like a rather
simple ODE:

y′′ + a(x)y′ + b(x)y = 0. (3.14)

Let z = y′/y. Then y′ = zy, y′′ = zy′ + z′y, and, for y 6= 0, the equation becomes

z′ + z2 + a(x)z + b(x) = 0. (3.15)

This is a Riccati equation (2.70) and so, unless we can guess one of its solutions, it is unsolvable
in quadratures. The case in which (3.14) is solvable will be discussed in §4.6. It is basically the
same story as in §2.6.

These days, one’s reflex in such situations is to stick the recalcitrant equation into a computer
and ask for solutions, but it tends to be the case that, if you do not understand what you are
doing—and, specifically, if you do not have a good idea as to what to expect—you will get rubbish
and be none the wiser. Therefore, what one needs to study is various methods of solving ODEs
apprximately and/or of analysing their behaviour qualitatively, i.e., methods for establishing
certain key properties of their solutions without having to find these solutions precisely and/or
in their entirety.

The objective of such an analysis is to understand how a physical system described by (3.11)
might travel around its phase space, i.e., the space that contains all values of y accessible to the
system (it is usually a subspace of Rn). What parts of the phase space the system visits how
often and where it ends up long-term generally must depend on where it started from (y0 at
t = t0), but in fact, often does not—or does in such a way that various initial conditions can be
classified into broad categories with qualitatively similar evolution.

Let us specialise from (3.11) to a class of ODEs called autonomous. These are the systems
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(a) (b) (c)

Figure 13. Oscillations of a pendulum around the θ = 0 equilibrium (a): (b) the direction
field, (c) the phase portrait.

whose phase velocity depends only on their position in phase space:16

ẏ = f(y) . (3.16)

Physically, these are systems in which forces depend only on positions and velocities (or
analogous phase-space variables), but not explicitly on time—this can be interpreted as absence
of external meddling with the system (hence “autonomous”). We may then set ourselves the
task of sketching all possible trajectories of the system in phase space. Such a sketch is called
the phase portrait of the system. Note that this is not the same thing as sketching the integral
curves: the latter are curves in Rn+1 (including time) whereas the phase trajectories are curves
in Rn parametrised by t (they are projections of the integral curves onto the phase space).
In view of (3.16), these trajectories are everywhere tangent to the system’s phase velocity f .
Obviously, the actual sketching is only a (relatively) easy task when n = 2. Note that the task
is not thankless for an autonomous system because the phase portrait is independent of time
for it, and so only needs to be produced once.

3.5.1. Linear Pendulum

[Literature: Arnold (2006, §1.15)]

Let me illustrate what I mean by all this, and why such an approach is useful, on the example
of the SHO (3.7). For simplicity of exposition, I will rescale time and angular velocity to get rid
of ω0 and rename variables: ω0t → t, y = Ω/ω0, x = θ. Then the system that we are dealing
with is just {

ẋ = y,
ẏ = −x. (3.17)

The right-hand side of this equation, (y,−x), defines a velocity field in phase space R2. It
is sketched in Fig. 13(b). The phase trajectories are tangent to this field. These trajectories
(Fig. 13c) are circles—this is obvious if one observes that the velocity (y,−x) is always perpen-
dicular to the radius vector (x, y) or, indeed, simply recalls the solution (3.3):

x = A cos(t+ φ), y = ẋ = −A sin(t+ φ) ⇒ x2 + y2 = A2. (3.18)

Thus, the phase portrait of the SHO is a family of concentric circles parametrised by the
integration constant A (Fig. 13c). If you pick a point on the (x, y) plane, you fix A and φ, i.e.,

16In purely formalistic terms, all systems of ODEs can be reduced to autonomous systems.

Indeed, consider a generic non-autonomous system (3.11) with y ∈ Rn. Define η ∈ Rn+1 to
have the components ηi = yi for i = 1, . . . , n and ηn+1 = t. Then (3.11) can be written
as η̇i = fi(y, ηn+1) ≡ gi(η) for i = 1, . . . , n and η̇n+1 = 1 ≡ gn+1(η), or η̇ = g(η), an
autonomous system in Rn+1. In practice, this is not terribly helpful, because increasing the
number of dimensions, even from 2 to 3, makes things vastly more complicated.
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which circle you are on and where on it. The phase portrait now tells you where you would go
from there: around the circle, clockwise.

There is another way to see this, which is very illuminating physically: multiply the first
equation in (3.17) by x, the second by y, and add them:

d

dt

(
x2

2
+
y2

2

)
= 0 ⇒ E (x, y) =

x2

2
+
y2

2
= C. (3.19)

This integral is the energy (potential + kinetic), which, unsurprisingly, is conserved. The
solutions lie on circles because they are constrained by the conservation of E .

3.5.2. Nonlinear Pendulum

[Literature: Arnold (2006, §§1.16-1.17, 12), Strogatz (1994, §6.7)]

This is all rather elementary, but becomes less so if we raise our ambitions and attempt the
phase portrait of the more general, nonlinear pendulum, described by (3.1). In our rescaled
variables, the system is {

ẋ = y,
ẏ = − sinx.

(3.20)

The easiest way to draw the phase portrait is by the same method (which, however, does not
necessarily work for all systems) as we used to obtain (3.19). Indeed, the system (3.20) also has
a conserved quantity and so can be integrated: multiply the first equation by sinx, the second
by y and add them, to get

d

dt

(
− cosx+

y2

2

)
= 0 ⇒ E (x, y) = 1− cosx+

y2

2
= C. (3.21)

I have adjusted the constants in such a way as to make sure that E (x, y) returns to the old
expression (3.19) when x� 1.

The phase trajectories of the system are level sets of E (x, y). You already know from your
Calculus course how to sketch them. The idea is first to find “stationary points” (extrema) of
E , then Taylor-expand E around them to determine their nature, and then “fill in the blanks”,
i.e., use common sense to work out how these local phase portraits fit together.

Stationary points are not called “stationary points” by accident. Indeed, the system (3.20)
can be written equivalently as (cf. §I.6)

ẋ =
∂E

∂y
, ẏ = −∂E

∂x
. (3.22)

Thus the extrema of E are indeed the stationary points (or fixed points, or equilibria) of the
pendulum. They are

y = 0 and sinx = 0 ⇒ x = πn, n ∈ Z. (3.23)

For n = 2k, this is the obvious equilibrium at x = 0 and its identical copies at x = 2πk.17

Clearly, (x, y) = (0, 0) is a minimum of E :

∂2E

∂x2

∣∣∣∣
(0,0)

= 1,
∂2E

∂y2

∣∣∣∣
(0,0)

= 1. (3.24)

In the vicinity of (0, 0), the phase portrait is the family of concentric circles already found in
§3.5.1 and depicted in Fig. 13(c).

For n = 2k + 1, (3.23) is the upright equilibrium of the pendulum (x = π, Fig. 14a) and its
periodic copies. This equilibrium, (x, y) = (π, 0), is a saddle point:

∂2E

∂x2

∣∣∣∣
(π,0)

= −1,
∂2E

∂y2

∣∣∣∣
(π,0)

= 1. (3.25)

17Remember that x = θ, the angle, and so the phase space of the pendulum is, in fact, not really

R2 but the surface of a cylinder: −∞ < y < ∞, 0 6 x < 2π, with the ends, 0 and 2π, glued
together.



Oxford Physics Lectures: Ordinary Differential Equations 31

(a) (b) (c)

Figure 14. Oscillations of a pendulum around the θ = π equilibrium (a): (b) the direction
field, (c) the phase portrait.

Figure 15. Phase portrait of an undamped pendulum.

Let us look at the phase portrait in its vicinity. To do that, we expand (3.20) around this
equilibrium point:

x = π + δx, y = 0 + δy ⇒
{
δẋ = δy,
δẏ = δx.

(3.26)

The phase velocity field (δy, δx) is sketched in Fig. 14(b) and the resulting phase portrait in
Fig. 14(c). The phase trajectories are hyperbolae, which is easily confirmed by expanding the
energy (3.21) around (π, 0):

E ≈ 2− δx2

2
+
δy2

2
= C. (3.27)

Finally, this is all pieced together in Fig. 15. The phase portrait consists of

—closed trajectories around the minima of energy—they have E < 2 and describe a pendulum
oscillating around its usual downward equilibrium,

—open trajectories—they have E > 2 and describe a pendulum executing full 360o rotations,

—the separatrices at E = 2.

Picking a point (x0, y0) and following the phase trajectory on which it lies will tell you what
the pendulum will do if it starts at that point: it will oscillate if you start with E < 2 and rotate
if you start with E > 2.
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Thus, we have developed a pretty good picture of the behaviour of our system even though
we did not solve the nonlinear equations (3.20) explicitly, i.e., obtained x = x(t), y = y(t).18 We
have also been able to classify all possible initial conditions into broad groups that had different
subsequent qualitative behaviour.

Of course, we were greatly helped by the existence of E (x, y) and our ability to write an
explicit expression (3.21) for it. In practice, however, all we really needed in order to sketch the
global phase portrait were the positions of the fixed points and the phase portraits in their close
vicinity. In §8.1, I will classify all possible fixed points for second-order ODEs.

This was the most elementary example of a qualitative solution of a system of coupled ODEs.

3.5.3. Local Linear Analysis

[Literature: Arnold (2006, §13.1)]

Let me spell out a key general lesson that you are supposed to learn from this example. In
order to analyse qualitatively an autonomous system of ODEs (3.16), first find its fixed points:

f(y0) = 0. (3.28)

Then expand the system around them:

y = y0 + δy ⇒ δẏi = fi(y0 + δy) ≈���fi(y0) +
∂fi
∂yj

∣∣∣∣
y0

δyj . (3.29)

This gives you a linear, homogeneous system of ODEs with constant coefficients that describes
the behaviour of the original system in the vicinity of each fixed point:

δẏ = A · δy , Aij =
∂fi
∂yj

∣∣∣∣
y0

. (3.30)

After you learn how to handle such linear systems (§6), you will be able to describe life in the
vicinity of fixed points and hence piece together global phase portraits for nonlinear systems of
which they are local approximations (§8).

3.5.4. Damped Pendulum (Introduction to Dissipative Systems)

[Literature: Arnold (2006, §20.5), Strogatz (1994, §6.7)]

Before I wrap up this extended introduction, let me show you what sort of thing happens
when energy is not conserved and so we cannot obtain the phase portrait of the system by
plotting level sets E (x, y) = C.

Let us add friction to the range of experiences available to our idealised pendulum. This is a
force that opposes the pendulum’s motion and is proportional to its velocity (there is no friction
on things standing still), so (3.1) is now written so:

θ̈ = −ω2
0 sin θ − γθ̇ . (3.31)

Recasting it as a system of first-order ODEs in dimensionless variables, analogous to (3.20),
gives {

ẋ = y,
ẏ = − sinx− γy. (3.32)

Let us see how the energy (3.21) evolves for such a system:

Ė =
∂E

∂x
ẋ+

∂E

∂y
ẏ = −γy2 6 0. (3.33)

Thus, the pendulum’s energy declines with time (naturally, since there is damping and no
forcing). This means that the system is constantly slipping off the conservative trajectories (3.21)
towards smaller values of E (the pendulum’s oscillations are losing amplitude).

18It is, in this case, in fact, possible to do it in special functions, called elliptic functions.
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(a) (b)

Figure 16. Motion of a damped pendulum around the θ = 0 equilibrium: (a) the direction
field, (b) the phase portrait.

Figure 17. Phase portrait of a damped pendulum.

For example, in the vicinity of the fixed point (x0, y0) = (0, 0) (which is still a fixed point),{
ẋ = y,
ẏ = −x− γy. (3.34)

The phase velocity of this system is not perendicular to the radius vector: indeed,(
y

−x− γy

)
·
(
x
y

)
= −γy2 < 0, (3.35)

so the trajectories are ever tending inwards (Fig. 16a). The resulting phase portrait is a clockwise
spiral wrapping onto the origin (Fig. 16b). We shall learn how to investigate stability and
categorise the system’s behavior in such situations when we pick up this story again in §8. For
now, noticing that the phase portrait near (x0, y0) = (π, 0) is distorted but not qualitatively
changed (still a saddle), we can adjust the phase portrait of Fig. 15 to include the effect of
damping, as shown in Fig. 17: the effect is that all trajectories eventually wrap onto the still-life
equilibrium of a downward hanging, energetically exhausted, unmoving pendulum.

As before, without obtaining an explicit solution of the full nonlinear problem, we have been
able to deduce a qualitative phase portrait that gives us a pretty good idea of the system’s
behaviour. The eventual fate of a damped pendulum is independent of initial conditions,
although the details of getting there do depend on them:

—if the pendulum starts with E 6 2, it spirals straight into the (0, 0) equilibrium;
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—if it starts with E > 2, it may rotate a few times, getting slower as it loses energy, and then
spirals in.

The key ingredient in developing this understanding was again the local analysis (§3.5.3) of
the linearised system around the fixed points.

The damped pendulum is an example of a dissipative system, which, when left to its own
devices, decays into a boring, quiescent state. This opens the door to a class of questions as to
what will happen if we “drive” the system, i.e., continuously put energy into it. This can be done
by introducing a force, making the system inhomogeneous—and, if the force is time-dependent,
also non-autonomous. We shall study the forced oscillator in §5.3.

Example. Q5.1 offers you an opportunity to investigate another type of nonlinear oscillator,
along similar lines.

Let me observe, in anticipation of the developments in §8, that a fixed point is not the
only possible type of attractor—a set towards which a dissipative system’s trajectories con-
verge regardless of initial conditions. Other possibilities are a limit cycle (§8.3) and a strange
attractor—harder beasts to handle but not outside our intellectual range!

Hopefully this extended introduction has given you an idea of the general narrative arc of
this subject. We shall now return to learning some practical methods for solving (linear) ODEs.

4. Linear ODEs: General Principles

[Literature: Pontryagin (1962, §17), Binney (2002, §2), Coddington (1990, Ch. 3)]

There is little one can do about integrating higher-order (higher than first) nonlinear
ODEs explicitly. Most useful methods here are qualitative (§8). So we are now going to
spend some time with linear ODEs, because we can achieve something with them and
because this is rather useful—both by itself (there are many physical systems described
by them) and as a door to qualitative analysis of nonlinear equations, a key component
of which is local linear analysis (§3.5.3).

As I have explained above (§3.3), all ODEs are (systems of) first-order ODEs. Thus,
in our treatment of linear ODEs, it is formally sufficient to consider systems of the form

ẏ = A(t) · y + f(t) , (4.1)

where y and f are vectors that live in Rn (which can be extended to Cn without any
complications) and A is an n×nmatrix, in general time-dependent and with elements in R
(or C). In most books, the general theory of (4.1) is presented separately from the general
theory of n-th-order linear ODEs (1.5). While this leads to a number of useful practical
prescriptions, conceptually it is mostly a waste of time to deal with the latter type of
ODEs separately. You will, however, find it instructive to work out in detail how what
I am about to do here applies specifically to (1.5) (and, in particular, to the case with
with constant coefficients: see §§5.1.3, 5.2.2, and 6). Also, because of its multitudinous
applications and relative lack of algebraic cumbersomeness, the second-order linear ODE,

y′′ + a(x)y′ + b(x)y = f(x), (4.2)

is particularly important and popular. In many cases below, (4.2) will serve me as a
default example of the application of general principles (and in §5, I will study to death
its version with constant coefficients).

4.1. Existence and Uniqueness Theorem for Linear Equations

[Literature: Arnold (2006, §27.2), Tenenbaum & Pollard (1986, §§62C, 65)]
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A radical strengthening of Theorem 2 is possible for linear ODEs: the existence and
uniqueness are guaranteed not just locally (in a neighbourhood of the point where initial
conditions are set), but also globally.

Theorem 3. If all Aij(t) and fi(t) (i, j = 1, . . . , n) are continuous functions on the
interval I = (t1, t2), then ∀t0 ∈ I and ∀y0 ∈ Rn, the Cauchy problem

ẏ = A(t) · y + f(t), y(t0) = y0 (4.3)

has a unique solution on the entire interval I .

For linear ODEs, existence will be ascertained explicitly in what follows—by construct-
ing a solution. Uniqueness will be needed to give us certainty that a solution that we
construct for any given Cauchy problem (4.3) is the solution of it.

The rest of this chapter is a general theory of how to solve linear equations, both homegeneous
and inhomogeneous. If you do not feel up to suffering generality for a long, continuous stretch,
you can take an alternative route through these notes. First learn how to handle homogeneous
equations: read §4.2 (but not yet §4.2.1), then work through the example of a homogeneous,
2nd-order, linear, non-degenerate ODE with constant coefficients (§§5.1–5.1.1), then return to
the general exposition of §4.3, followed by the practical recipe for finding solutions of 2nd-
order linear ODEs in §4.6 (where, at this first reading, you can set f = 0 everywhere)—the
simplest example of how to apply this is the degenerate 2nd-order ODE with constant coefficients
(§5.1.2), and some further examples are found in §4.6.1. Once you are thus an expert on
homogeneous equations (an expertise that you can further practice in Problem Set 2), move on
to inhomogeneous ones: read §4.2.1, then §4.4, and then again §4.6 but this time allow f 6= 0.
Finally, move on to the inhomogeneous, 2nd-order equations with constant coefficients: §§5.2
and 5.3. Practice using all this in Problem Set 3.

4.2. Superposition Principle

[Literature: Arnold (2006, §27.3), Yeomans (2014, §III.0)]

Consider first the homogeneous version of (4.1):

ẏ = A(t) · y . (4.4)

It is very easy to prove, but momentously significant, that if y1(t) and y2(t) are solutions
of (4.4), then ∀ constants C1 and C2,

y(t) = C1y1(t) + C2y2(t) (4.5)

is also a solution of (4.4)—this can be verified by direct substitution. This result is called
the superposition principle—the fundamental property that makes linear ODEs special.

Its mathematical meaning is quite transparent. Stated more generally, it says that any
linear combination of solutions of (4.4) is also a solution of (4.4)—the consequence of
the linearity of the operator d/dt − A(t). In the language of linear algebra, this means
that solutions of (4.4) form a linear vector subspace of the space of Rn-valued functions
of a single variable. Note that extending all this to the case of A(t), f(t) and y(t) being
complex presents no difficulty (because a complex number is a kind of linear combination
of real numbers, once i has been properly defined).

Example. §5.1.
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4.2.1. Superposition Principle for Inhomogeneous Equations

[Literature: Tikhonov et al. (1985, §3.6.2), Yeomans (2014, §III.3)]

The superposition principle for homogeneous ODEs has two immediate corollaries that
apply to inhomogeneous ODEs.

1) If y1(t) is a solution of

ẏ = A(t) · y + f1(t) (4.6)

and y2(t) is a solution of

ẏ = A(t) · y + f2(t), (4.7)

then, ∀C1 and C2,

y(t) = C1y1(t) + C2y2(t) (4.8)

is a solution of

ẏ = A(t) · y + C1f1(t) + C2f2(t). (4.9)

This property, instantly verifiable by direct substitution, gives us a strategy for solving
inhomogeneous ODEs whose f ’s are linear superpositions of more elementary/easier-to-
handle functions.

2) A corollary of the above (for f1 = 0, f2 = f) is the statement that if yPI(t) is
some particular solution of (4.1) (a “particular integral”, PI) and yCF(t) is the general
solution of the associated homogeneous equation (4.4) (the “complementary function”,
CF), then

y(t) = yCF(t) + yPI(t) (4.10)

is the general solution of the inhomogeneous equation (4.1).19 The proof is simply the
observation that, having found some yPI(t), we can make the ansatz (4.10) and discover
that yCF(t) satisfies (4.4), i.e., such an ansatz reduces an inhomogeneous equation to
a homogeneous one. It is perfectly alright that yPI(t) can be chosen in many different
ways because the difference between any two particular solutions of the inhomogeneous
equation (4.1) is a solution of its homogeneous counterpart (4.4) and so is included
in yCF(t).

Thus, if we learn how to find general solutions to homogeneous linear ODEs, we might
have a fighting chance of solving inhomogeneous ODEs as well.

Example. §5.2.

4.3. General Solution of Homogeneous Equations

[Literature: Pontryagin (1962, §17), Tikhonov et al. (1985, §3.6.3)]

Since solutions of (4.4) form a linear vector space, we can capture them all if we are
able to find a basis in their space. This basis will turn out to be a set of n linearly
independent solutions

{y1(t), . . . ,yn(t)} , (4.11)

where n is the order of the ODE. Such a set is called the fundamental system of solutions
of (4.4). I will often use the shorter notation {yi(t)} to designate the set (4.11) (and
similarly for other sets of objects indexed by i = 1, . . . , n). Solutions of an ODE are

19We have already met this principle in the context of first-order linear equations: see (2.62).
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linearly dependent if ∃C1, . . . , Cn, not all of which are zero, such that20

∀t ∈ I , C1y1(t) + · · ·+ Cnyn(t) ≡ Ciyi(t) = 0 (4.12)

(I will use Einstein’s convention of summation over repeated indices). The solutions
{yi(t)} are independent otherwise, i.e., if (4.12) implies that all Ci = 0.

I am now going to demonstrate

1) that a fundamental system can always be constructed (i.e., it exists);

2) how, given a fundamental system, any Cauchy problem (4.3) can be solved in
practice.

4.3.1. (In)dependent Somewhere—(In)dependent Everywhere

I will need the following two lemmas.

Lemma 1. If ∃t0 ∈ I such that the set of vectors {yi(t0)} is linearly independent, then
the set of solutions {yi(t)} is linearly independent.

Proof. Suppose the solutions {yi(t)} are linearly dependent. Then ∃{Ci} such that (4.12)
is satisfied. Since it is satisfied for all t, it is satisfied for t0 and so {yi(t0)} are linearly
dependent. Contradiction. Q.E.D.

Lemma 2. If ∃t0 ∈ I such that the set of vectors {yi(t0)} is linearly dependent, then
the set of solutions {yi(t)} is linearly dependent.

Proof. If {yi(t0)} are linearly dependent, then ∃{Ci} such that

Ciyi(t0) = 0. (4.13)

Consider the function y(t) = Ciyi(t). Since yi(t) are all solutions of (4.4), so is y(t).
In view of (4.13), y(t0) = 0. But identical 0 is a solution of (4.4) satisfying this initial
condition. Since the solution of any Cauchy problem for (4.4) is unique, this implies
y(t) = 0 identically. Therefore, Ciyi(t) = 0 ∀t. The solutions are dependent. Q.E.D.

Thus, if the vectors {yi(t)} are (in)dependent for any t = t0, they are (in)dependent
for all t and so are the solutions that they represent.

4.3.2. The Fundamental Matrix and the Wronskian

Let me introduce some notation that will make everything slightly more compact and
also push us further into speaking of linear ODEs in the language of linear algebra. If
I denote yji (t) the j-th vector component of the solution yi(t), then the fundamental

system {yi(t)} can be packed into a single matrix with components yji (t), i.e., with the
solution yi(t) serving as the i-th column of the matrix:

Y(t) = (y1(t) . . .yn(t)) , or Yji(t) = yji (t). (4.14)

20This says that {yi(t)} are linearly dependent as functions, i.e., the same set of constants {Ci}
gets them all to sum up to zero at every t. This is not the same thing as vectors {yi(t)}
being linearly dependent at every t, because for the latter, it is enough to have a different set
of constants {Ci(t)} at every t. This distinction is important for understanding why the two
Lemmas that are coming up are both true and non-trivial. In principle, the vectors {yi(t)} being
linearly dependent at some particular t does not automatically imply that the functions {yi(t)}
are also dependent in the sense of the definition (4.12), but Lemma 2 will say that if these
functions are solutions of (4.4), then they are.
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(a) Liouville (b) Wroński

Figure 18. (a) Joseph Liouville FRS (1809-1882), great French mathematician and unsuccessful
politician. He was a student of Poisson (who was a student of Lagrange; Fig. 8) and the adviser
of Hermite (who was the father-in-law of Picard; Fig. 12b). Everyone who was anyone knew
everyone else in those days. As they do now. Intellectual life is a small-group activity. Do jump
in while you have the chance. (b) Józef Maria Hoene-Wroński (1776-1853), Polish messianic
philosopher, mathematician, fierce critic of Lagrange’s iniquitous use of infinite series and
self-proclaimed author of the general theory of everything. While he was largely ignored as
a crackpot during his life (apparently, not entirely unjustly), it did later turn out that he had
invented some useful mathematical concepts and so his name lives forever as a determinant.

I shall call this the fundamental matrix. In view of the two lemmas proven in §4.3.1, the
determinant of this matrix,

W (t) = det Y(t), (4.15)

called the Wronskian (Fig. 18b), does not vanish anywhere if {yi(t)} is a fundamental
system. Conversely, if {yi(t)} is just some set of n solutions of (4.4), checking whether
it is a fundamental system amounts to checking that W (t) 6= 0 at some t.

The Wronskian turns out to be easy to compute:

W (t) = W (t0) exp

[∫ t

t0

dt′ trA(t′)

]
, (4.16)

where trA = Aii, the trace of the matrix. This is Liouville’s formula (Fig. 18a). Its proof is

based on showing that Ẇ = trA(t)W . I leave it to you as an exercise, which you can complete
either by figuring out on your own how to differentiate a determinant or by looking it up in a
book, e.g., Pontryagin (1962, §17) or Arnold (2006, §§16.4, 27.6).

Note that the formula (4.16) makes it explicit that if W (t) is (or is not) zero at any t = t0,
then it is (or is not) zero at all t and so linear (in)dependence of a set of solutions is equivalent
to linear (in)dependence of these solutions at any one point in time.

4.3.3. How to Construct a Fundamental System

We are now ready for the following result.

Corollary 1. A fundamental system of solutions of (4.4), i.e., a set of n linearly
independent solutions (4.11) with n equal to the order of the ODE, always exists.

Proof. Take any basis set of vectors {vi} in Rn (or Cn). By Theorem 3, there is a unique
solution yi(t) for each of n Cauchy problems, set at some t0,

ẏi = A(t) · yi, yi(t0) = vi, i = 1, . . . , n. (4.17)

Since the vectors {yi(t0)} are linearly independent, so are the solutions {yi(t)}, by
Lemma 1. There will always be n of them because any smaller system can be amended
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with more linearly independent solutions until we have n, while no larger system can be
independent because you cannot have more than n linearly independent vectors in Rn
and if vectors {yi(t)} are linearly dependent for any t, the corresponding set of solutions
is also dependent (by Lemma 2).

4.3.4. How to Construct the Solution

Now let me show that the fundamental system (4.11) truly is a basis in the space of
solutions.

Corollary 2. If {yi(t)} is a fundamental system of solutions of (4.4), then, for any
Cauchy problem

ẏ = A(t) · y, y(t0) = y0, (4.18)

∃{Ci} such that

y(t) = Ciyi(t) (4.19)

is the solution.

Proof. I will prove this by showing explicitly how to find the set of constants {Ci}
such that any given initial condition is satisfied (this solution is then the solution by the
uniqueness Theorem 3). The linear combination (4.19) is, using the notation (4.14),

y(t) = Y(t) ·C, where C =

C1

. . .
Cn

 . (4.20)

In order to have y(t0) = y0, we must have

C = Y−1(t0) · y0. (4.21)

The inverse Y−1(t0) exists ∀t0 because the columns of the matrix are linearly independent
and so the Wronskian det Y 6= 0. Finally, the (unique) solution of the Cauchy problem
(4.18) is

y(t) = Y(t) · Y−1(t0) · y0 . (4.22)

The interpretation of this formula is that the initial condition y0 gets decomposed—by
multiplication by Y−1(t0)—into bits corresponding to each member of the fundamental
system (“projected” onto the basis “vectors” of the space of solutions) and then—by
multiplication by Y(t)—each of these bits is forwarded in time along its respective basis
“vector” yi(t).

Example. Let me apply all this to the homogeneous version of the second-order linear ODE
(4.2):

y′′ + a(x)y′ + b(x)y = 0. (4.23)

Formally, this reduces to (4.4) as follows:{
y′ = p,
p′ = −a(x)p− b(x)y,

or
d

dx

(
y
p

)
= A(x) ·

(
y
p

)
, where A(x) =

(
0 1
−b −a

)
, (4.24)

but we do not actually need to write it like this explicitly. We know from Corollary 1 that
the fundamental system for (4.23) must consist of two (n = 2) linearly independent solutions:
{y1(x), y2(x)}. To make sure they are linearly independent, we must check that their Wronskian
does not vanish anywhere (see §4.3.2), viz.,

Y(x) =

(
y1 y2

y′1 y′2

)
, W (x) = detY(x) = y1y

′
2 − y2y

′
1 6= 0. (4.25)
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If this is true, then the general solution of (4.23) is (4.19):

y(x) = C1y1(x) + C2y2(x). (4.26)

The Cauchy problem (4.18) is to find a solution that satisfies

y(x0) = y0, y′(x0) = p0 (4.27)

for some given y0 and p0. In order for that to happen, the two constants C1 and C2 must satisfy{
C1y1(x0) + C2y2(x0) = y0,
C1y

′
1(x0) + C2y

′
2(x0) = p0

, or Y(x0) ·
(
C1

C2

)
=

(
y0

p0

)
. (4.28)

The desired solution is then obtained by resolving these two simultaneous equations for C1 and
C2: this is (4.21). It is possible to do this because detY 6= 0, so the inverse of Y(x0) exists:(

C1

C2

)
=

1

W (x0)

(
y′2(x0) −y2(x0)
−y′1(x0) y1(x0)

)
·
(
y0

p0

)
. (4.29)

Exercise 4.1. Sturm’s Separation Theorem. Show that the zeros of two linearly indepen-
dent solutions of (4.23) always alternate. In other words, show that if x1 and x2 are successive
zeros of y1(x), then y2(x) has exactly one zero in the interval (x1, x2). Hint. Use the fact that
the Wronskian W (x) = y1y

′
2 − y2y

′
1 is never zero.

It should now be obvious to you how to deal with the n-th-order linear ODE

y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = 0. (4.30)

Here is an elegant argument (which I learned from Binney 2002, §2.1.3) that concisely illustrates
the whole story. Consider the n-th-order linear ODE (4.30). Let us imagine that we know

y(x0), y′(x0), . . . , y(n−1)(x0). Then from (4.30) we can calculate y(n)(x0). Taking a derivative of

(4.30), we can then calculate y(n+1)(x0). If we keep going, we can determine all derivatives of y
at x0, provided all {ai(x)} are as differentiable as they need to be. Knowing all the derivatives

y(k)(x0), we can reconstruct the whole solution as a Taylor series (cf. Q2.9):

y(x) = y(x0) +

∞∑
k=1

(x− x0)k
y(k)(x0)

k!
. (4.31)

Thus, if we have n initial conditions that fix the values of y(x0), . . . , y(n−1)(x0), we can find the
(unique) solution (4.31) to (4.30). Clearly, to fix the values of these derivatives, we need to have
n relationships between them (which do not have to be explicitly their values), amounting to
having n constants {Ci}, on which the general solution of (4.30) then depends. If we now let
{yi(x)} be n particular solutions of (4.30) such that for the i-th solution all constants except the
i-th are zero, then the general solution is y(x) = Ciyi(x). In the dark ages before Lukas (2017),
when Oxford physics students did not know linear algebra, this was all one could tell them.

4.4. General Solution of Inhomogeneous Equations

[Literature: Pontryagin (1962, §17), Tikhonov et al. (1985, §3.6.4), Arnold (2006, §29), Bender

& Orszag (1999, §1.4)]

Now that we know how to find all solutions of the homogeneous linear ODE (4.4), we
are ready to go back to the inhomogeneous one (4.1). According to the general principle
expressed by (4.10), once we have the fundamental system of solutions Y(t) for (4.4), all
we need is a particular solution of (4.1), yPI(t), and then its general solution is

y(t) = Y(t) ·C + yPI(t). (4.32)
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The Cauchy problem y(t0) = y0 is then solved as in (4.21): the constants are

C = Y−1(t0) · [y0 − yPI(t0)] . (4.33)

This is great, but how do we find yPI(t) if we cannot just guess it? Here is a rather clever
method, called the method of variation of constants, which we have already encountered
in the context of a single first-order linear ODE (§2.4.2).

The idea is to weaponise the constants by turning them into functions, Ci → ψi(t)
(same trick as in §2.4.2), and look for the solution of (4.1) in the form

y(t) = ψi(t)yi(t) = Y(t) ·ψ(t), where ψ =

ψ1

. . .
ψn

 . (4.34)

Substituting this into (4.1), we get

ẏ =��
�Ẏ ·ψ + Y · ψ̇ =���

�A · Y ·ψ + f ⇒ Y · ψ̇ = f , (4.35)

because, Y being a matrix composed of solutions of (4.4), Ẏ = A · Y. Since det Y 6= 0,
(4.35) is easy to turn into an explicit expression for ψ̇, which we can then promptly
integrate:

ψ̇ = Y−1(t) · f(t) ⇒ ψ(t) = C +

∫ t

t0

dt′ Y−1(t′) · f(t′), (4.36)

where C are integration constants, as usual. Putting this back into (4.34), we get the
desired general solution of (4.1):

y(t) = Y(t) ·
[
C +

∫ t

t0

dt′ Y−1(t′) · f(t′)

]
. (4.37)

The first term is yCF and the second is yPI, which we have now found explicitly and in
general (assuming that we know the fundamental system). Since I have picked the limits
of integration in such a way as to make yPI(t0) = 0, the initial condition y(t0) = y0 is
enforced by (4.21) and so the solution of the Cauchy problem (4.3) is

y(t) = Y(t) ·
[

Y−1(t0) · y0 +

∫ t

t0

dt′ Y−1(t′) · f(t′)

]
, (4.38)

which is the generalisation of (4.22) to inhomogeneous ODEs. Recalling our interpretation
of (4.22), it is easy to see the meaning of (4.38): the “force” f(t′) can be thought of as a
sequence of kicks to the system, each of these kicks gets decomposed into basis “vectors”
yi(t

′) of the space of solutions—by multiplication by Y−1(t′),—and then they all get
forwarded in time along these basis “vectors” by multiplication by Y(t).

4.5. Green’s Function

[Literature: Binney (2002, §6)]

This is a good place for the following consequential digression.
Let us define a matrix G(t, t0), called Green’s function (Fig. 19a), to be the solution of the

following Cauchy problem

∂

∂t
G(t, t0) = A(t) · G(t, t0), G(t0, t0) = I. (4.39)
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(a) Green (b) Dirac (in 1907) (c) Heaviside

Figure 19. (a) George Green (1793-1841), an English baker and miller, who, in a triumph
of mind (and inherited wealth) over matter, extricated himself and became a celebrated
mathematical physicist and a Cambridge fellow. (b) Paul Adrien Maurice Dirac FRS
(1902-1984), great English physicist, one of the founding fathers of quantum mechanics,
protagonist of many stories of strange behaviour and author of many famous bons mots, allegedly
unpremediated. (c) Oliver Heaviside FRS (1850-1925), English mathematician, electrical
engineer and autodidact, Maxwell’s apostle, bicycling enthusiast, inventor of a lot of very usefully
non-rigorous (at the time) notation, including differential operators and vector calculus.

Then the solution of the Cauchy problem (4.3) is

y(t) = G(t, t0) · y0 +

∫ t

t0

dt′ G(t, t′) · f(t′). (4.40)

Indeed, checking this directly, we get y(t0) = y0 and

ẏ(t) = A(t) ·G(t, t0) ·y0 +G(t, t) · f(t) +

∫ t

t0

dt′ A(t) ·G(t, t′) · f(t′) = A(t) ·y(t) + f(t), Q.E.D.

(4.41)
The meaning and purpose of Green’s function (which is also sometimes called the response
function) is to quantify the response of the linear system to initial (y0) and/or external (f)
disturbances.

In fact, it is sometimes convenient (and conceptually appealing) to treat these two types of
externally prescribed influences on equal grounds, interpreting the initial condition as a kind
of instantaneous burst at t = t0 and the external force as a protracted sequence of bursts, or
kicks,21 at later (or, if you wish, also earlier) times—all this occurring within the overall history
of evolution of y that stretches from t = −∞ to t = +∞. One then defines Green’s function as
the solution of the ODE

∂

∂t
G(t, t0) = A(t) · G(t, t0) + I δ(t− t0) , (4.42)

where δ(t − t0) is Dirac’s delta function (Fig. 19b), a spiky “function” (in a generalised sense
that is made precise in the theory of distributions) defined to be zero everywhere except at
t = t0 and having the property that

∀f(t),

∫ +∞

−∞
dt δ(t− t0)f(t) = f(t0). (4.43)

Such a function can be formally constructed as the limit of a sequence of functions peaked at t0,

21See discussion after formula (4.38).
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Figure 20. Dirac’s delta function = limit of a sequence of collapsing functions with constant
area underneath.

with ever decreasing width, increasing height and constant unit area underneath, e.g.,22

δ(t− t0) = lim
ε→+0

e−(t−t0)2/ε2

√
πε

= lim
ε→+0

e−|t−t0|/ε

2ε
= lim
ε→+0

ε/π

(t− t0)2 + ε2
. (4.44)

To (4.42), we attach a further stipulation that G(−∞, t0) = 0. This implies that G(t, t0) = 0
for all t < t0 because nothing happens in (4.42) until the unit burst at t = t0, so zero is a
perfectly good—and unique—solution until that moment. With Green’s function defined in this
new way, the solution (4.40) becomes

y(t) =

∫ +∞

−∞
dt′ G(t, t′) ·

[
f(t′)H(t′ − t0) + δ(t′ − t0)y0

]
. (4.45)

Here H(t− t0) is Heaviside’s step function (Fig. 19c), defined to be23

H(t− t0) =

{
1 if t > t0,
0 if t < t0

(4.46)

and used in (4.45) to restrict the application of the external force only to t > t0. You might find
it amusing to convince yourself that, for all practical purposes, H ′(t− t0) = δ(t− t0).

It is not hard to check that (4.45) is indeed the solution of the Cauchy problem (4.3). Thus, this
solution is now expressed as a convolution over the entire timeline between external disturbances
and the system’s response, the latter encoded in G(t, t0) and entirely independent of those
external disturbances. Obviously, we can easily read off from (4.38) an explicit expression for
the Green’s function in terms of the fundamental matrix:

G(t, t0) = Y(t) · Y−1(t0)H(t− t0) . (4.47)

While these ideas might appear somewhat superfluous at this stage, you will encounter them
many times again, e.g., in the Mathematical Methods course (Lukas 2019, §§5-8), when you
deal with boundary-value problems for ODEs or with partial differential equations (and indeed
already when you study the wave equation next term, there will be some tiptoeing around these
notions).

Exercise 4.2. What is the Green’s function for the linear, first-order ODE that we solved
in §2.4?

Thus, if we can find the fundamental system {yi(t)} [equivalently, the fundamental
matrix Y(t) or the Green’s function G(t, t0)] for the homogeneous linear ODE (4.4), we
now know how to solve any Cauchy problem for any inhomogeneous ODE (4.1). But how
do we find {yi(t)}? For a general linear ODE with time-dependent coefficients, this rather
depends on what those coefficients are. When they are constant in time, everything can

22Another example is (5.54).
23What it is at t = t0 is a moot point.
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be solved completely generally—I shall do that in §6 (and, for a simple sub-case, in §5).
But some progress can also be made with the case of time-dependent coefficients if we
focus on our favorite example (4.2).

4.6. Buy One Get One Free

[Literature: Binney (2002, §2.4)]

So, consider the Cauchy problem for the second-order linear ODE (4.2):

y′′ + a(x)y′ + b(x)y = f(x) , y(x0) = y0, y′(x0) = p0. (4.48)

Suppose that, by some feat of luck or inspiration, we have found one particular solution of
the associated homogeneous equation (4.23). Let us call this solution y1(x). It turns out
that a kind of “buy one get one free” deal is available: with y1(x) in hand, we can easily
find another, linearly independent, solution y2(x) of (4.23) and, therefore, the general
solution of (4.48).

This is again done by the method of variation of constants, viz., by looking for a general
solution in the form24

y(x) = ψ(x)y1(x). (4.49)

Let us see what this ansatz does for us. Substituting (4.49),

y′ = ψ′y1 + ψy′1 and y′′ = ψ′′y1 + 2ψ′y′1 + ψy′′1 (4.50)

into (4.48), we get

ψ′′y1 + 2ψ′y′1 +�
�ψy′′1 + aψ′y1 +��

�aψy′1 +��
�bψy1 = f, (4.51)

where the cancellations are due to y1 being a solution of the homogeneous equation
(4.23). As a result, we are left with a first-order ODE for ψ′:

ψ′′ +

(
2
y′1
y1

+ a

)
ψ′ =

f

y1
(4.52)

(assuming y1 6= 0), i.e., the highly beneficial effect of the ansatz (4.49) is to lower the
order of our original equation (4.48). We already know how to solve any first-order linear
ODE, of which (4.52) is a perfectly ordinary example: using (2.61), we get

ψ′(x) = E(x)

[
C1 +

∫ x

x0

dx′
f(x′)

y1(x′)E(x′)

]
, (4.53)

where

E(x) = exp

{
−
∫ x

x0

dx′
[
2
y′1(x′)

y1(x′)
+ a(x′)

]}
=

[
y1(x0)

y1(x)

]2
exp

[
−
∫ x

x0

dx′a(x′)

]
. (4.54)

Integrating (4.53) and putting it back into (4.49), we arrive at the general solution of
our inhomogeneous ODE, complete with two constants:

y(x) = y1(x)

[
C2 + C1

∫ x

x0

dx′E(x′) +

∫ x

x0

dx′ E(x′)

∫ x′

x0

dx′′
f(x′′)

y1(x′′)E(x′′)

]
. (4.55)

24The reason this is going to work is that multiplying y1(x) by a non-constant function ψ(x)
is guaranteed to give you a function that is linearly independent of y1(x)—it has the effect of
restricting our search to the (1D) subspace of the space of solutions of our ODE that is not
covered by y1(x).
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The first term (one with C2) is our already known solution y1(x) of the associated
homogeneous equation (4.23), the second (with C1) is another, linearly independent,
solution of this equation [cf. (4.26)], and the third (with f) is a particular solution of
the inhomogeneous equation (4.48), so the overall solution has the structure (4.32), or
(4.37). Finally, the constants are found by enforcing the initial conditions:

y(x0) = y0 ⇒ y0 = C2y1(x0) ⇒ C2 =
y0

y1(x0)
, (4.56)

y′(x0) = p0 ⇒ p0 = C2y
′
1(x0) + C1y1(x0) ⇒ C1 =

p0y1(x0)− y0y′1(x0)

y21(x0)
.

(4.57)

The Cauchy problem is gloriously solved.
It is a straightforward but useful exercise for you to work out how this maps onto the

general scheme laid out in §4.4.

Example. §§5.1.2, 5.2.1.

Exercise 4.3. Use Liouville’s formula (4.16) to find the second linearly independent solution
of a second-order ODE on the basis of knowing one of its solutions. Convince yourself that this
is essentially the same procedure as laid out above.

Exercise 4.4. Work out the Green’s function for (4.48).

Exercise 4.5. Show that the “buy one get one free” scheme introduced here is, in fact, the
same deal as was available for Riccati equations (§2.6).

You might be wondering how the scheme presented for a second-order ODE generalises to n-
th-order ODEs of the type (4.30). The basic answer is that if you know some set of m linearly
independent solutions, you can lower the order of the ODE to n−m. I leave it to your curiosity
to investigate how this is done.

There is, alas, no general method for finding y1(x)—and indeed it is generally impos-
sible to do, as you must have realised if you still remember the discussion around (3.14).
Everything becomes rather simple, however, if we specialise to the case of constant
coefficients—we shall do that in §5.

4.6.1. Tips for Guessing Games

While there is no general method, there are some empirical recommendations that apply to
equations whose coefficients are polynomials. Here they are:

• Try

y = eλx. (4.58)

Plug this into your equation and see if it works for some λ. If it does, hurrah. Example. Q3.5(b)
(and all of §5!).
• Try

y = xn. (4.59)

Plug this into your equation and set to zero the coefficient of the highest power of x. Hence get
the value of n. Then check if y = xn is a solution. Example. Q3.5(a) (and §5.1.4).
• If (4.59) is not a solution, but n is a positive integer, try putting the polynomial

y = xn + α1x
n−1 + α2x

n−2 + · · ·+ αn (4.60)

into the equation and finding the coefficients {αi} such that it is a solution. Example. Q2.3.

Example. Consider

2x(x+ 2)y′′ + (2− x)y′ + y = 0. (4.61)
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Try y = xn. The term containing the highest power of x, which is xn, is

2x2n(n− 1)xn−2 − xnxn−1 + xn = 0 ⇒ (2n− 1)(n− 1) = 0. (4.62)

Let us try n = 1/2: success, y(x) =
√
x is a solution! Let us then look for a general solution in

the form (4.49):

y(x) = ψ(x)
√
x ⇒ y′ = ψ

√
x+

ψ

2
√
x
, y′′ = ψ′′

√
x+

ψ′√
x
− ψ

4x3/2
. (4.63)

Putting this back into (4.61), we get, after some expected cancellations,

2x(x+ 2)ψ′′+ (x+ 6)ψ′ = 0 ⇒ ψ′ = C1

(
1

2
√
x

+
1

x3/2

)
⇒ ψ = C1

(√
x− 2√

x

)
+C2.

(4.64)
The solution of (4.61) is, therefore,

y = ψ(x)
√
x = C1(x− 2) + C2

√
x. (4.65)

The two solutions are quite obviosuly linearly independent and we have two constants ready to
meet our every desire as far as initial conditions are concerned.

What if, in (4.62), we had chosen the root n = 1 instead of n = 1/2? Trying y(x) = x
in (4.61) leads to disappointment: it is not a solution. But we do not despair and try the
prescription (4.60): y(x) = x+ α. Putting this into (4.61) shows that it is a solution if α = −2.
Of course it is—this is the other solution in (4.65). Pretending you do not know what the second
solution is, you can now look for a general solution in the form y(x) = ψ(x)(x − 2), follow the
same algorithm as above and see if you can get (4.65) again.

Another useful exercise is to turn (4.61) into an inhomogeneous equation by putting some
f(x) into its right-hand side and then to solve it by variation of the constant C1 in (4.64)
[or just use (4.53)]. Try, e.g., f(x) = 1. It is, of course, ridiculously easy to guess what the
particular integral is, but see if you can recover it by the standard method that I have described.

• If the finite sum (4.60) does not work, the next thing to try is an infinite series. How to do
this is explained in Q2.9.

5. Second-Order Linear ODE with Constant Coefficients

[Literature: Pontryagin (1962, §18), Tikhonov et al. (1985, §3.1), Coddington (1990, Ch. 2)]

While, in principle, I could have moved straight on to §6, the second-order linear ODE
with constant coefficients is both ubiquitous and important all across physics, so I will
discuss it in particular detail. This section is one long worked example. One way for you
not to get too bored with it might be to do it all entirely on your own and then check
back that you have caught all the interesting features.

5.1. Homogeneous Equation

[Literature: Pontryagin (1962, §7), Yeomans (2014, §III.1), Binney (2002, §2.5)]

Let us start with the homogeneous equation

ÿ + aẏ + by = 0 , (5.1)

where a and b are (real) constants. Let me take a “rabbit out of hat” approach and say
that the winning strategy is to seek a solution in the form (4.58):

y(t) = C eλt (5.2)

(you might already have realised that this is the inevitable choice for linear ODEs with
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constant coefficients; in §6, we shall arrive at it naturally). Substituting (5.2) into (5.1),
we find the condition (known as the auxiliary equation) for (5.2) to be a solution:

λ2 + aλ+ b = 0 ⇒ λ1,2 =
−a±

√
a2 − 4b

2
. (5.3)

This is excellent news: unless a2 = 4b, we have two different values of λ and so two
different solutions of (5.1). They are very obviously linearly independent, so we have our
general solution (4.26):

y(t) = C1e
λ1t + C2e

λ2t. (5.4)

The constants are determined by the initial conditions

y(0) = y0 and ẏ(0) = v0, (5.5)

as follows:

C1 + C2 = y0 and λ1C1 + λ2C2 = v0. (5.6)

Since (5.4) with C1 and C2 given by (5.6) is clearly a solution of the Cauchy problem
(5.1) and (5.5), and since its solution is, by Theorem 3, unique, then this is the solution.
There are two interesting cases.

a2 > 4b : then λ1 and λ2 are both real and the solution is

y(t) = e−at/2
(
C1e

t
√
a2/4−b + C2e

−t
√
a2/4−b

)
. (5.7)

Thus, our equation (5.1) has growing and/or decaying solutions depending on the signs
of λ1 and λ2. The initial conditions (5.5) determine what mixture of the two solutions
emerges as a result. If we wait long enough, we will be left with the fastest growing (or,
failing growth, slowest decaying) solution, with everything else exponentially small in
comparison (cf. §8.1.1).

a2 < 4b : in this case, λ1 and λ2 are complex:

λ1,2 = −a
2
± i
√
b− a2

4︸ ︷︷ ︸
≡ Ω

. (5.8)

The solution is

y = e−at/2
(
C1e

iΩt + C2e
−iΩt) , (5.9)

where the constants C1 and C2 are, in general, complex. However, one often wants a real
solution, representing some real physical quantity. The solution (5.9) can be recast in
two equivalent forms in which the constants can, if we wish, be purely real:

y = e−at/2 (A cosΩt+B sinΩt) = e−at/2α cos(Ωt− φ) , (5.10)

where A = C1 + C2 = α cosφ and B = i(C1 − C2) = α sinφ are both real if the initial
conditions (5.5) are real.

Exercise 5.1. Find A, B, α and φ in terms of y0 and v0.

The solution (5.10) describes oscllations of frequency Ω, phase-shifted by φ, and with
the amplitude αe−at/2, which either exponentially grows (a < 0) or decays (a > 0).
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(a) (b)

Figure 21. (a) Underdamped and (b) overdamped oscillator. In (b), the upper plot shows the
displacement (starting from y0 = 0), the lower one the velocity (starting from v0) in the limit
γ � ω0.

5.1.1. Damped Oscillator

[Literature: Arnold (2006, §17.2), Yeomans (2014, §III.2), Binney (2002, §3.1), Tenenbaum &

Pollard (1986, §§28-29A), Landau & Lifshitz (1976, §25)]

When a ≡ γ > 0 and b = ω2
0 > 0, (5.1), or

ÿ + γẏ + ω2
0y = 0 , (5.11)

describes small oscillations of a damped pendulum (damped SHO) with “own” (or
“natural”) frequency ω0

25 and friction coefficient γ—we have encountered its nonlinear
version in §3.5.4. The solution (5.10) describes explicitly what we already deduced
“graphically” in working out its phase portrait (Fig. 16): oscillations at the frequency

Ω =

√
ω2
0 −

γ2

4
(5.12)

with superimposed exponential damping at the rate γ/2 (Fig. 21a). Note that in the
physically interesting limit γ � ω0, Ω ≈ ω0.

In general, when ω0 > γ/2, the oscillator is called underdamped (cf. §8.1.6). When
ω0 < γ/2, it is called overdamped and is described by (5.7).

It is interesting to look at the severe-overdamping limit, γ � ω0:

y(t) = C1 exp

−γt
2

1−

√
1− 4ω2

0

γ2

+ C2 exp

−γt
2

1 +

√
1− 4ω2

0

γ2


≈ C1e

−(ω2
0/γ)t + C2e

−(γ−ω2
0/γ)t. (5.13)

Thus, we have two modes: one damped quickly (at the rate ≈ γ � ω0), the other slowly (at the
rate ≈ ω2

0/γ � ω0). What is the physics of these two solutions?
To work out the physics, one usually must look at what kind of perturbations are subject to

25This comes from the restoring force: gravity for a pendulum, Hookean tension for a spring,
etc.
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which of the damping rates. Let us impose the initial conditions (5.5):

C1 + C2 = y0, (5.14)

−ω
2
0

γ
C1 −

(
γ − ω2

0

γ

)
C2 = v0. (5.15)

If v0 = 0, i.e., if there is only an initial displacement,

C2 ≈ −
ω2

0

γ2
C1 � C1 ⇒ C1 ≈ y0, y(t) ≈ y0 e

−(ω2
0/γ)t. (5.16)

The solution decays slowly. In contrast, if y0 = 0, i.e., if the oscillator is given an initial push
but no displacement,

C1 = −C2 ⇒ C2 ≈ −
v0

γ
, y(t) ≈ v0

γ

(
1− e−γt

)
e−(ω2

0/γ)t. (5.17)

The initial velocity first decays quickly, ẏ(t) ≈ v0e
−γt, while the displacement grows until

reaching a peak ≈ v0/γ at t ≈ γ−1 ln(γ2/ω2
0). After this time, we are back to the regime in

which the residual displacement decays at the slow rate.26 This is all illustrated in Fig. 21(b).
All this makes straightforward sense: in a highly frictional/viscous environment, an initial

displacement of a pendulum will relax very slowly, whereas any motion initially imparted to it
will stop very quickly.

Another way to see this is as follows. The equation

ÿ + γẏ + ω2
0y = 0 (5.18)

has two possible dominant balances: either between the restoring force and friction,

γẏ ≈ −ω2
0y, (5.19)

giving the slowly damped displacement (5.16), or between friction and inertia,

ÿ ≈ −γẏ, (5.20)

giving the quickly damped velocity (5.17).
All this might appear rather elementary, but it is worth understanding it clearly early on in

your career: you will be surprised how relevant these things prove to be later on!

Example. Q6.3(d).

5.1.2. Homogeneous Equation: Degenerate Case

[Literature: Pontryagin (1962, §8), Yeomans (2014, §III.1), Binney (2002, §2.5)]

Now consider the special case of a2 = 4b (an oscillator with γ = 2ω0 is called critically
damped). In this case, the two solutions of the auxiliary equation (5.3) are degenerate
(meaning they are the same):

λ1 = λ2 = −a
2
. (5.21)

This means that we only have one solution available to us:

y1(t) = Ce−at/2. (5.22)

To find the second one, we must invoke the “buy one get one free” deal of §4.6. Namely,
we seek the solution of (5.1) in the form

y(t) = ψ(t)e−at/2. (5.23)

26In systems with several different damping rates, the eventual approach to equilibrium always
happens at the slowest of these rates, and along the corresponding eigendirection (cf. §8.1.1).
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Figure 22. Leonhard Euler (1707-1783) may well have been the greatest mathematician of all
time—and was certainly the most prolific. He was also, it appears, the best paid professor in
the Russian history (in St. Petersburg)—possibly the best-spent money in the Russian history.

Substituting this back into (5.1) and recalling that b = a2/4, we find

ψ̈ = 0 ⇒ ψ(t) = C1t+ C2 ⇒ y(t) = (C1t+ C2)e−at/2 . (5.24)

Obviously, you do not need to repeat this calculation every time. If λ1 = λ2 = λ,
just remember that one solution is eλt and the other is teλt (they are, clearly, linearly
independent—if this is not obvious, prove it by calculating their Wronskian). In §§5.2.2
and 6.3, we shall see that there is a certain systematicity to the apperance of powers of
t in front of exponentials.

5.1.3. Above and Beyond: n-th-Order Homogeneous Equation

[Literature: Pontryagin (1962, §§7-8), Tikhonov et al. (1985, §§3.1, 3.5), Bender & Orszag
(1999, §1.4)]

Exercise 5.2. Consider an n-th-order ODE

y(n) + an−1y
(n−1) + · · ·+ a1ẏ + a0y = 0 , (5.25)

where {ai} are (real) constant coefficients. Let λ1, . . . , λn be the roots of the auxiliary equation

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0. (5.26)

What is the general solution of (5.25)? How does one handle the case when some roots are
complex? What about the case when some are degenerate? You may well have to resort to
reading books in order to do this exercise in full generality.27

5.1.4. Scale-Invariant (Euler’s) Equation

[Literature: Yeomans (2014, §III.4a), Coddington (1990, §4.2), Bender & Orszag (1999, §1.4)]

Having worked out the general method for solving (5.1), we have, in fact, also solved Euler’s
equation (Fig. 22)

x2y′′ + axy′ + by = 0 . (5.27)

This equation has the property of scale invariance: it does not change under rescaling of x by
an arbitrary factor: x → αx. Therefore, it makes sense to seek solutions as power laws (which
are scale-free functions):

y(x) = Cxλ. (5.28)

27If you wish to race ahead, you might derive some inspiration for this exercise from §6.3, but
it is also possible to solve it without matrix algebra.
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Substituting this back into (5.27) gives a polynomial auxiliary equation,

λ(λ− 1) + aλ+ b = 0, (5.29)

which has two solutions λ1 and λ2. If λ1 6= λ2, they give us the fundamental system for (5.27),
so the general solution is

y(x) = C1x
λ1 + C2x

λ2 . (5.30)

If λ1 = λ2 = λ, this gives us only one solution, xλ; the second one is xλ lnx (check).
In fact, we did not need a separate theory for Euler’s equation because it is reduced to (5.1)

by a simple change of variables:

x = et ⇒ xy′ = ẏ, x2y′′ = ÿ − ẏ ⇒ ÿ + (a− 1)ẏ + by = 0 (5.31)

and then the standard operating procedure applies. It is not hard to see that the same change
of variables will reduce the n-th-order scale-invariant equation for y(x)

xny(n) + an−1x
n−1y(n−1) + · · ·+ a1xy

′ + a0y = 0 (5.32)

to an n-th-order equation with constant coefficents for y(t). If you have time on your hands, you
can try and work out what those coefficients are.

5.2. Inhomogeneous Equation

Inevitably, we must now consider the inhomogeneous equation

ÿ + aẏ + by = f(t) . (5.33)

According to the general scheme explained in §4.4, since we already know how to solve
the homogeneous version of (5.33), all we need is to work out a particular solution, yPI(t).
Then

y(t) = C1e
λ1t + C2e

λ2t + yPI(t) or y(t) = (C1t+ C2) eλt + yPI(t) (5.34)

if λ1 6= λ2 or λ1 = λ2 = λ, respectively. There are two methods for finding yPI(t):

—for certain simple forms of f(t), it is easy to guess;

—for general f(t), it can be determined via the method of variation of constants: the
answer is contained in (4.37) or in (4.55).

Exercise 5.3. Given a and b, work out the explicit formula for yPI(t) for general f(t). Identify
special cases requiring separate consideration.

Leaving the general consideration to you as an exercise, I will instead go through a few
simple special cases of f(t) for which the task of guessing yPI(t) is particularly easy.

5.2.1. Some Tips for Finding Particular Solutions

[Literature: Pontryagin (1962, §10), Yeomans (2014, §III.3), Binney (2002, §2.6)]

Polynomial force. Suppose f(t) is a polynomial of degree m:

f(t) = F0 + F1t+ · · ·+ Fmt
m . (5.35)

It is then not hard to guess that

yPI(t) = α0 + α1t+ · · ·+ αmt
m (5.36)

will work. Indeed, substituting this into (5.33) will produce powers of t up to tm in the
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Figure 23. Pendulum in balance with a constant force.

left-hand side. Collect the coefficient in front of each power k = 0, . . . ,m and equate it
to Fk. This will give you m equations for m unknowns {αi}.

In particular, if m = 0, i.e., f(t) = F0 = const, then yPI = F0/b. Physically, recalling
our oscillator (§5.1.1), we interpret this solution as the constant displacement resulting
from the balance between the restoring force by = ω2

0y and the constant applied force
f = F0 (Fig. 23).

Exponential force. Now consider

f(t) = Feµt . (5.37)

The obvious solution to try is

yPI(t) = Aeµt . (5.38)

Substituting this back into (5.33) gives us a relationship between A and µ:

A
(
µ2 + aµ+ b

)
= F ⇒ A =

F

µ2 + aµ+ b
. (5.39)

This is fine unless µ2+aµ+b = 0, i.e., unless µ coincides with λ1 or λ2, the solutions of the
auxiliary equation (5.3). Indeed, in this case (5.38) is one of the solutions of the associated
homogeneous equation, so cannot work as a particular solution of the inhomogeneous one!
What should we do?—What we always do, try variation of constants: supposing µ = λ1,
we seek a solution in the form

y(t) = ψ(t)eλ1t. (5.40)

This is obviously a particular case of the calculation that we already went through in
§4.6, but let me do this simple case from scratch, lest you complain that I never show
you any worked examples: since

ẏ = (ψ̇ + λ1ψ)eλ1t and ÿ = (ψ̈ + 2λ1ψ̇ + λ21ψ)eλ1t, (5.41)

our equation becomes, after we use the fact that λ21 + aλ1 + b = 0,

ψ̈ + (a+ 2λ1)ψ̇ = F. (5.42)

We only need one particular solution. If a+ 2λ1 6= 0, this one works:

ψ̇ =
F

a+ 2λ1
⇒ ψ =

Ft

a+ 2λ1
⇒ yPI(t) =

Fteλ1t

a+ 2λ1
. (5.43)

Just as in §5.1.2, multiplication by t has done the trick.
What if a + 2λ1 = 0? This is the degenerate case discussed in §5.1.2, in which λ1 =

λ2 = λ = a/2, so both eλt and teλt are solutions of the homogeneous equation (5.1) and
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cannot, therefore, be particular solutions of the inhomogeneous one. In this case, (5.42)
is, in fact, even easier to solve:

ψ̈ = F ⇒ ψ =
F

2
t2 ⇒ yPI(t) =

F

2
t2eλt . (5.44)

Composite force. Obviously, if f(t) is a linear combination of more elementary func-
tions, such as (5.35) or (5.37), we can use the superposition principle (4.8) to construct
yPI(t) as the same linear combination of particular solutions of the kind derived above.
For example,

f(t) = A cosωt =
A

2

(
eiωt + e−iωt

)
(5.45)

is just a linear combination of two exponentals (5.37), with µ = ±iω. This situation
describes the physically important case of an oscillator subjected to a periodic force, so
I will analyse it to death in §5.3.

Example. Q3.1, Q3.2.

5.2.2. Above and Beyond: Quasipolynominals and n-th-Order Inhomogeneous Equation

[Literature: Pontryagin (1962, §10), Tikhonov et al. (1985, §§3.1, 3.5), Arnold (2006, §26)]

Let me mention a general result that summarises and generalises the examples that I showed
you in §5.2.1.

Consider the n-th-order ODE

y(n) + an−1y
(n−1) + · · ·+ a1ẏ + a0y = (F0 + F1t+ · · ·+ Fmt

m) eµt . (5.46)

This equation has a particular solution

yPI(t) = tk (α0 + α1t+ · · ·+ αmt
m) eµt , (5.47)

where k = 0 if µ is not a root of the auxiliary equation (5.26) and k is equal to the degree of
degeneracy of µ if it is a root of (5.26) (i.e., k is equal to the number of times that µ occurs as a
root). The constants {αi} can found by substituting (5.47) into (5.46) and equating coefficients.

Functions of the form (α0 + α1t + · · · + αmt
m)eµt are called quasipolynomials. The reason

(5.47) works is that derivatives of quasipolynomials of degree m are also quasipolynomials of
degree m. I leave it to your own researches (or literature searches) to work out the complete
proof.

If you have done Exercise 5.2, you now know the general solution of (5.46), an n-th-order
inhomogeneous ODE with constant coefficients and a quasipolynomial force.

5.3. Forced Oscillator

[Literature: Pontryagin (1962, §12), Arnold (2006, §26.6), Yeomans (2014, §IV), Binney (2002,

§3.2), Tenenbaum & Pollard (1986, §29B), Landau & Lifshitz (1976, §26)]

We are now going to spend some time with the equation of the forced oscillator:

ÿ + γẏ + ω2
0y = F cosωt . (5.48)

To reiterate, the first term is inertia, the second friction, the third the Hookean (or
gravitational, or whatever) restoring force and the right-hand side is the external periodic
driving force.28 We already know the solution of the associated homogeneous equation

28This is an equation of more general interest than it might superficially appear. When you poke
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(see §5.1). Let us find the particular solution. As I explained after (5.45), the force
in (5.48) is a linear combination of two complex exponentials, so the particular solution
will also be some linear combination of these complex exponentials, or, equivalently, of
sines and cosines. The unimaginative (and laborious) way of finding it is to write

yPI(t) = A cosωt+B sinωt, (5.49)

substitute this into (5.48) and work out the coefficients A and B. There is, however, a
much quicker way. Notice that cosωt = Re eiωt, the coefficients in (5.48) are real and
so the operation of taking the real part commutes with the differential operator in the
left-hand side of (5.48). So we “complexify” (which, in this particular case, is a synonym
of “simplify”) our equation by introducing a complex function z(t) that satisfies

z̈ + γż + ω2
0z = Feiωt. (5.50)

Then, clearly, y = Re z, so all we need to do is solve (5.50) and then take the real part.
As we did for the exponential force (5.37), let us look for a solution in the form

z(t) = Ceiωt. (5.51)

This gives us, upon substitution of (5.51) into (5.50),

C =
F

ω2
0 − ω2 + iωγ

=
F
(
ω2
0 − ω2 − iωγ

)
(ω2

0 − ω2)2 + ω2γ2
=

F (cosφ− i sinφ)√
(ω2

0 − ω2)2 + ω2γ2
, (5.52)

whence

z(t) =
Fei(ωt−φ)√

(ω2
0 − ω2)2 + ω2γ2

, where tanφ =
ωγ

ω2
0 − ω2

. (5.53)

Taking the real part gives us

yPI(t) = A cos(ωt− φ), where A =
F√

(ω2
0 − ω2)2 + ω2γ2

. (5.54)

Finally, the general solution of (5.48), with two constants eager to accommodate initial
conditions, is

y(t) = e−γt/2 [C1 cosΩt+ C2 sinΩt] +A cos(ωt− φ) , (5.55)

where Ω is given by (5.12).

Exercise 5.4. Let y(0) = y0 and ẏ(0) = v0. Work out C1 and C2.

The part of the solution (5.55) containing the integration constants is transient: it
decays away after t� γ−1 and with it all memory of the initial conditions is lost. What
does matter in the long-time limit is the interaction between the external forcing and the
linear response properties of the system, the outcome of which is represented here by the
last term in (5.55), called the stationary, or sometimes steady-state, solution. This part
of the solution endures as long as the force is applied and describes forced oscillations.
They are independent of the initial state of the oscillator, they have the amplitude A that

an oscillator with a (perhaps periodic) force of arbitrary functional form f(t), this force is usually
representable (via Fourier transform) as a sum of periodic functions of different frequencies.
Many complicated physical systems can be described, at least in the linear approximation, as
superpositions of SHOs (which may be damped, forced, coupled). Thus, what we are studying
here is a fundamental building block of many more complicated situations.
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Figure 24. Amplitude A [see (5.54) or (5.59)] and phase φ [see (5.53)] of forced oscillations as
a function of the frequency ω of the driving force. There is a resonance at the frequency (5.56),
just below ω0.

is proportional but not equal to the amplitude of the force and they are phase-shifted by
φ with respect to it.

This is the simplest example of a generic feature of forced dissipative systems: their
long-time behaviour is usually independent of initial conditions because dissipation
washes away the system’s memory.

5.3.1. Resonance

Let us examine how the amplitude of forced oscillations, given in (5.54), depends on
the parameters of the problem (Fig. 24). The most interesting feature is that, when
γ � ω0 (which is a “natural” physical limit for an oscillator—assuming we do want it
to oscillate), A(ω) has a sharp peak around ω0, i.e., when the frequency of the driver is
close to the “own” frequency of the oscillator. This phenomenon is called resonance. The
precise calculation, achieved by setting A′(ω) = 0 places the peak at

ωres =

√
ω2
0 −

γ2

2
≈ ω0. (5.56)

This resonant frequency is just slightly below the own frequency of the undamped
oscillator. The peak amplitude is

Ares ≈ A(ω0) =
F

ω0γ
. (5.57)

The phase at the resonance, (5.53) with ω = ωres given by (5.56), satisfies

tanφres =
2ω0

γ
. (5.58)

The width of the peak (or, as one sometimes says, “of the resonance”) is ∼ γ. This
is manifest in the functional dependence A(ω), but can be made more quantitative in
the following way, popular in experimental circles. When |ω − ω0| ∼ γ � ω0, ω2

0 − ω2 ≈
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2ω0(ω0 − ω) and (5.54) becomes

A(ω) ≈ F

2ω0

√
(ω0 − ω)2 + γ2/4

. (5.59)

This implies that the amplitude drops to half of its maximum value (5.57) when

A(ω)

Ares
≈ γ

2
√

(ω0 − ω)2 + γ2/4
=

1

2
⇒ |ω − ω0| =

√
3

2
γ. (5.60)

Thus, the so-called full width at half maximum (FWHM) is
√

3 γ.

Other interesting features of the A(ω) dependence are

— the amplitude at zero frequency is

A(0) =
F

ω2
0

, (5.61)

which is just the force balance between a constant driving force and the restoring force,
ω2
0y = F (Fig. 23);

— the amplitude decays at high frequencies,

A(ω) ≈ F

ω2
, when ω � ω0 � γ, (5.62)

because, when the force oscillates too fast, the system has no time to respond, so the
force averages out and nothing much happens.29

As γ → +0, the resonance becomes infinitely sharp, Ares →∞ and φres → π/2.

It is instructive to examine the case when γ = 0 literally (which is, of course, a mathematical
abstraction) and ω = ω0. The calculation of the particular solution in this case changes because
eiω0t is itself one of the solutions of the homogeneous counterpart of (5.50). The answer is (5.43)
with a = 0 and λ1 = iω0:

yPI(t) = Re

(
Fteiω0t

2iω0

)
=

tF

2ω0
sinω0t. (5.63)

The full solution of (5.48) is then

y(t) = C1 cosω0t+ C2 sinω0t+
tF

2ω0
sinω0t. (5.64)

This solution has no damping away of the initial conditions and no stationary state; the
amplitude of forced oscillations grows secularly with time (Fig. 25).

Another instructive exercise is to work out the solution of (5.48) with γ = 0 and ω 6= ω0 and
then show how (5.64) is recovered in the limit ω → ω0 (see Q3.3).

5.3.2. Energy Budget of Forced Oscillator

In §3.5.4, we already saw how the energy of a (damped) pendulum would behave and
how understanding its behaviour could help one work out the system’s phase portrait
(Fig. 16b). Let us now investigate how the oscillating force enters the energy budget.

Multiplying (5.48) by ẏ, we find that the energy, kinetic (ẏ2/2) plus potential (ω2
0y

2/2),

29The case of a rapidly oscillating force becomes much more interesting if the force is made to
depend on the displacement: see §5.4.
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Figure 25. Resonance in the case of γ = 0: oscillations grow secularly.

evolves according to

dE

dt
=

d

dt

(
ẏ2

2
+ ω2

0

y2

2

)
= −γẏ2 + ẏF cosωt. (5.65)

The first term on the right-hand side is the dissipation (work done per unit time by the
oscillator against the friction force), the second term is the power injected by the driving
force (work done per unit time by the driver on the oscillator).

At γt� 1, we have stationary forced oscillations:

y = A cos(ωt− φ), ẏ = −ωA sin(ωt− φ). (5.66)

Using these expressions, we can find the stored energy in the oscillator averaged over the

period T = 2π/ω, 〈E 〉 = (1/T )
∫ T
0

dtE (t): since the mean square of a cosine or a sine
over a period is 1/2,

〈E 〉 =
〈ẏ2〉+ ω2

0〈y2〉
2

=
(ω2 + ω2

0)A2

4
=

(ω2 + ω2
0)F 2

4 [(ω2
0 − ω2)2 + ω2γ2]

(5.67)(
=

F 2

2γ2
when ω = ω0

)
.

The dissipated power is

D = γ〈ẏ2〉 =
γω2A2

2
=

γω2F 2

2 [(ω2
0 − ω2)2 + ω2γ2]

(
=
F 2

2γ
when ω = ω0

)
. (5.68)

The injected power is

P = 〈ẏF cosωt〉 = −ωF
2〈(((((

(
sinωt cosωt cosφ− cos2 ωt sinφ〉√

(ω2
0 − ω2)2 + ω2γ2

=
γω2F 2

2 [(ω2
0 − ω2)2 + ω2γ2]

(
=
F 2

2γ
when ω = ω0

)
(5.69)

because, from (5.52), sinφ = ωγ/
√

(ω2
0 − ω2)2 + ω2γ2. Thankfully, P = D , as it ought

to be in steady state—that this ought to be the case follows from averaging 〈(5.65)〉:

P −D =
d

dt
〈E 〉 = 0. (5.70)

To measure how well an oscillator can store energy, one sometimes defines the so-called
quality factor (or “Q-factor”):

Q = 2π
stored energy

energy lost per period

∣∣∣∣
at resonance

=
2π〈E 〉

(2π/ω)D

∣∣∣∣
ω=ω0

=
ω0

γ
. (5.71)

Note that the quality factor can be defined in the same way for a damped oscillator
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(a) (b) (c)

Figure 26. Pendulum whose point of suspension rapidly oscillates (a) vertically, (b) horizontally
(Q3.9). (c) Peter Kapitza FRS (1894-1984) (painted in 1926 by B. Kustodiyev), one of the
greatest experimental physicists of the 20th century, who worked with Rutherford in Cambridge,
then (in 1934) made the mistake of a lifetime of visiting the Soviet Union, from whence he was
not allowed to return, and where he proceeded to become the “godfather” of Soviet physics,
both experimental and theoretical (Landau was in charge of the theory department at Kapitza’s
Institute). The Kapitza Club met informally in 1920-30s, at Trinity College, Cambridge, after
dinner (obviously), and was famously a place where young physicists could argue freely, without
regard to academic seniority.

(§5.1.1), using the (slowly damped) energy in the homogeneous solution, and it is equal
to the same thing (I leave this to you as an exercise; see Q2.2).

Exercise 5.5. Work out the steady-state solution for a forced, overdamped oscillator (γ � ω0;
see §5.1.1). How long does one have to wait for the initial conditions to be forgotten? Show that
P ∝ ω−2 when γ � ω and P ∝ γ−1 when γ � ω and explain why this is, physically.

I reckon I have spent quite enough time belabouring the second-order linear ODE with
constant coefficients! Let us move on to more sophisticated material.30

5.4. (Nonlinear) Digression: Rapidly Oscillating Force

[Literature: Kapitza (1951a,b), Landau & Lifshitz (1976, §30), Arnold (2006, §28.4)]

To take a break from the tedium of linear equations and linear oscillations, let me show you
an interesting piece of physics that is applicable to both linear and nonlinear systems. Let us
consider a 1D system whose behaviour is described by the following ODE

ẍ = −U ′(x) + f(x, t). (5.72)

Physically, x is some displacement variable, U(x) is the potential energy, and f(x, t) is an
additional force that is allowed to depend on time. For the forced linear oscillator (in this
case, without damping), U(x) = ω2

0x
2/2 and f(x, t) = F cosωt. For the nonlinear pendulum

considered in §3.5.2, U(x) = ω2
0(1− cosx).

I would like to study a situation in which the force f oscillates extremely rapidly, i.e., its
frequency ω is much larger than any other frequencies appearing in the equation (e.g., ω � ω0).
We already saw in §5.3.1 that when the force f had a constant amplitude, this was not a terribly

30This course’s obsession with oscillators is set to continue though: I will interfere with a single
SHO nonlinearly (§5.4) and parametrically (§8.2), couple several of them together (§7), and
construct some nonlinear ones (§8.4, Q5.1).
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interesting scenario: the amplitude of forced oscillations became very small because the effect
of the force largely averaged out [see (5.62)]. Let us complicate matters by assuming that the
oscillating force also depends on the displacement x:

f(x, t) = F (x) cosωt. (5.73)

An example of such a situation is Kapitza’s pendulum—a mathematical pendulum (§3.1) whose
point of suspension oscillates vertically as, say, a cosωt (Fig. 26a). This gives rise to an additional
(non-inertial) vertical force −maω2 cosωt, which, when projected on the direction of the motion
of the mass, becomes −maω2 cosωt sin θ. The equation (3.1) for the pendulum is then modified
as follows:

mlθ̈ = −mg sin θ −maω2 sin θ cosωt. (5.74)

In the notation of this chapter, x = θ and

ẍ = −ω2
0 sinx− ω2

1 sinx cosωt, where ω2
0 =

g

l
, ω2

1 =
a

l
ω2. (5.75)

This is (5.72) with the force (5.73):

ẍ = −U ′(x) + F (x) cosωt , where U(x) = ω2
0(1− cosx) and F (x) = −ω2

1 sinx. (5.76)

We are assuming ω � ω0, ω1 (the latter means a� l).
Let us seek the solution to this equation as a sum of some slow avearge motion and a fast

oscillation on top of it. Formally, let

x(t) = x̄(t) + δx(t), where x̄(t) = 〈x(t)〉 =
1

T

∫ t+T

t

dt′x(t′), T =
2π

ω
and 〈δx(t)〉 = 0.

(5.77)
Assuming δx � x̄ (as can be verified a posteriori), we can expand the right-hand side of our
equation in δx:

¨̄x+ δẍ = −U ′(x̄)− δxU ′′(x̄) + F (x̄) cosωt+ δxF ′(x̄) cosωt. (5.78)

Taking the average of this equation gives us

¨̄x = −U ′(x̄) + F ′(x̄)〈δx(t) cosωt〉. (5.79)

Subtracting (5.79) from (5.78) and neglecting all terms that contain δx (which is small) but
keeping its time derivatives (which are large), we get31

δẍ = F (x̄) cosωt ⇒ δx(t) = −F (x̄)

ω2
cosωt ⇒ 〈δx(t) cosωt〉 = −F (x̄)

2ω2
. (5.80)

Substituting the last expression into (5.79), we arrive at the following rather neat result:

¨̄x = −U ′(x̄)− F ′(x̄)F (x̄)

2ω2
= −U ′eff(x̄), where Ueff(x̄) = U(x̄) +

F 2(x̄)

4ω2
. (5.81)

Thus, the effect of a rapidly oscillating force is to change the potential energy of the system to
a new, “effective” form Ueff , which includes what is easily seen to be the average kinetic energy
of the rapid oscillations:

F 2(x̄)

4ω2
=
〈δẋ2〉

2
. (5.82)

The effect of the additional force is to push the system out of the regions of phase space where
the rapid oscillations have larger amplitude.

Applying these general results to our example of a pendulum with an oscillating suspension

31Check that, with this δx(t), all the terms that we have neglected to get it are indeed smaller
than the term that we have retained. Note, by the way, that the solution that we have got for
δx(t) is exactly the same solution as (5.62), but it is made consequential by the fact that F now
depends on x.
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point [see (5.76)], we find that

Ueff = ω2
0(1− cosx) +

ω4
1 sin2 x

4ω2
=
g

l
(1− cos θ) +

a2ω2

4l2
sin2 θ. (5.83)

Equilibria of the system satisfy

U ′eff(θ0) =

(
g

l
+
a2ω2

2l2
cos θ0

)
sin θ0 = 0 ⇒ θ0 = 0, π, arccos

(
− 2gl

a2ω2

)
. (5.84)

As in §3.5.2, an equilibrium is stable if it is a minimum of the energy, i.e., if

U ′′eff(θ0) =

(
g

l
+
a2ω2

2l2
cos θ0

)
cos θ0 −

a2ω2

2l2
sin2 θ0 > 0. (5.85)

Thus, the downward equlibrium θ0 = 0 is always stable, but, for a wiggly pendulum, the upright
equilibrium θ0 = π can also be stable, provided a2ω2 > 2gl! There is also a “slanted” equilibrium,
but it is always unstable.32

Exercise 5.6. Armed with the experience of §3.5.2, sketch the “effective” phase portrait [i.e.,
the phase portrait of the averaged motion (x̄, ˙̄x)] for the wiggly pendulum discussed above.
Investigate what effect friction will have.

Kapitza’s original papers on the wiggly pendulum are Kapitza (1951a,b). If you want to
invesigate further, you might find the recent treatment by Butikov (2020) an amusing read.

Another example of an effective average force arising due to a fast-oscillating real force is
the case of a charged particle subject to rapidly oscillating electric field that has some spatial
variation:

ẍ =
q

m
E(x) cosωt ⇒ m¨̄x = − d

dx

q2E2(x̄)

4mω2
. (5.86)

This effective force is called ponderomotive force. It pushes charged particles out of regions where
the oscillating electric field is stronger.

6. Systems of Linear ODEs with Constant Coefficients

[Literature: Pontryagin (1962, §14), Tikhonov et al. (1985, §3.7), Yeomans (2014, §V), Binney

(2002, §4)]

From the point of view of presenting a systematic, general theory, I could have skipped
everything from §4.5 onward and jumped right to this point. By the end of §4.4, we learned
how to solve the Cauchy problem for any (system of) linear ODEs, provided we knew
their fundamental system of solutions, neatly packed into the fundamental matrix Y(t).
I am now going to show you how to find this matrix for the linear ODEs of arbitrary
order n but with constant coefficients:

ẏ = A · y + f(t) . (6.1)

This is the point at which this course merges completely with linear algebra.
The basic idea of the method is ridiculously simple but extraordinarily powerful.

Suppose we can find n linearly independent eigenvectors {vi} of the matrix A, with
n eigenvalues {λi}:

A · vi = λivi. (6.2)

32A slanted equilibrium turns out to be the stable one if the pendulum is wiggled (sufficiently
vigorously) in the horizontal direction: see Fig. 26(b) and Q3.9.
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If we now consider the homogeneous ODE associated to (6.1),

ẏ = A · y, (6.3)

and ask for its solutions in the form

yi(t) = ξi(t)vi, (6.4)

we find that ξi(t) must satisfy

ξ̇i = λiξi ⇒ ξi(t) = Cie
λit. (6.5)

Clearly, {yi(t)} are linearly independent because {vi} are, and (by assumption) there
are n of them. This gives us a fundamental system, so any solution of the homogeneous
equation (6.3) can be written as33

y(t) =

n∑
i=1

Civie
λit, (6.6)

any solution of the inhomogeneous equation (6.1) can be found by variation of constants
(see §4.4) and any Cauchy problem then duly solved by (4.38). The fundamental matrix is

Y(t) =
(
v1e

λ1t . . .vne
λnt
)
. (6.7)

I am now going to go through the construction of this solution step by step and then
also deal with the slighly tricky question of what to do if a basis made of n eigenvectors
of A does not exist (§6.3).

6.1. Diagonalisable Systems With No Degenerate Eigenvalues

[Literature: Arnold (2006, §§17.1, 19.5, 20.6)]

Let us look for right eigenvectors34 of the matrix A:

A · v = λv . (6.8)

Let us suppose that the n roots λ1, . . . , λn of the n-th-order polynomial equation

det(A− λI) = 0 (6.9)

are all different, i.e., they are non-degenerate right eigenvalues of A. Then their corre-
sponding eigenvectors {vi} form a basis (not necessarily orthogonal).

Proof. Let

(A− λiI) · vi = 0, i = 1, . . . , n. (6.10)

Suppose {vi} are not linearly independent. Then it must be possible to write one of them as a
linear combination of the rest:

vn =
∑
j

αjvj , (6.11)

where αj 6= 0 are some constants and the summation is over some subset of vj ’s that are

33The solutions of the auxiliary equation (5.3), λ1 and λ2, which featured so prominently all
through §5, are, of course, the eigenvalues {λi}, and the solution (5.4) is a particular case of
(6.6), for a second-order ODE.
34I assume nothing about the matrix, so, in general, have to allow that its right eigenvectors are
not the same as its left eigenvectors (v · A = λv).
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independent (and j 6= n). Then, on the one hand,

A · vn = λnvn = λn
∑
j

αjvj , (6.12)

whereas on the other hand,

A · vn =
∑
j

αjA · vj =
∑
j

αjλjvj . (6.13)

Therefore, ∑
j

αj(λj − λn)vj = 0 ⇒ αj(λj − λn) = 0, (6.14)

because vj ’s are independent by assumption. Since λj 6= λn, the above implies αj = 0 for all j.
Contradiction. Q.E.D.

Now pack the right eigenvectors into a matrix, as columns, and the eigenvalues into
another matrix, as diagonal elements:

R = (v1 . . .vn) , L =

λ1 0
. . .

0 λn

 ≡ diag {λi} . (6.15)

Then

A · R = (λ1v1 . . . λnvn) = R · L. (6.16)

Since {vi} are independent, det R 6= 0, so R has an inverse. Therefore,

A = R · L · R−1 . (6.17)

Note that this implies

R−1 · A = L · R−1, (6.18)

so rows of the inverse matrix R−1 are left eigenvectors of A, whilst its left eigenvalues are
the same as its right eigenvalues:35

R−1 =

u1

. . .
un

 , where ui · A = λiui. (6.19)

Let us now use (6.17) to rewrite our homogeneous equation (6.3) as

ẏ = A · y = R · L · R−1 · y. (6.20)

Dotting this with R−1 on the left, we get

d

dt
R−1 · y = L · R−1 · y ⇒ ξ̇ = L · ξ , where ξ = R−1 · y. (6.21)

But L is a diagonal matrix, so our system of ODEs breaks into n decoupled equations:

ξ̇i = λiξi ⇒ ξi(t) = Cie
λit (6.22)

(no summation over i here). What we have done, effectively, is diagonalised our system

35Note that {ui} that form the rows of R−1 are particular left eigenvectors of A, i.e., you cannot
scale them arbitrarily. If you did scale each ui by a factor ai, they would obviously still be left
eigenvectors of A, but stacking them together will no longer give you the inverse of R, unless
you rescaled the right eigenvectors {vi} that form the columns of R by factors 1/ai.
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of ODEs by transforming it into coordinates defined by the eigenvectors of the matrix A.
Let us transform back into the original coordinates: the solution is

y(t) = R · ξ(t) =
∑
i

Civie
λit , (6.23)

just as was promised in (6.6).

Even if A is real, its eigenvalues are under no obligation to be real (unless A is Hermitian; see
§6.2). Therefore, the solution (6.23) may well contain complex exponentials, complex eigenvec-
tors and complex constants. There is nothing wrong with this, but it may be a bit unseemly if
we are solving a physical system whose solution is supposed to be real. Just like in the case of
a linear second-order ODE [see (5.9) and (5.10)], it is quite easy to recast the solution (6.23) in
an explicitly real form.

Since {λi} are roots of a polynomial, the complex ones come in conjugate pairs. So suppose λ
and λ∗ are eigenvalues. Then the corresponding eigevectors are also complex conjugates of each
other: indeed, A being real,

A · v = λv ⇒ A · v∗ = λ∗v∗. (6.24)

Then the corresponding bit of the general solution (6.23) is

C1ve
λt + C2v

∗eλ
∗t = ARe(veλt) +B Im(veλt)

= eΓt [(A cosΩt+B sinΩt) Re(v) + (B cosΩt−A sinΩt) Im(v)] , (6.25)

where λ = Γ + iΩ and the constants A = C1 + C2 and B = i(C1 − C2) can be treated as real.
The solutions Re(veλt) and Im(veλt) are real and linearly independent both of each other and

of all the other solutions, so they can be used instead of veλt and v∗eλ
∗t. You get to practice

this trick in Q4.3 (example).

For convenience of further manipulations, let me collect all the exponentials into a
diagonal matrix:

E(t) =

eλ1t 0
. . .

0 eλnt

 ≡ diag
{
eλit

}
. (6.26)

With this notation,

ξ(t) = E(t) ·C ⇒ y(t) = R · E(t) ·C , (6.27)

where, as usual, C is the vector of integration constants. In the language of §4.3, we have
found the fundamental matrix to be

Y(t) = R · E(t) , (6.28)

as promised in (6.7).
Thus, we have the general solution of (6.3). Note that we did not need to calculate

R−1 explicitly in order to obtain (6.23) or (6.27). We will need it to find C necessary to
enforce any given initial condition.

So, let us now solve the Cauchy problem, y(0) = y0. Since E(0) = I, we have

R ·C = y0 ⇒ C = R−1 · y0 ⇒ y(t) = R · E(t) · R−1 · y0 , (6.29)

which, in view of (6.28), is just (4.22), because Y(0) = R. Let me reiterate the procedure
that the formula (6.29) represents:

—take the initial disturbance y0 and project it (R−1 · y0) onto the eigendirections of
the matrix A;
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—evolve in time the part of the disturbance corresponding to each eigendirection with
the exponential factor corresponding to its eigenvalue (E(t) · R−1 · y0);

—project the result back onto the original coordinates (R · E(t) · R−1 · y0).

The physics of it all is now clear: in a physical system represented by A, initial distur-
bances along each eigenvector vi of A grow or decay at the rate λi. Any arbitrary initial
disturbance y0 can be decomposed into these elementary ones and evolves accordingly.

Exercise 6.1. How does one solve the system

ẏ = α(t)A · y, (6.30)

where α(t) > 0 is a known, continuous, scalar function and A a time-independent matrix?

6.1.1. General Solution of Inhomogeneous Equation

The solution of the Cauchy problem for the inhomogeneous equation (6.1) is found
in the usual way, via variation of constants, etc. In fact, it is just an application of the
general result (4.38) to the case where Y(t) is given by (6.28), t0 = 0 and Y(0) = R.
Noticing that

Y−1(t′) = E−1(t′) · R−1 = E(−t′) · R−1 and Y(t) · Y−1(t′) = R · E(t− t′) · R−1 (6.31)

because ∀t1 and t2, E(t1)E(t2) = E(t1 + t2), we get

y(t) = R · E(t) · R−1 · y0 +

∫ t

0

dt′ R · E(t− t′) · R−1 · f(t′) . (6.32)

Examining (6.32) and comparing it with the solution (2.61) of the 1D problem, you
should now be struck by the exhilarating realisation that we have just worked out is how
to exponentiate a matrix:

eAt = R · E(t) · R−1. (6.33)

The trick was to diagonalise the matrix, exponentiate the eigenvalues, put them on the
diagonal and transform it all back to the original coordinates. With this prescription,
solving ODEs in n dimensions is no more difficult (conceptually) than solving them in
one. Knowledge is power. Now that you have it, use it.

Exercise 6.2. What is the Green’s function (§4.5) for a system of linear ODEs with constant
coefficients? Does it make sense as a generalisation of the 1D case (Exercise 4.4)?

Example. Consider the vector generalisation of the exponential force (5.37):

f(t) = F eµt, (6.34)

where F is a constant vector. Let us work out the particular solution for this case—the
second term in (6.32):

yPI(t) =

∫ t

0

dt′ R · E(t− t′) · R−1 · F eµt
′

= R · diag

{
eλit

∫ t

0

dt′ e(µ−λi)t
′
}
· R−1 · F

= R · diag

{
eµt − eλit

µ− λi

}
· R−1 · F (6.35)
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This formula works provided µ 6= λi. If, for some i, µ = λi, then that element of the
diagonal matrix must be replaced by teλit. This follows either by doing the time integral
correctly for this special case or by taking the limit µ→ λi:

eµt − eλit

µ− λi
= eλit

e(µ−λi)t − 1

µ− λi
→ teλit as µ− λi → 0. (6.36)

Example. Q4.4.

Sometimes, before solving the Cauchy problem, it is easier to find the general solution first,
equipped with n constants:

y(t) =
∑
i

Civie
λit + yPI(t). (6.37)

Then, for the force in the form (6.34), one gets the particular solution as follows:

yPI(t) = u eµt ⇒ µu = A · u+ F ⇒ u = −(A− µI)−1 · F . (6.38)

Again, this only works if µ is not an eigenvalue of A (otherwise the inverse does not exist).

Exercise 6.3. Work out what to do if µ is an eigenvalue of A.

Example. Consider {
ẋ = 3x+ 2y + 4e5t,
ẏ = x+ 2y.

(6.39)

To solve this, consider the homogeneous equation first. It is in the form (6.3), where the matrix is

A =

(
3 2
1 2

)
⇒ det(A− λI) = λ2 − 5λ+ 4 = 0 ⇒ λ1 = 4, λ2 = 1. (6.40)

The corresponding eigenvectors are

v1 =

(
2
1

)
, v2 =

(
1
−1

)
. (6.41)

Therefore, the general solution of the homegeneous equation is(
x
y

)
CF

= C1

(
2
1

)
e4t + C2

(
1
−1

)
et. (6.42)

This is the homogeneous bit of (6.37). Now let us look for the particular solution in the form(
x
y

)
PI

=

(
A
B

)
e5t ⇒ A = 3, B = 1. (6.43)

The values of the constants are obtained by direct substitution of the trial solution into (6.39).
Final answer: (

x
y

)
= C1

(
2
1

)
e4t + C2

(
1
−1

)
et +

(
3
1

)
e5t. (6.44)

If such a simple method of finding yPI does not work, the universal panacea is to vary constants
in (6.42): let C1 → ψ1(t), C2 → ψ2(t), substitute into (6.39) and solve for ψ1,2.

You can now have some fun generalising some of the other results of §§5.2.1 and 5.2.2
to the case of an n-dimensional system of ODEs. Note, however, that we have not yet
learned how to deal with a situation in which not all {λi} are different.

6.2. Hermitian Systems

[Literature: Palmer (2019, §2.3)]
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Suppose now that our matrix is Hermitian: A = A†(≡ A∗T ). If {vi} are its right
eigenvectors, then

A · vi = λivi ⇒ λ∗i v
∗
i = A∗ · v∗i = AT · v∗i = v∗i · A. (6.45)

Thus, v∗i are left eigenvectors of A and, since the left eigenvalues must be the same as
the right eigenvalues [see (6.19)], λi = λ∗i are all real.36 Another very useful property is
that, if λi 6= λj , then the corresponding eigenvectors are orthogonal:

λivi · v∗j = v∗j · A · vi = λjv
∗
j · vi ⇒ (λi − λj)vi · v∗j = 0 ⇒ vi · v∗j = 0. (6.46)

If all {λi} are different, we are still in the situation described in §6.1, when the matrix A
is diagonalisable and the solution of (6.1) is (6.32), but now there is an important added
simplification: if we normalise our eigenvectors in such a way that |vi| = 1, then

vi · v∗j = δij ⇒ R−1 = R† , (6.47)

i.e., R is a unitary matrix. Note that if A is real, then Hermitian means symmetric,
A = AT , and v∗i = vi, so R−1 = RT is an orthogonal matrix, describing rotations in Rn.

What if not all the eigenvalues of A are different (i.e., some are degenerate)? For a
Hermitian matrix, it is still guaranteed that there is an orthogonal basis {vi} in which
A is diagonal.

Proof. Formally, this is done by induction.
First, when the dimension of A is n = 1, A is automatically diagonal.
Now consider an n × n matrix A with n > 1 and assume that, in fewer dimensions

than n, Hermitian matrices are diagonalisable. Suppose λ is one of the eigenvalues of A.
Consider all vectors w that satisfy

A ·w = λw. (6.48)

They form a linear subspace, W . All vectors v orthogonal to W (i.e., all v such that
∀w ∈ W , w∗ · v = 0) also form a linear subspace, V , with dimV < n. Then, since A is
Hermitian,

w∗ · (A · v) = (A ·w)∗ · v = λw∗ · v = 0 ⇒ A · v ∈ V. (6.49)

Thus, V is invariant under A, and, since dimV < n and A is Hermitian, A restricted to
V is diagonalisable. But A restricted to W is also diagonal, by assumption (6.48). Thus,
A is diagonalisable over all space W + V .

In practical terms, what the above argument tells us is as follows. For each eigenvalue
λi of the matrix, we can construct a linear subspace Wi, defined as in (6.48). Vectors
belonging to subspaces that correspond to different eigenvalues (λi 6= λj) will certainly
be orthogonal to each other, by (6.46), and, by (6.49), all these subspaces are invariant
under A. Thus, to diagonalise A, you just need to pick an orthogonal basis in each Wi.
The induction guarantees that if λi’s degree of degeneracy (i.e., the number of times it is
repeated) is m, then dimWi = m, not less,37 so the right number of orthogonal vectors
in it will always be available (their choice is not unique, but that is perfectly fine).

36This also follows directly from λivi · v∗i = v∗i · A · vi = λ∗i v
∗
i · vi.

37It cannot be more because then it would not be possible to accommodate the remaining
eigenvalues.
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The diagonalisability of A means that the fundamental system of solutions of (6.3)
still consists of the functions vie

λit. Even if λi = λj for some i 6= j, the corresponding
solutions are linearly idependent because the basis vectors vi and vj are orthogonal.
In other words, the solution of (6.1) is still (6.32). The “physical” difference with the
non-degenerate case is that initial disturbances along the directions corresponding to a
degenerate eigenvalue grow or decay at the same rate.

Note that the property (6.47) that the diagonalising transformation is a unitary one
(or, for real A, is just a rotation) continues to hold, regardless of whether the eigenvalues
are degenerate or not.

In §7, I will go through some important physical examples of Hermitian systems.

6.3. Non-Hermitian Systems

What if the matrix is non-Hermitian? As long as it is diagonalisable (which it definitely is if
it has n different eigenvalues and which it might be if they are not all different), i.e., if there
is a basis consisting of n linearly independent (but, not necessarily orthogonal) eigenvectors,
then everything is fine and you can follow the procedure described in §6.1. But diagonalisability
of non-Hermitian matrices is not guaranteed and situations when one must deal with non-
diagonalisable matrices are quite common.

Here is a consequential example. Consider the n-th order linear ODE with constant coeffients

y(n) + an−1y
(n−1) + · · ·+ a1ẏ + a0y = f(t) . (6.50)

As I have explained before (§3.3), any such equation can be rebranded as a system of n coupled

first-order ODEs. Indeed, letting pi = y(i) for i = 1, . . . , n− 1, we can rewrite (6.50) as follows
ṗn−1 = −an−1pn−1 − · · · − a1p1 − a0y + f(t),
ṗn−2 = pn−1,
. . .
ṗ1 = p2,
ẏ = p1,

(6.51)

or, in matrix form,

d

dt

pn−1

pn−2

. . .
y

 =

−an−1 −an−2 . . . −a1 −a0

1 0 . . . 0 0
. . .

0 0 . . . 1 0

 ·
pn−1

pn−2

. . .
y

+

 f
0
. . .
0

 . (6.52)

The matrix here is very obviously not Hermitian, so nothing is guaranteed. It is not a hard
exercise to show that the equation for its eigenvalues is simply the auxiliary equation (5.26):

det(A− λI) = 0 ⇔ λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0. (6.53)

If this has n distinct roots, then A is diagonalisable by the scheme explained in §6.1, the general
solution of the homogeneous equation associated to (6.50) is

y(t) = C1e
λ1t + · · ·+ Cne

λnt (6.54)

(cf. Exercise 5.2), and the solution of the inhomogeneous equation is obtained via variation of
constants in the usual manner. If, on the other hand, any of the roots are degenerate, the matrix
is not diagonalisable.

There are, of course, many other systems, not necessarily reducible to (6.50), in which A is
non-diagonalisable. This happens when for some eigenvalue λ that occurs m times, there are
fewer than m independent vectors that satisfy A ·w = λw, i.e., the subspace W of vectors that
satisfy this equation has dimW < m. It turns out that when one encounters such systems, one
need not despair.
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Figure 27. Issai Schur (1875-1941), Russian-Jewish mathematician, German professor, and
refugee from the Nazis to Palestine. He was a student of Frobenius (see Q2.9) and adviser of
Hopf (see footnote 61).

6.3.1. Solution by Triangulation

The reason there is hope is Schur’s triangulation theorem (Fig. 27).

Theorem 4. For any matrix A, there is a unitary transformation that converts it into an
(upper) triangular form, viz., ∀A ∃U such that U−1 = U† and

U† · A · U = T =

λ1 stuff
. . .

0 λn

 . (6.55)

The triangular matrix T has stuff on and above the diagonal and zeros below. It is very easy to
see that, if Schur’s theorem holds, the diagonal elements of T are its eigenvalues and that they
are also the eigenvalues of A:

det(A−λ I) = det(U ·T ·U†−λU ·U†) = det[U ·(T−λ I) ·U†] = det(T−λ I) = (λ1−λ) . . . (λn−λ).
(6.56)

I will prove Schur’s theorem in §6.3.2—and in the process show you how to find U,38—but
first let me show you how to solve an arbitrary system of ODEs with constant coefficients once
one has the triangulating unitary transformation in hand.

Consider the homogeneous equation (6.3) and assume that we have U that satisfies (6.55),
i.e.,

ẏ = A · y = U · T · U† · y. (6.57)

Analogously to (6.21), we dot this with U† on the left and get:

d

dt
U† · y = T · U† · y ⇒ ξ̇ = T · ξ , where ξ = U† · y. (6.58)

Let us call Tij the elements of T above the diagonal and rewrite our system explicitly as follows

d

dt

 ξ1
. . .
ξn

 =

λ1 T12 . . .
. . .

0 λn

 ·
 ξ1
. . .
ξn

 . (6.59)

We can start solving this system from the bottom up: the n-th line of (6.59) is

ξ̇n = λnξn ⇒ ξn(t) = Cne
λnt. (6.60)

Then the (n− 1)-st line of (6.59) is

ξ̇n−1 = λn−1ξn−1 + Tn−1,nξn(t). (6.61)

This is a first-order, inhomogeneous linear ODE and it is solved in the usual manner (§2.4.2),

38In fact, you sort of already know how to do this, operationally: effectively, you have done this
many times, when you applied the Gaussian elimination procedure to bring a matrix into an
“upper echelon” form (Lukas 2017, §3.3).
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by variation of constants:

ξn−1(t) = ψ(t)eλn−1t ⇒ ψ̇ = Tn−1,nCne
(λn−λn−1)t

⇒ ψ(t) = Cn−1 + CnTn−1,n


e(λn−λn−1)t

λn − λn−1
if λn−1 6= λn,

t if λn−1 = λn.

(6.62)

Thus,

ξn−1(t) = Cn−1e
λn−1t + CnTn−1,ne

λnt


1

λn − λn−1
if λn−1 6= λn,

t if λn−1 = λn.

(6.63)

Moving upwards and onwards, the (n− 2)-nd line of (6.59) is

ξ̇n−2 = λn−2ξn−2 + Tn−2,n−1ξn−1(t) + Tn−2,nξn(t). (6.64)

Again we have a first-order linear ODE with a known inhomogeneous part. Etc., etc. Once
all ξi’s have been found in this manner, we can recover the solution of (6.3) by reversing the
triangulating transformation,

y(t) = U · ξ(t) . (6.65)

Observing how powers of t pop up in front of exponentials every time a degenerate eigenvalue
is repeated, you can probably see now how to handle the last part of Exercise 5.2 (how did you
handle it then? was that equivalent to what we are doing here?).

Finally, extending the above procedure to the general inhomogeneous equation (6.1) presents
no conceptual difficulty, so I leave you to your own devices with that (cf. §5.2.2).

6.3.2. Proof of Schur’s Triangulation Theorem

The proof of Schur’s triangulation theorem gives one some idea as to how to construct the
unitary transformation U.

Start by finding just one eigenvector of our matrix:

A · v1 = λ1v1. (6.66)

Consider an orthonormal basis {wi} where w1 = v1 and all the other vectors are chosen so as
to satisfy w∗i ·wj = δij . Then the n× n matrix

R = (v1 w2 . . . wn) (6.67)

in which wi’s serve as columns is a unitary transformation, viz., R−1 = R†. Apply this
transformation to A:

R† ·A·R =

 v∗1
w∗2
. . .
w∗n

·(λ1v1 A·w2 . . . A·wn

)
=

 λ1 v∗1 · A ·w2 . . . v∗1 · A ·wn

0
. . . An−1

0

 , (6.68)

where the (n− 1)× (n− 1) matrix An−1 has elements w∗i ·A ·wj with i, j = 2, . . . , n. In words,
we have found a unitary transformation whereby all sub-diagonal elements in the first column
of our transformed matrix are now zero.

For n = 2, this completes the process of triangulation. For n > 2, subject the matrix An−1 to
the same treatment by finding one of its eigenvectors and hence a unitary transformation Rn−1

that clears up the subdiagonal elements in the first column of An−1, etc. Keep going until the
matrix has been turned into a triangular one.

Let me argue formally by induction that this works. We have seen that for n = 2, any matrix
can be triangulated by a unitary transformation. Now suppose any (n− 1)× (n− 1) matrix can
be so triangulated. Then, in (6.68), ∃Un−1, a unitary transformation such that

An−1 = Un−1 · Tn−1 · U†n−1, (6.69)
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where Tn−1 is an (n− 1)× (n− 1) triangular matrix. Therefore, (6.68) becomes

A = R ·
(

1 0
0 Un−1

)
·
(
λ1 stuff
0 Tn−1

)
·
(

1 0

0 U†n−1

)
· R† = U · T · U†, (6.70)

where

T =

(
λ1 stuff
0 Tn−1

)
and U = R ·

(
1 0
0 Un−1

)
(6.71)

are, respectively, the desired n×n triangular matrix and the unitary transformation that turns
A into it. Q.E.D.

Note that

Un−1 = Rn−1 ·
(

1 0
0 Un−2

)
, Un−2 = Rn−2 ·

(
1 0
0 Un−3

)
, . . . , (6.72)

where Rn−1,Rn−2, . . . are unitary transformations constructed analogously to (6.67), but for
the (n − 1), (n − 2), . . . -dimensional matrices that are still in need of triangulation at the
corresponding steps of this procedure.

Note, finally, that the technique of solution by triangulation is perfectly applicable to systems
whose eigenvalues are not degenerate and that are, in fact, diagonalisable. Obviously, the
diagonalisation (6.17) is also a triangulation, because a diagonal matrix is triangular. However,
there is no requirement that any particular triangulation be unique, and the (in general, non-
unitary) diagonalising transformation R in (6.17) is under no obligation to be the same as the
unitary triangulating transformation U. Obviously, in solving a diagonalisable system of ODEs,
if you go down the triangulation route, while the intermediate steps will be different, you will
still get the same answer—to see this, just assume that no two eigenvalues are the same and
examine the output of the scheme laid out in §6.3.1.

Example. §8.1.5, the case of degenerate nodes: see (8.19).

Exercise 6.4. Prove that if the matrix A is Hermitian, then any triangulating transformation is
the diagonalising transformation, i.e., the tringular matrix T is unique and equal to the diagonal
matrix L of the eigenvalues of A.

Exercise 6.5. Consider the second-order homogeneous equation (5.1), turn it into a system of
first-order equations, and solve it by the triangulation method. Identify A, U and T. For what
value of b is the triangular matrix diagonal? Consider specially the case b = a2/4 and check that
you have recovered the solution (5.24).

6.3.3. Solution via Jordan Form

[Literature: Arnold (2006, §§25.1-25.2)]

There is, in fact, an (operationally) simpler method for solving ODEs with non-diagonalisable
matrices. It is based on another magic result from linear algebra: Jordan’s theorem (Fig. 28).

Let me first introduce some new objects. Consider a degenerate eigenvalue λ1 that repeats m
times. Suppose it has at least one eigenvector v1. Then the set of vectors {v1, . . . ,vk}, where
k 6 m, is called a Jordan chain of λ1 if they satisfy

A · v1 = λ1v1,

A · v2 = λ1v2 + v1,

. . .

A · vk = λ1vk + vk−1. (6.73)

The eigenvector v1 is called the generator of the chain, and the rest of the vectors associated
vectors, or generalised eigenvectors of A.

Exercise 6.6. Prove that the vectors {v1, . . . ,vk} given by (6.73) are linearly independent.

If λ1 is non-degenerate (m = 1), then no associated vectors exist. If m > 1 and λ1 has l < m
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Figure 28. Marie Ennemond Camille Jordan (1838-1922), French mathematician; the only
mildly curious factoids about him that I have been able to find are that he was (i) a nephew
of Puvis de Chavannes, (ii) famous for eccentric notation in his lectures at Collège de France
(where he was the successor of Liouville; see Fig. 18a), (iii) not to be confused with Pascual
Jordan, who worked with Born and Heisenberg on matrix quantum mechanics and was a Nazi
storm trooper.

independent eigenvectors, then it will have l different Jordan chains39 generated by them and
the total length of these chains will be k1 + · · ·+ kl = m.

This means that, given n eigenvalues {λi}, some of which may be degenerate, one can always
construct a basis consisting of their eigenvectors and their associated vectors. If, as usual, we
pack these basis vectors together as columns of a matrix R, the latter matrix will transform A
into the following Jordan form:

R−1 · A · R = J =

J1 0
J2

0 . . .

 , (6.74)

where to each Jordan chain of eigenvalue λi within the basis corresponds the Jordan block

Ji =

λi 1 0
λi 1

. . . 1
0 λi

 (6.75)

(λi on the diagonal, 1’s above the diagonal, 0’s everywhere else). That all of this can always be
done is guaranteed by the following Jordan’s theorem.

Theorem 5. For any matrix A, there is always a basis in Cn consisting of Jordan chains, or,
∀A ∃R such that R−1 · A · R = J.

While Jordan’s theorem is much harder to prove than Schur’s, it provides a much easier
algorithm for actually solving ODEs with degenerate eigenvalues. Indeed, as usual, we have

ẏ = A · y = R · J · R−1 · y ⇒ ξ̇ = J · ξ , where ξ = R−1 · y. (6.76)

Let us consider any one Jordan block in J, say J1. It generates the following set of equations:
ξ̇1 = λ1ξ1 + ξ2,

. . .

ξ̇k−1 = λ1ξk−1 + ξk,

ξ̇k = λ1ξk.

(6.77)

39Some of which can be trivial 1× 1 “matrices” containing just λ1 as their sole element.
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Solving them starting from the last, in the manner similar to what we did in §6.3.1, we get

ξk(t) = Cke
λ1t,

ξk−1(t) = (Ck−1 + Ckt) e
λ1t,

ξk−2(t) =

(
Ck−2 + Ck−1t+ Ck

t2

2

)
eλ1t,

. . .

ξ1(t) =

(
C1 + C2t+ · · ·+ Ck

tk−1

(k − 1)!

)
eλ1t. (6.78)

Since y = R · ξ, the corresponding part of the solution of our original ODE is, in terms of the
vectors of the Jordan chain {v1, . . . ,vk},

y(t) = ξ1(t)v1 + · · ·+ ξk(t)vk

= eλ1t

[
C1v1 + C2(tv1 + v2) + C3

(
t2

2
v1 + tv2 + v3

)
+ . . .

+ Ck

(
tk−1

(k − 1)!
v1 + · · ·+ tvk−1 + vk

)]
(6.79)

≡ C1y1(t) + · · ·+ Ckyk(t).

Doing this for each Jordan block and then adding up all the solutions, we get the general
solution of our original system. Indeed, since the number of linearly independent solutions yi(t)
and, accordingly, integration constants Ci, in (6.79) is equal to the length of the Jordan chain (k),
the sum of the lengths of the Jordan chains corresponding to each degenerate eigenvalue is equal
to its degree of degeneracy (m) and the sum of the degrees of degeneracy of all eigenvalues of A
is equal to n, the resulting solution will have n constants multiplying n independent solutions.

This is easy to use without having to remember these derivations: to solve the general
homogeneous ODE (6.3),

—find all eigenvalues {λi} of the matrix A;

—find all eigenvectors corresponding to each λi;

—if λi is repeated m times but only has l < m eigenvectors, find m− l associated vectors by
constructing a Jordan chain (6.73) generated by each eigenvector;40

—for each Jordan chain, write a piece of the general solution in the form (6.79);

—add them all up—this is the general solution of (6.3);

—enforce initial conditions via the n available constants.

If you are faced with an inhomogeneous equation (6.1), you will need to find a particular
solution. In principle, our general formula (4.38) tells you how to do this if you know the
fundamental matrix Y(t). You do know this matrix: the linearly independent solutions yi(t)
that are its columns are just eλit times the vector polynominal expressions multiplying the
integration constants in (6.79). For a quasipolynomial force, i.e., for a force consisting of products
of polynomials and exponentials, you can work out the answer explicitly (cf. §5.2.2). I shall leave
you to it.

Example. Q4.7.

40Note that because det(A− λ1I) = 0, each successive equation in (6.73) is under no obligation
to have a solution, indeed you might think it is a stroke of luck if it does. Jordan’s theorem
guarantees that your luck will not run out until you get m− l associated vectors, a marvellous
piece of mathematics.
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Example. Consider  ẋ = −x+ y − 2z,
ẏ = 4x+ y,
ż = 2x+ y − z.

(6.80)

First, find the eigenvalues:

A =

−1 1 −2
4 1 0
2 1 −1

 ⇒ det(A− λI) = (1 + λ)2(1− λ) = 0 ⇒ λ1 = λ2 = −1, λ3 = 1.

(6.81)
The eigenvector corresponding to the non-degenerate eigenvalue λ3 = 1 satisfies−2 1 −2

4 0 0
2 1 −2

 ·
xy
z

 = 0 ⇒ x = 0, y = 2z ⇒ v3 =

0
2
1

 . (6.82)

We now expect to find two eigenvectors or an eigenvector and an associated vector corresponding
to λ1 = −1:0 1 −2

4 2 0
2 1 0

 ·
xy
z

 = 0 ⇒ y − 2z = 0, 2x+ y = 0 ⇒ v1 =

−1
2
1

 . (6.83)

No other eigenvector can be found, so we test our confidence in Jordan’s theorem by seeking an
associated vector according to (6.73):0 1 −2

4 2 0
2 1 0

 ·
xy
z

 = v1 =

−1
2
1

 ⇒ y − 2z = −1, 2x+ y = 1 ⇒ v2 =

−1
3
2

 .

(6.84)
Success, we have our Jordan basis! Jordan’s theorem tells us that we should not be able to
continue this Jordan chain. Let us verify this:0 1 −2

4 2 0
2 1 0

 ·
xy
z

 = v2 =

−1
3
2

 ⇒ y − 2z = −1, 4x+ 2y = 3, 2x+ y = 2. (6.85)

Indeed, this has no solution. Now with full confidence that the method works, let us write the
solution according to (6.79):xy

z

 =

C1

−1
2
1

+ C2

−1
2
1

 t+

−1
3
2

 e−t + C3

0
2
1

 et. (6.86)

Three constants, three linearly independent solutions—this is the desired general solution
of (6.80). It all works hitchlessly, like an app.

7. Normal Modes of Linear Oscillatory Systems

[Literature: Jarvis (2016, Ch. 2), Palmer (2019), Tenenbaum & Pollard (1986, §33A), Landau

& Lifshitz (1976, §23), Arnold (2006, §§24, 25.6), Arnold (1997, §23)]

Like §5, most of this section is a series of worked examples of the application of the
methods developed in §6 (in fact, more specifically, in §6.2) to Hermitian systems. We
study them in generous detail because they are of special consequence physically: they
describe systems of coupled oscillators and, under diagonalisation, split into linearly
independent collective oscillations, known as normal modes. This is the first step to
many tenets of the physics canon: wave motion (Parra 2021), (second) quantisation and
quasiparticles (a “gas” of normal modes), and everything that follows thence.
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Figure 29. Two coupled pendula.

7.1. Coupled Identical Oscillators

[Literature: Jarvis (2016, §2.1), Palmer (2019, §3)]

Let us take two pendula and link them with a spring (Fig. 29). Each of them is
now anything but free. We shall assume that the equilibrium point—one where the
spring is neither stretched not squeezed—is when the two pendula are hanging vertically
downward. The dynamical variables of the system will then be deviations from this
equilibrium, which I will call y1 and y2. We can think of these as displacements along
arcs followed by the pendula, but, as long as they are small, there is no difference between
those and the horizonal displacements. The equations that they satisfy are{

mÿ1 = −mω2
0y1 − k(y1 − y2),

mÿ2 = −mω2
0y2 − k(y2 − y1),

(7.1)

assuming the masses and the lengths of the pendula (m and l, respectively, with ω2
0 = g/l)

are the same and the Hookean spring constant of the spring is k.

7.1.1. General Method

[Literature: Lukas (2017, §7.6.1)]

In matrix form,

ÿ = −A · y , A =

(
ω2
0 + k/m −k/m
−k/m ω2

0 + k/m

)
. (7.2)

We are dealing with a system of ODEs—formally, 4th-order (two variables, two time
derivatives on each). We could, of course, follow the general prescription of §6: turn
this into a system of first-order ODEs with a 4 × 4 matrix, then solve it via standard
operating procedures. However, this is a cluncky, formalistic way to work—and physicists
are nimble opportunists. The matrix A is symmetric (I will explain in §7.2.2 why it always
is, in such problems), so according to §6.2, we are guaranteed to be able to diagonalise
it just by rotating the vector y, viz., a change to new variables

ξ(t) = RT · y(t) (7.3)

is guaranteed to exist, where R is the (orthogonal) matrix whose columns are the
eigenvectors of A, orthogonal to each other and normalised to unity [see (6.47)]. The
equation for ξ will then be just be a set of decoupled SHOs. Indeed:

ξ̈ = RT · ÿ = −RT · A · y = −L · RT · y = −L · ξ, (7.4)



Oxford Physics Lectures: Ordinary Differential Equations 75

where L = diag {λi} is the diagonal matrix of the eigenvalues of A. The above equation
is just

ξ̈i = −λiξi ⇒ ξi(t) = Ai cos
(√

λi t
)

+Bi sin
(√

λi t
)
, (7.5)

where Ai and Bi are constants of integration and i = 1, 2 for the example at hand,
although nothing in the procedure that I have described is specific to n = 2. Note that
{λi} are guaranteed to be real, because A is a symmetric matrix (see §6.2), but they are
not necessarily guaranteed to be positive. However, if any λi < 0, the equilibrium around
which we are considering our small perturbations is clearly going to be unstable, so not
an equilibrium in the vicinity of which we should expect our system to stay for a long
time.

Returning to the original variables, we get

y(t) = R · ξ(t) =
∑
i

viξi(t) , (7.6)

where {vi} are the eigenvectors of A. These eigenvectors are guaranteed to be orthogonal
to each other, so (7.6) is a sum of linearly independent solutions, and it has the right
number of constants—four of them for a 2 × 2 system, 2n for an n × n one—thus, it is
the general solution of our system. As usual, the constants are there to accommodate
initial conditions: from (7.5),

Ai = ξi(0), Bi =
ξ̇i(0)√
λi
, (7.7)

where ξ(0) and ξ̇(0) are related to the initial conditions x(0) and ẋ(0) via the transfor-
mation (7.3). Note that, in order for (7.3) to hold, the eigenvectors must be normalised
to |vi| = 1 [see (6.47)]. In general, in (7.6), it is not, in fact, necessary to normalise them,
as any normalisation factors can be absorbed into the integration constants, as usual.
However, if the columns of R are unnormalised eigenvectors, then RT in (7.3) must be
replaced by R−1 6= RT . Then the most straightforward way to recover ξ from y is just to
dot (7.6) with vj on both sides and use the orthogonality of the eigenvectors (vi ·vj = 0
if i 6= j):

ξj(t) =
vj · y(t)

|vj |2
. (7.8)

In other words, R−1 is a matrix whose rows are the vectors vj/|vj |2.

The individual “eigensolutions” viξi(t) are, in the context of linear oscillatory systems,
called normal modes. That the system can be decomposed into them reflects the fact that
it is not really coupled, it was just written in the “wrong” variables—the two pendula
in Fig. 29 can still be described as two independent SHOs, but those SHOs are not the
pendula, but certain collective motions of them. Let us solve the system (7.2) according to
the general scheme developed above and see what these collective motions are, physically.

7.1.2. Solution for Two Coupled Pendula

The eigenvalues of the matrix A satisfy(
ω2
0 +

k

m
− λ
)2

− k2

m2
= 0 ⇒ λ1 = ω2

0 ≡ Ω2
1 , λ2 = ω2

0 +
2k

m
≡ Ω2

2 . (7.9)
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(a) (b)

Figure 30. (a) Normal mode 1: oscillations of the centre of mass. (b) Normal mode 2:
“internal” oscillations.

The eigenvalues are real, as expected, and positive, so the equilibrium is a good one (we
knew that!). Now let us find the corresponding eigenvectors:(

k/m −k/m
−k/m k/m

)
· v1 = 0 ⇒ v1 =

(
1
1

)
, (7.10)(

−k/m −k/m
−k/m −k/m

)
· v2 = 0 ⇒ v2 =

(
1
−1

)
. (7.11)

Thus, the first normal mode, which, according to (7.9), oscillates at the frequency ω0 and
does not “know” about the connecting spring, consists of the two pendula swinging back
and forth together as a rigid body—indeed, without perturbing the spring (Fig. 30a).
According to (7.8), the variable that describes this is

ξ1(t) =
y1(t) + y2(t)

2
, (7.12)

i.e., the coordinate of the centre of mass of the system. The second normal mode is

ξ2(t) =
y1(t)− y2(t)

2
. (7.13)

This is a collective motion in which the centre of mass of the two pendula stays put at
zero, while the pendula swing in concert towards, or away from, each other (Fig. 30b).
The frequency Ω2 =

√
ω2
0 + 2k/m of this SHO is greater than ω0 because the restoring

force is not just gravity but also the Hookean tension in the spring.
In retrospect, it might appear obvious that the system (7.1) could have been decoupled

simply by adding and subtracting the two equations, leading to two independent SHOs,
one for y1 + y2, the other for y1 − y2, so why bother with all the linear algebra? For this
particular example, there was indeed little need to do this, but there will be less simple
cases for us to deal with, where guessing the right linear combinations of the original
equations is as laborious (or, indeed, more laborious) a task as finding the eigenvectors,
entirely equivalent to the latter but thoroughly unenlightened. Another way to avoid
enlightenment would have been to use the “method of elimination”: express y2 in terms
of y1 from the first equation in (7.1) and substitute into the second; this gives you a single
4th-order ODE for y1, whose characteristic equation is biquadratic and can be solved,
etc. Do not waste your time on such silliness and use linear algebra instead!

Example. Q6.2(a,b), Q6.3(a,b), Q6.6(a,b).

7.1.3. Examples of Initial Conditions

If we set the two pendula in motion with such an initial condition that only one of the
two normal modes is excited, for example, the first one,

y1(0) = y2(0) = a, ẏ1(0) = ẏ2(0) = 0, (7.14)
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Figure 31. Beats: oscillations (7.23) with two frequencies (a superposition of two normal
modes).

then that will be the only oscillation that the system will perform forever. Indeed,
according to (7.7) and (7.8),

A1 = a, B1 = 0, A2 = 0, B2 = 0, (7.15)

so the solution (7.6) is (
y1(t)
y2(t)

)
= a

(
1
1

)
cosΩ1t. (7.16)

To belabour the point with another example, letting

y1(0) = y2(0) = 0, ẏ1(0) = −ẏ2(0) = v (7.17)

gives us

A1 = 0, B1 = 0, A2 = 0, B2 =
v

Ω2
, (7.18)

so the solution is (
y1(t)
y2(t)

)
= v

(
1
−1

)
sinΩ2t

Ω2
. (7.19)

Things become a bit more interesting if we give the system an initial kick without
tailoring it to a particular normal mode: for example,

y1(0) = a, y2(0) = 0, ẏ1(0) = ẏ2(0) = 0. (7.20)

The constants that accommodate this are

A1 = A2 =
a

2
, B1 = B2 = 0. (7.21)

Hence the solution is (
y1(t)
y2(t)

)
=
a

2

[(
1
1

)
cosΩ1t+

(
1
−1

)
cosΩ2t

]
, (7.22)

or, trigonometry tells us,

y1(t) = a cos

(
Ω1 +Ω2

2
t

)
cos

(
Ω2 −Ω1

2
t

)
, (7.23)

y2(t) = a sin

(
Ω1 +Ω2

2
t

)
sin

(
Ω2 −Ω1

2
t

)
. (7.24)

The reason this last rewriting is enlightening is that Ω2 − Ω1 < Ω1 + Ω2 and so these
formulae represent an oscillation at the larger frequency encased inside an envelope
oscillating at the smaller frequency (Fig. 31). This gives you a feel for what superpositions
of normal modes look like in time. The picture of a fast oscillation modulated by a slowly
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oscillating amplitude is particularly useful when Ω2 − Ω1 � Ω1 + Ω2, i.e., when the
coupling spring is weak:

k

m
� ω2

0 ⇒ Ω2 =

√
ω2
0 +

2k

m
≈ ω0

(
1 +

k

mω2
0

)
. (7.25)

The two pendula then oscillate at approximately their natural frequency, but with slight
modulation due to their interaction via the wimpy spring:

y1(t) ≈ a cos∆t cos Ω̄t, y2(t) ≈ a sin∆t sin Ω̄t. (7.26)

where ∆ = k/2mω0 and Ω̄ = ω0 +∆� ∆. These modulations are called beats.

Example. Q6.1, Q6.2(c), §7.3.5.

7.2. Energetics of Coupled Oscillators

[Literature: Jarvis (2016, §2.1.4), Palmer (2019, §4)]

What “follow the money” is to politics, “follow the energy” is to physics. In §I.6, this
will become the starting point for the whole construction of mechanics (as it is also
for quantum mechanics), but for now, let us investigate the energetics of the oscillatory
dynamics that we have so far deduced from Newton’s equations of motion.

7.2.1. Energy of a System of Coupled Oscillators

Going back to the example of two coupled identical pendula (7.1), it does not take
very much physics education to write down the energy of the system: it is kinetic
(mẏ21,2/2) plus potential (mω2

0y
2
1,2/2) energy of the two oscillators plus the potential

energy associated with the extensions or contractions of the spring:

E =
mẏ21

2
+
mẏ22

2
+
mω2

0y
2
1

2
+
mω2

0y
2
2

2
+
k(y1 − y2)2

2
. (7.27)

A few lines of trivial algebra confirm that the system (7.1) does indeed conserve this
quantity.

For the purposes of application to other problems, and to extract some enlightening
structual features, let me consider how to derive the energy function for a general system
in the matrix form (7.2),

ÿ = −A · y, (7.28)

the only restriction on A being that it is a symmetric matrix. Multiplying both sides
of (7.28) by ẏ, we get

d

dt

|ẏ|2

2
= −ẏ · A · y = − d

dt

y · A · y
2

, (7.29)

the last step enabled by the symmetry of the matrix. Thus, (7.28) conserves

E =
|ẏ|2

2
+
y · A · y

2
≡ K + U , (7.30)

the first term being kinetic (K), and the second potential (U), energy of the system.
Unpacking (7.30) for the specific matrix (7.2) that describes the case of two coupled
pendula, we get

E =
ẏ21 + ẏ22

2
+

(
ω2
0 +

k

m

)
y21 + y22

2
− k

m
y1y2, (7.31)

which is the same as (7.27), up to the (here irrelevant) mass prefactor.
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7.2.2. Restoring Forces Are Potential

Note that the equation of motion (7.28) is

ÿi = −∂U
∂yi

, (7.32)

so the restoring forces are all potential (a property, and with it energy conservation,
broken by damping: see §7.3.3). This is actually true for such systems also nonlinearly
(see §3.5.2), with (7.28) being the result of linearising (7.32) around the equilibrium
point y = 0 (cf. §3.5.3).

This sheds some light on why the matrix A that emerges from such a linearisation
should always be symmetric: since ∂U/∂yi = 0 at y = 0, in the vicinity of this point, we
have

ÿi ≈ −
∂2U

∂yi∂yj

∣∣∣∣
y=0

yj ≡ −Aijyj . (7.33)

Note that not all oscillators in nature are limited to potential forces—in §8.4, I
will introduce some examples of (nonlinear) oscillators that are neither harmonic nor
conservative, and indeed constantly extract and dissipate energy as they oscillate (your
grandfather’s clock belongs to that class).

7.2.3. Energy in Terms of Normal Modes

The conserved energy of a system of coupled oscillators is manifestly not just the sum
of the energies of the individual oscillators—the terms associated with the off-diagonal
elements of A are coupling terms, the last term in (7.31) illustrating the point. It is
clear (and can be easily checked) that the energies of the individual oscillators are not
conserved, and so energy flows back and forth between them. However, the appearance
that the system is an interacting one is, in fact, an optical illusion: since we know that
it can be decomposed into uncoupled SHOs (normal modes), we expect that its energy
must simply be the sum of the energies of these SHOs. Let us check this directly.

The decomposition is (7.6), y = R · ξ, so let us just substitute this into (7.30):

E =
ξ̇ · RT · R · ξ̇

2
+
ξ · RT · A · R · ξ

2
=
|ξ̇|2

2
+
ξ · L · ξ

2
=
∑
i

(
ξ̇2i
2

+
λiξ

2
i

2

)
, (7.34)

where R has been assumed to contain as its columns the normalised eigenvectors of A,
so RT ·R = I (it is a rotation matrix). Thus, indeed, the total energy of our system is the
sum of the energies of the decoupled oscillators (7.5) (normal modes)—obviously, each of
these energies is individually conserved (and so determined purely by how much of each
normal mode was present in the initial condition).

Example. Q6.2(d), Q6.4(c).

7.3. Generalisations and Complications

The general scheme laid out in §7.1.1 is not difficult to make even more general. First,
as I already mentioned, there is nothing there that restricts its applicability to n = 2
oscillators—and I will consider the highly instructive case of N oscillators in §7.3.6.

7.3.1. Pendula of Unequal Length

[Literature: Jarvis (2016, §2.2)]

Secondly, the pendula need not be identical. The simplest generalisation is to let them
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(a) (b)

Figure 32. Unequal (but equally entitled to be solved!) pendula: (a) different lengths (§7.3.1);
(b) different masses (§7.3.2).

have different lengths l1,2 (Fig. 32a), which would result in two different frequencies,

ω1,2 =
√
g/l1,2. The matrix A will still be symmetric (as this only changes its diagonal

elements) and the general scheme descrived in §7.1.1 works, with some obvious adjust-
ments to the specific calculation of §7.1.2.

Exercise 7.1. Make these obvious adjustments and calculate the general solution for two
coupled pendula of lengths l1,2.

Example. §7.3.5.

7.3.2. Pendula of Unequal Mass

[Literature: Palmer (2019, §6)]

Giving the two pendula different masses (Fig. 32b) produces a formal wrinkle: the
matrix A is no longer symmetric and you might worry that all the nice things that came
with that might be imperilled. Let us iron this wrinkle out. Let me rewrite the new
system in the following matrix form:

M · ÿ = −A · y , M =

(
m1 0

0 m2

)
, A =

(
m1ω

2
0 + k −k
−k m2ω

2
0 + k

)
, (7.35)

where I have redefined the matrix A so that it is still symmetric, even if M−1 · A is not.

Let us now solve a generalised eigenvalue problem:

A · vi = λiM · vi . (7.36)

The equation for the eigenvalues defined in this way is

det(A− λiM) = 0 , (7.37)

an n-th-order polynomial equation with n roots (n = 2 in our current example, but
everything that is about to happen works for general n). The nice properties of the
eigenvalues and eigenvectors of a symmetric matrix proven in §6.2 all generalise to this
new construction:

• The eigenvalues are real:

λiv
∗
i ·M·vi = v∗i ·A·vi = vi ·(A·vi)∗ = λ∗i vi ·M·v∗i = λ∗i v

∗
i ·M·vi ⇒ λi = λ∗i . (7.38)
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• The eigenvectors are orthogonal, in the following sense: if λi 6= λj ,

λjvi ·M ·vj = vi ·A ·vj = λivj ·M ·vi ⇒ (λi−λj)vi ·M ·vj = 0 ⇒ vi ·M ·vj = 0,
(7.39)

i.e., they are orthogonal with respect to a scalar product “weighted” by the matrix M—
this matrix is a metric.
• For any degenerate eigenvalue, we can always find the right number of orthogonal

[in the sense (7.39)] eigenvectors—the proof is entirely analogous to that given in §6.2.
• Finally, normalising the eigenvectors with respect to our M-weighted scalar product,

we get, for the matrix R that contains {vi} as columns:

vi ·M · vj = δij ⇒ RT ·M · R = I ⇒ R−1 = RT ·M . (7.40)

With these properties in hand, let y = R · ξ in (7.35):

M · R · ξ̈ = −A · R · ξ = −M · R · L · ξ ⇒ ξ̈ = −L · ξ , (7.41)

where L = diag {λi}. The system has been duly diagonalised. The solution for ξi is
again (7.5) and the general solution is again reassembled according to (7.6). The only
difference is in how we extract ξ from y, to work out the normal modes and to calculate
the integration constants from the initial conditions: instead of (7.8), we have

ξj(t) =
vj ·M · y(t)

vj ·M · vj
. (7.42)

If the eigenvectors are normalised as in (7.40), then the denominator in (7.42) is unity.
To belabour the point, the solution is

y(t) =
∑
i

vi (Ai cosΩit+Bi sinΩit) , (7.43)

where Ωi =
√
λi and the integration constants are determined from initial conditions

according to

Ai =
vi ·M · y(0)

vi ·M · vi
, Bi = Ω−1i

vi ·M · ẏ(0)

vi ·M · vi
. (7.44)

Exercise 7.2. (a) Implement this scheme specifically for the example (7.35) with two coupled
pendula of unequal mass: find the general solution, the normal modes, their frequencies, etc.
You can check your algebra by making sure that its outtcome reduces to the solution obtained
in §7.1.2 when m1 = m2.

(b) Work out the energy of the system (7.35) and show that it is equal to the sum of the energies
of the decoupled oscillators (7.41).

(c) What is the physical nature of the two normal modes of this system in the limit m1 � m2?
Note that you can answer this question by pure physical intuition, without doing the maths
in (a).

Example. §7.3.5, Q6.4(a,b), Q6.5.

7.3.3. Damped Oscillators

[Literature: Jarvis (2016, §2.7)]

Now allow the pendula to be subject to friction against air (or put the whole contrap-
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(a) (b)

Figure 33. (a) Coupled pendula with damping (§7.3.3). (b) Coupled pendula with periodic
forcing (§7.3.4). Obviously, the two springs do not have to have the same spring constant, but
post-Brexit, we only have one type of spring available (this makes no difference to how we solve
the system).

tion into a jar of honey). Then

ÿ = −γẏ − A · y , (7.45)

where γ is the friction rate. This system is easily reduced to the old one. Indeed, let

y(t) = z(t) e−γt/2 ⇒ z̈ = −
(

A− γ2

4
I

)
· z (7.46)

(exercise: check that this works). All friction does is reduce the frequency of each normal
mode,

Ω2
i → Ω2

i −
γ2

4
, (7.47)

and introduce an overall damping factor (just as it did in §5.1.1). It is not hard to see
that the eigenvectors, i.e., the physical nature of the normal modes, do not change.

Finally, it stands to reason that energy is no longer conserved: dotting (7.45) with ẏ
on both sides, like we did in (7.29), we get

dE

dt
= −γ|ẏ|2 < 0. (7.48)

Thus, friction dissipates energy, of course it does.

Example. Q6.3(c,d).

Exercise 7.3. Work out how to deal with the system where each oscillator has its own friction
coefficient (each pendulum has its own jar of different honey; Fig. 33a), i.e.,

ÿi = −γiẏi −Aijyj (7.49)

(no summation in the first term on the right-hand side).

7.3.4. Forced Oscillators and Resonances

[Literature: Jarvis (2016, §§2.6-2.7), Palmer (2019, §5.2)]

Forced oscillator systems are just the inhomogeneous versions of the unforced ones,
and all the principles that we learned for other linear systems apply here:

• The general solution is the sum of the general solution of the associated homogeneous
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equation (the CF) and any particular solution of the inhomogeneous one (the PI)—
see (4.10).
• For a system with damping, the CF will take care of the initial conditions and then

damp away, while the PI will stick around, representing forced oscillations—as happened
for a single oscillator in (5.55).
• Forcing at (or close to) any of the frequencies of the system’s normal modes is special,

producing a sharp peak in the amplitude of the forced oscillations of the normal mode
with which the force is in resonance (cf. §5.3.1).

Let us work all this out. The system that we shall look at is the forced version of (7.45):

ÿ = −γẏ − A · y + f(t) , (7.50)

where f(t) is a time-periodic force. In general, it can consist of many “harmonics”
containing sines and cosines with different frequencies. The system is linear, so, by the
superposition principle (4.8), its solution will be the sum of solutions corresponding to
individual additive parts of f(t). Thus, we will learn everything that needs learning by
just considering

f(t) = F cosωt, (7.51)

where F is a constant vector. A physical situation that might bring about such a system
can be envisioned by adding to our workhorse example of two coupled (damped) pendula
another spring connecting the first pendulum to some mechanical contraption oscillating
horizontally around its equilibrium point according to y0(t) = a cosωt (Fig. 33b). Then
the equation of motion for the first oscillator is

mÿ1 = −mγẏ1 −mω2
0y1 − k(y1 − y2)− k [y1 − y0(t)] . (7.52)

This gives us a system of the form (7.50) with a force (7.51), where

F =

(
ka/m

0

)
, A =

(
ω2
0 + 2k/m −k/m
−k/m ω2

0 + k/m

)
(7.53)

(two different frequencies now, but, as we saw in §7.3.1, this is not a problem).
In order to find a particular solution of (7.50), we do what we always do (§5.3):

complexify our variable, y = Rez, consider

z̈ + γż + A · z = F eiωt, (7.54)

and look for a particular solution in the form

z(t) = Ceiωt. (7.55)

This produces the following equation for the complex amplitude:[
A + (iγω − ω2)I

]
·C = F . (7.56)

If γ 6= 0, the matrix in the left-hand side is always invertible because the eigenvalues of
A are real, so det

[
A + (iγω − ω2)I

]
6= 0.41 Therefore,

C =
[
A + (iγω − ω2)I

]−1 · F . (7.57)

41If γ = 0 and ω happens to be equal to the frequency of any of the system’s normal modes,
special measures are needed—you know enough at this point to figure out on your own what
they are; reread the end of §5.3.1 for inspiration.
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Finally, the forced oscillations are

yPI(t) = Re
{
eiωt

[
A + (iγω − ω2)I

]−1 · F} . (7.58)

Working out the inverse of the matrix, calculating all the relevant phase factors and
extracting the real part entails considerable tedium, so I leave it to you to prove to
yourselves that you have the stamina to endure it and get the full answer for the specific
example (7.53), or any other example that you care to work through (one such example
is done in Jarvis 2016, §2.7).

It is, however, also possible to make some progress in a non-tedious way, if one asks a
physically useful question. We shall aim to find out what happens when ω is close to the
frequency of one of the normal modes of the system—we expect a resonance (cf. §5.3.1).

Let us first use the fact that A = R · L · RT and I = R · RT , where R is the rotation
matrix made up of A’s normalised, orthogonal eigenvectors. Then (7.57) is

C =
{

R ·
[
L + (iγω − ω2)I

]
· RT

}−1 · F = R · G · RT · F , (7.59)

where G =
[
L + (iγω − ω2)I

]−1
= diag

{
1/(λi − ω2 + iγω)

}
. Here λi = Ω2

i are the
eigenvalues of A, and Ωi are the frequencies of the corresponding normal modes. The
above formula simply says that the forcing gets decomposed into parts “aligned” with
the normal modes of the system (RT · F ), then each of these gives rise to independent
forced oscillations of its corresponding normal mode, with an amplitude determined in
exactly the same way as in (5.52) (G · RT · F ).

Now, if the forcing frequency is close to one of the normal-mode frequencies, say,
ω ≈ Ω1, and γ is small compared to it, then the largest element of the diagonal matrix G
will be the one with i = 1. Ignoring all others, we get

C ≈ v1
v1 · F
iγΩ1

⇒ yPI = Re
(
Ceiωt

)
≈ v1

v1 · F
γΩ1

sinΩ1t, (7.60)

where v1 is the normalised (|v1| = 1) eigenvector of the resonant normal mode. Thus,
if you force an oscillating system at one of its normal modes’ frequencies, the forced
oscillations in the stationary state will be dominated by the corresponding normal mode
and have an amplitude that is just the same as the amplitude (5.57) at resonance for a
single weakly damped oscillator, but with only the projection of the forcing amplitude
onto the corresponding eigenvector (v1 · F ) contributing. The phase shift between the
force and the forced oscillations is approximately π/2, as always at resonance (see §5.3.1).

This all makes perfect sense (I hope). It should be reassuring to be able to prove in
such a simple manner what intuition tells us must happen volens nolens.

Example. Q6.3(e), §7.3.5.

Exercise 7.4. Use (7.59) to calculate yPI(t) in terms of F , ω, γ, eigenvectors {vi} of A and
the corresponding normal-mode frequencies {Ωi} without making any assumptions about any
of these quantities.

Exercise 7.5. Imagine that a weakly damped (γ � Ωi for all i’s) system is forced in a resonance,
ω = Ω1, but the force is applied nearly perpendicularly to the eigenvector of the corresponding
normal mode, i.e., v1 ·F � |F |. How small does v1 ·F have to get in order for the approximation
(7.60) to stop being valid?

Exercise 7.6. Work out the energy budget for a system of weakly damped, coupled oscilla-
tors (7.50), viz., show that the injected power is equal to the dissipated power (cf. §5.3.2).
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7.3.5. A Worked Example: Can Coupled Pendula Be in Resonance With Each Other?

I want to show you a long worked example that nicely encapsulates several important features
and ideas introduced in the preceding sections. I got the idea of this calculation from Karlov &
Kirichenko (2003).

We know from §5.3.1 (and again from §7.3.4) that if we force an oscillatory system at its
natural frequency, we can get it to develop oscillations with very large amplitude—in the absence
of damping, with amplitude that grows ∝ t [see (5.64)]. But when we couple two oscillators, we
could consider one of them to be a kind of forcing of the other. Is there some arrangement in
which this would lead to large amplitudes, i.e., can two coupled oscillators be, in some sense, in
a resonance with each other?

To explore this question, let us consider two coupled pendula unequal in every respect that we
have so far considered: let them have different lengths (and hence different natural frequencies
ω1,2; see §7.3.1) and different masses (§7.3.2). The equations for this system are

ÿ1 = −
(
ω2

1 +
k

m1

)
y1 +

k

m1
y2,

ÿ2 = −
(
ω2

2 +
k

m2

)
y2 +

k

m2
y1.

(7.61)

I have written them in this way to emphasise the fact that the effect of having different masses,
besides modifying the natural frequencies by different amounts, is also to make the coupling
coefficients between the oscillators different. We can see immediately that in the limit m2 →∞,
the second oscillator no longer cares about the first (why would it, if it is infinitely more massive!)
and so its effect on the first is mathematically the same as that of a sinusoidal forcing with
frequency ω2. If we adjusted l2 so that

ω2
2 = ω2

1 +
k

m1
, (7.62)

we should have a resonance: the amplitude of y1 would grow as in (5.64).
With this insight in hand, let us explore what happens when m2 is not infinite, with a view

to making it much larger than m1. From §7.3.2, we know that we are guaranteed to have real
eigenvalues λ1,2 and orthogonal (when weighted by the matrix of the masses) normal modes

oscillating with frequencies Ω1,2 =
√
λ1,2. Let us work out these frequencies:

det

ω2
1 +

k

m1
−Ω2 − k

m1

− k

m2
ω2

2 +
k

m2
−Ω2

 =

Ω4 −
(
ω2

1 +
k

m1
+ ω2

2 +
k

m2

)
Ω2 +

(
ω2

1 +
k

m1

)(
ω2

2 +
k

m2

)
− k2

m1m2
= 0. (7.63)

The discriminant of this equation is

D =

(
ω2

1 +
k

m1
− ω2

2 −
k

m2

)2

+
4k2

m1m2
> 0, (7.64)

always positive as long as k 6= 0 and the masses are finite. Therefore, the two normal-mode
frequencies are always different, Ω1 6= Ω2, and there are no resonances. However, if we take
m2 � m1, k/m2 � ω2

2 , and arrange for the “resonance condition” (7.62) to hold, we can
make D very small and the two frequencies very close to each other:

D ≈ 4k2

m1m2
⇒ Ω1,2 ≈

√
ω2

2 ±
k√
m1m2

≈ ω2 ±
k

2ω2
√
m1m2

⇒ v1,2 =

(
∓
√
m2/m1

1

)
.

(7.65)
The eigenvectors corresponding to two normal modes feature the first pendulum oscillating at
a much greater amplitude than the second—so there is a kind of resonance effect.

Since the two frequencies are close, we expect beats (§7.1.3). The general solution is

y(t) =

(
−
√
m2/m1

1

)
(A1 cosΩ1t+B1 sinΩ1t) +

(√
m2/m1

1

)
(A2 cosΩ2t+B1 sinΩ2t) ,

(7.66)
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Figure 34. Beats: oscillations (7.23) with two frequencies (a superposition of two normal
modes).

and, setting a finite displacement of the second oscillator as the initial condition, we get

y1(0) = 0 =

√
m2

m1
(−A1 +A2) , y2(0) = a = A1 +A2 ⇒ A1 = A2 =

a

2
, (7.67)

ẏ1(0) = ẏ2(0) = 0 ⇒ B1 = B2 = 0. (7.68)

Assembling the solution, we get

y1(t) = a

√
m2

m1
sin

(
kt

2ω2
√
m1m2

)
sinω2t, (7.69)

y2(t) = a cos

(
kt

2ω2
√
m1m2

)
cosω2t. (7.70)

Both pendula oscillate at the natural frequency of the second one, ω2, with a low-frequency
modulation and a very large amplitude ratio—the first pendulum is in “resonance” with the
second. In energy terms, by setting the more massive pendulum in motion, we have created a
large energy reservoir, which the other pendulum can tap to oscillate wildly.

Finally, if we consider times t � 2ω2
√
m1m2/k (which allows t � ω−1

2 ) and expand the
modulating sine and cosine in small argument, we recover precisely the familiar resonant
solution (5.64):

y1(t) ≈ akt

2ω2m1
sinω2t, y2(t) ≈ a cosω2t. (7.71)

This limit is, of course, equivalent to taking m2 → ∞, so this is exactly the solution we are
supposed to get.

7.3.6. N Coupled Oscillators

[Literature: Jarvis (2016, §3.1)]

So, we know how to handle one pendulum and two pendula—the next step is, naturally, to
solve N pendula. Let us, therefore, consider a row of N identical pendula (Fig. 34), all connected
by identical springs to their nearest neighbours and the 1-st and the N -th also tethered by the
same springs to an ajacent wall (this is for simplicity of algebra down the line). Then the equation
for the j-th pendulum is

mÿj = −mω2
0yj − k(yj − yj+1)− k(yj − yj−1), (7.72)

where j = 1, . . . , N and, to represent the walls, we set y0 = yN+1 = 0 (what should we do if
there are no walls and the 1-st and the N -th pendula are free on one side?).

Rearranging,

ÿj = −
(
ω2

0 +
2k

m

)
yj +

k

m
(yj+1 + yj−1) , (7.73)

we see that the resulting matrix A is tridiagonal (and also has identical elements on each
diagonal—such matrices are called Toeplitz). Finding its eigenvalues λ and eigenvectors v turns
out to be quite an easy task. We are looking for solutions to(

ω2
0 +

2k

m

)
vj −

k

m
(vj+1 + vj−1) = λvj ⇒ vj+1 + vj−1

vj
=
ω2

0 + 2k/m− λ
k/m

. (7.74)
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The winning trick is to look for a solution in the form vj = sin jθ, which gives

ω2
0 + 2k/m− λ

k/m
=

sin(j + 1)θ + sin(j − 1)θ

sin jθ
= 2 cos θ. (7.75)

To figure out what θ is, recall the requirement v0 = 0 and vN+1 = 0. The first of these is satisfied
automatically, whereas the second requires

sin(N + 1)θ = 0 ⇒ θ =
πp

N + 1
, (7.76)

where p is an arbitrary integer. It can only take N interesting values: p = 1, . . . , N (p = 0 and
p = N + 1 correspond to yj = 0, so no displacement of any pendula, and for all other p, the
values of cos θ repeat).

Thus, we have found N distinct eigenvalues λp and their corresponding eigenvectors v(p):

λp = ω2
0 +

2k

m

(
1− cos

πp

N + 1

)
= ω2

0 +
4k

m
sin2 πp

2(N + 1)
≡ Ω2

p, v
(p)
j = sin

πpj

N + 1
. (7.77)

These are the normal modes of the system. It general solution is

yj(t) =

N∑
p=1

sin
πpj

N + 1
(Ap cosΩpt+Bp sinΩpt) , (7.78)

with 2N integration constants {Ap, Bp}. This formula is begging us to go to the “continuous
limit”: rather than indexing our pendula by j, we can do so by their spatial coordinate (in
equilibrium) x = ja, where a is the spacing between them (and between the marginal pendula
and walls). Then the solution is

y(t, x) =
∑
p

sin
πpx

L
(Ap cosΩpt+Bp sinΩpt) , (7.79)

where L = (N + 1)a is the overall length of the system. This tells us that the normal modes
are “standing waves” for which p determines the number of maxima and minima—our pendula
show an impressive propensity to organise themselve into coherent collective activity.

Obviously, the most interesting case is now N � 1, and (7.79) suggests that we should take
this limit while holding L = (N + 1)a fixed. For p� N , the frequencies can be simplified:42

Ω2
p ≈ ω2

0 +
ka2

m

(πp
L

)2

. (7.80)

This suggests that we ought to hold ka2/m fixed, but that makes perfect sense: m/a = ρ is the
linear density of the row of masses and ka = T is the tension force along the combined string—
both of these quantities can be reasonably held fixed and so the system has a characteristic
speed c =

√
T/ρ (physically, this is the speed at which perturbations propagate through the

system).
We could have taken the N →∞ limit earlier. Going back to (7.73), it is not hard to notice

that it can be rewritten as

ÿj = −ω2
0yj +

ka2

m

yj+1 − 2yj + yj−1

a2
⇒ ∂2y

∂t2
= −ω2

0y + c2
∂2y

∂x2
. (7.81)

With ω0 = 0 (i.e., with the masses oscillating just due to their interaction via springs),43 this is
the wave equation—the topic of sequel to this course. Parra (2021) will pick up this thread where

42In the opposite (less interesting) limit p → N , the frequencies tend to a constant

ΩN = (ω2
0 + 4k/m)1/2 and v

(N)
j = −(−1)j sin[πj/(N + 1)]—this describes adjacent pendula

with sign-alternating displacements.
43The wave equation (7.81) with ω0 6= 0 describes propagation of waves through certain
dispersive media that are also capable of oscillating at their own frequency ω0—an example
is propagation of light through plasma (see, e.g., Schekochihin 2020a).
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I am leaving it off. You will see that it indeed can be solved via decomposition into (an infinite
number of) normal modes, known as Fourier modes (if you did your research for Q2.7c, you are
already familiar with them). The solution (7.79) (with N = ∞) is what such a decomposition
looks like for the case of zero boundary conditions y(t, 0) = y(t, L) = 0.

Example. Q6.6(c,d).

Exercise 7.7. Show that for the system of N coupled oscillators considered in §7.3.6, the
energy is

E =
1

2

N∑
j=1

(
ẏ2
j + ω2

0y
2
j

)
+

k

2m

N∑
j=0

(yj+1 − yj)2 ≈ N

2L

∫ L

0

dx
(
ẏ2 + ω2

0y
2 + c2y′2

)
, (7.82)

the first expression being exact and the second aproximate in the limit N � 1. Work out what
the energy is in terms of the normal-mode amplitudes {Ap, Bp}.

7.4. (Nonlinear) Digression: Coupled Oscillators and Hamiltonian Chaos

Coming soon. . . In the meanwhile, read Zaslavsky et al. (1991) (not an easy read, but great
fun).

8. Qualitative Solution of Systems of Autonomous Nonlinear ODEs

I promised at the start of this course that, once we have got through all the necessary
standard material, we could have some fun and learn how to solve complicated systems
in an uncomplicated (=qualitative) way. One might call it an enlightened theory of
sketching—fittingly, it has an element of art to it, as well as of science. What we shall be
sketching will be phase portraits—the basic lay out of phase trajectories for autonomous
ODEs

ẏ = f(y) (8.1)

(the salient feature being the absence of explicit time dependence in the right-hand side).
Let me remind you that phase trajectories are the projections of the integral curves

(§1.2) onto the phase space, which is the space where the solutions y(t) live (typically, it
is all or part of Rn). In other words, they are the “field lines” of the phase velocity f(y),
i.e., they are the curves whose tangent vector at y is f(y). The usefulness of a phase
portrait is that it tells you where the system will go from any given initial location in
phase space—regardless of exactly when it might find itself at that location. It only makes
sense to draw phase portraits for autonomous systems because if the phase velocity f
changed with time, any one-time snapshot of its field lines would be transient and we
could not trace the system’s time evolution by following those field lines.44

Mathematically, this narrative amounts to saying that

1) if y(t) is a solution of (8.1), then ∀t0 y(t+ t0) is also a solution, i.e., a time-shifted phase
trajectory is the same trajectory;

2) if y1(t) and y2(t) are phase trajectories and y1(t1) = y2(t2) for some t1 and t2, then
y2(t) = y1(t+ t1 − t2), i.e., any two phase trajectories either do not intersect or coincide.

Exercise 8.1. These statements are perhaps obvious, but do practice your mathematical
reasoning by proving them formally. Think also about how they fail for non-autonomous systems.

44Sometimes, for non-autonomous systems, one can do this in some average sense: usually, when
the rate of non-autonomous change of f is either very large (§5.4) or very small (§8.2).
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All phase trajectories can be classed into three types:

1) trajectories without self-intersections;

2) closed loops, or cycles, i.e., trajectories that bite their own tail;

3) fixed points (or stationary points, or equilibria)—these are phase trajectories con-
sisting of a single point such that the system starting exactly at that point remains there
forever. They are simply solutions of

f(y0) = 0. (8.2)

Note that fixed points do not have to be isolated—in principle, there can be whole
continuous sets of them (see, e.g., §8.1.3).

Exercise 8.2. This classification is a theorem. Prove it. What you have to prove is that if a
phase trajectory is not a solution of (8.2) and intersects itself, then it is closed loop, periodic
forever.

Clearly, fixed points are special.

Mathematically, their intuitive specialness can be given precise meaning by the state-
ment that, in the vicinity of any point in phase space that is not a fixed point, the
phase trajectories can be mapped onto a set of straight-line segments, whereas near a
fixed point, they cannot be [this should be obvious from (8.3)]. This is the basis for the
intuitive expectation that one might be able to sketch the phase portrait of a system if
one works out what happens near all of its fixed points and then “connects” these local
mini-portraits in some sensible way. This is not always quite as straightforward as it
sounds, but it is the basic idea.

Physically, one is also obviously interested in the fixed points because they are the
equilibria of the system. If a fixed point proves to be stable, i.e., if one can show that,
starting in some vicinity of it, the system eventually ends up arbitrarily close to it,45

then such a fixed point represents long-term fate of the system, at least for some range
of initial conditions (this is called the basin of attraction). Long-time behaviour is what
one is often after, so this is clearly useful.

Since we are interested in the system’s behaviour near a particular point y0, let us
expand (8.1) in the vicinity of y0, as promised in §3.5.3:

δẏ = f(y0 + δy) = f(y0) + A · δy + fnl(y0, δy), Aij =
∂fi
∂yj

∣∣∣∣
y=y0

, (8.3)

where fnl(y0, δy) represents the nonlinear terms and is assumed to vanish quicker than

45In technical language, such a fixed point is called attracting, or an attractor. There is another
type of stability, called Lyapunov stability, whereby if the system starts in some vicinity of a
fixed point, it stays within some vicinity of it at all times. This does not mean that the point is
necessarily attracting, but if it is, then it is called asymptotically stable. The theory of (Lyapunov)
stability is an important branch of the theory of ODEs. You will find an introduction to it in
Pontryagin (1962, §26) or Arnold (2006, §23). Alexander Lyapunov (1857-1918) was a prominent
Russian mathematician who essentially started the subject. Word has it that he first reported
some of his findings in his lectures to undergraduates at the University of Kharkov, where he was
employed as a lecturer, but found teaching standard material rather tedious (he was, however,
reputed to produce rather good lecture notes).
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linearly with δy:

lim
|y|→0

fnl(y0, δy)

|δy|
= 0. (8.4)

If y0 is not a fixed point, then (8.3) just describes locally constant motion [δẏ ≈ f(y0) =
const], but if it is, f(y0) = 0 and we have an approximately linear system in δy. This
is what we are now going to study, while returning from time to time to the question of
whether our qualitative conclusions are likely to withstand the effect of small fnl.

Life in n dimensions is complicated and sketching it on a 2D sheet of paper requires
more artistic skill and geometrical imagination than we can perhaps muster within the
confines of this course. I will, therefore, start—and stay—with 2D systems. I hasten to
say that 2D is rather special: basically because in 2D, a trajectory constrained never to
cross itself is very constrained indeed.46 However, a physicist’s intuition is not built in a
day, so let us see what a 2D world can teach us.

8.1. Classification of 2D Equilibria

[Literature: Pontryagin (1962, §30), Tikhonov et al. (1985, §5.4), Arnold (2006, §20.4),

Strogatz (1994, §5-6), Glendinning (1994, §5.1-5.4), Bender & Orszag (1999, §4.4)]

You can view this section as a preparation for something bigger (not, I am afraid, to
be fully consummated within the time limitations of this course) or just as a set of (very
simple) examples of how one uses the analytical machinery developed in §6 (this time,
unlike in §7, not necessarily for Hermitian oscillatory systems).

Entirely without loss of generality, y0 = 0 and δy = y in (8.3). We are specialising to
the 2D system

ẏ = A ·y ⇐⇒ d

dt

(
x
y

)
=

(
a b
c d

)
·
(
x
y

)
, where y =

(
x
y

)
, A =

(
a b
c d

)
. (8.5)

You know the drill: the first order of business is to find eigenvalues:

det(A− λI) = 0 ⇒ λ2 − (a+ d)︸ ︷︷ ︸
= T

λ+ ad− bc︸ ︷︷ ︸
= D

= 0 ⇒ λ1,2 =
T ±
√
T 2 − 4D

2
,

(8.6)
where T = tr A and D = det A. There are a number of possibilities, each of which has a
name and a distinctive phase portrait.

8.1.1. Nodes: T 2 > 4D > 0

If we assume also T > 0, this corresponds to

λ1 > λ2 > 0 . (8.7)

With two different eigenvalues available, we are guaranteed that there will be two linearly
independent eigenvectors v1 and v2, which, when packed into R = (v1 v2), will transform
our system into a diagonal form (see §6.1):(

x
y

)
= R ·

(
ξ
η

)
= ξv1 + ηv2 ⇒

{
ξ̇ = λ1ξ,
η̇ = λ2η

⇒
{
ξ = ξ0e

λ1t,
η = η0e

λ2t . (8.8)

46For example, in 2D, if there is a closed trajectory, any unlucky trajectory starting with initial
conditions inside it is trapped forever. In 3D, it would barely notice.
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(a) (b)

(c) (d)

Figure 35. (a) An unstable node in the basis {v1,v2} where A is diagonal (λ1 > λ2 > 0). (b)
An unstable node in the original Cartesian basis. (c,d) Same as (a,b), but the node is stable
(λ1 < λ2 < 0).

The phase trajectories in the plane (ξ, η) are, therefore, the curves47

ξ

ξ0
=

(
η

η0

)λ1/λ2

. (8.9)

Since λ1/λ2 > 1, these are “generalised parabolae”, i.e., they are tangent at zero to the
“slow” direction v2. Note that ξ = 0 and η = 0 are also phase trajectories, corresponding
to the initial conditions ξ0 = 0 and η0 = 0, respectively. The corresponding phase portrait
is sketched in Fig. 35(a)—the arrows, indicating the directions of the system’s travel, are
based on the fact that both ξ and η must increase with time. This type of equlibrium is
called an unstable node.

Exercise 8.3. The phase trajectories seem to intersect at zero. Is this a problem?

Since v1 and v2 are not necessarily orthogonal, this picture gets somewhat distorted
when transformed back into the (x, y) plane (Fig. 35b), but its basic feature remains the
same: trajectories run away from the fixed point, hugging the slow eigendirection.

If we let T < 0 and rearrange the eigenvalues to be

λ1 < λ2 < 0 , (8.10)

we get the same story, but with direction of time reversed, i.e., the trajectories now
all rush into the fixed point, again hugging the slow eigendirection (Figs. 35c,d). This is
called a stable node. An example of this type of behaviour was the overdamped oscillator,
where indeed it was the slow damping that dominated long-time dynamics (see §5.1.1,
where T = γ and D = ω2

0).

47You can obtain (8.9) also by noticing that dξ/dη = ξ̇/η̇ = (λ1/λ2)ξ/η and integrating this
equation.
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(a) (b)

Figure 36. (a) A saddle point in the basis {v1,v2} where A is diagonal (λ1 > 0 > λ2). (b) A
saddle point in the original Cartesian basis.

8.1.2. Saddles: T 2 > 0 > 4D

In this case, the two eigenvalues have opposite signs:

λ1 > 0 > λ2 . (8.11)

The same analysis applies as in §8.1.1, but (8.9) now becomes an equation for “generalised
hyperbolae”:

ξ

ξ0
=

(
η

η0

)−λ1/|λ2|

. (8.12)

The trajectories approach the fixed point along the stable eigendirection (v2) and then
veer off and away along the unstable one (v1): see Fig. 36. This type of equlibrium is
called a saddle. We saw an example of it when we studied the “upright” equilibrium of
the mathematical pendulum (§3.5.2, Fig. 14).

The two axes, ξ = 0 and η = 0, are also trajectories, the former leading the system
straight into the fixed point, the latter out of it. These are called separatrices. The first
separatrix, the η axis, also known in the litterati circles as the stable manifold, is quite
special in the sense that for a system starting off close to it, a small perturbation in
the initial conditions that puts the system on the other side of the separatrix has the
effect of dramatically altering subsequent evolution: the system will end up at ξ = −∞
as opposed to ξ = +∞, or vice versa. This is your first inkling of the phenomenon of
sensitive dependence on initial conditions, which, transferred to more dimensions and
more complicated systems, makes the world chaotic, but also opens the door to its
statistical description (see Schekochihin 2020b, §1).

8.1.3. Pathologies: D = 0

In this case, at least one of the eigenvalues is zero:

λ1 > λ2 = 0 or λ1 < λ2 = 0 . (8.13)

This means that

η̇ = 0, (8.14)

so the straight lines η = const are phase trajectories, which all run away from the ξ = 0
axis if λ1 > 0 or towards it if λ1 < 0 (Fig. 37). The entire line ξ = 0 consists of (non-
isolated) fixed points. I will call these cases stripes (to match the stars in §8.1.5).

Obviously, if λ1 = 0 as well, then every point in the plane is a fixed point of our linear
system, but this is an intensely uninteresting case—or, depending on your perspective, an
intensely interesting one, because the nonlinear system of which it is the linearisation is
“fully nonlinear”, i.e., its dynamics are fully determined by the nonlinearity (see §8.1.4).
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(a) (b)

Figure 37. (a) Unstable stripes in the basis {v1,v2} where A is diagonal (λ1 > λ2 = 0). The η
axis is a line of fixed points. (b) Unstable stripes in the original Cartesian basis. Stable stripes
(λ1 < λ2 = 0) look the same but with arrows reversed.

8.1.4. Effect of Nonlinearity

I have called the above case a pathology because it requires some rather special
arrangements (D = 0). It is also a bit of an irrelevance because what, in fact, a
zero eigenvalue implies is that the linearisation of the system in the corresponding
eigendirection has proved trivial and so the dynamics in that direction is fully decided by
the nonlinearity, which has so far been lurking invisibly on the sidelines. For example, if,
in (8.3), fnl projected on the ξ = 0 axis proves to be a positive contribution at |η| > 0,
say η2, so

η̇ ≈ η2, (8.15)

then we again only have a single fixed point (at zero) and this fixed point is unstable in
the η direction—a nonlinearly unstable saddle (if λ1 < 0) or node (if λ1 > 0), with the
departing trajectories hugging the slow (nonlinear) direction even more tightly than in
the linear case.48

This brings in the broader question: to what extent are the local phase portraits that we
construct on the basis of linear theory likely to be good qualitative descriptions of what
happens nonlinearly, even in the vicinity of the fixed point? The basic qualitative answer
is that linear conclusions are fine as long as they do not depend on the eigenvalues being
precisely equal to some special value: thus, nodes and saddles survive because a small
perturbation of the trajectories by the nonlinear terms cannot knock them off the basic
trends of exponential growth or decay set by robustly non-zero, non-equal eigenvalues—
unlike in the pathological case of §8.1.3, where a zero eigenvalue gives the nonlinearity
license to take over.49 Mathematically, it is possible to prove qualitative robustness of the
linear phase portraits by placing careful upper bounds on the nonlinearity’s contribution.
All this can be made much more precise, but I hope this qualitative discussion makes
enough sense to be believable at the first pass. If you want to see for yourself how
to investigate the matter quantitatively, and, in particular, how to prove some of the
statements about the effect of the nonlinearities that I have made above or will make
below, a good undergraduate read is Glendinning (1994, §5.2), while the original source
of biblical proportions is Andronov et al. (1973).

48An example of such a situation is the x = y = 0 equilibrium in Q5.4.
49A fixed point with all Reλi 6= 0 is called hyperbolic (just a name, nothing to do with saddles,
necessarily). One can show that local phase portraits around hyperbolic fixed points are robust.
Mathematically, “robust” means topologically equivalent, which means that the phase portraits
of the nonlinear and the linearised systems can be mapped onto each other by a continuous
one-to-one transformation.
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(a) (b) (c)

Figure 38. (a) An unstable star in the basis {v1,v2} where A is diagonal (λ1 = λ2 > 0). In
the original Cartesian basis, the picture is the same, with trajectories still approaching the fixed
point at all angles. A stable case (λ1 = λ2 < 0) looks the same but with arrows reversed. (b)
An unstable degenerate node in the triangulating basis {v,w}. (c) A stable degenerate node in
the same basis—it is a mirror image of (b).

8.1.5. Pathologies: T 2 = 4D

This is another pathological case: the eigenvales are equal,

λ1 = λ2 ≡ λ 6= 0 , (8.16)

and can be either positive or negative (we are not interested in the trivial case of them being
zero).

In this case, it matters whether the matrix A has two linearly independent eigenvectors or only
one. Suppose it has two. Then they span the plane and, in fact, any vector is an eigenvector, i.e.,
the system can hurtle towards (λ < 0) or away from (λ > 0) the fixed point along any straight
line originating at zero (Fig. 38a). Indeed, the phase trajectories satisfy (8.9) with λ1/λ2 = 1:

ξ

ξ0
=

η

η0
, (8.17)

which describes straight lines. Such a node is called a star (stable or unstable depending on the
sign of λ).

Let us work out precisely for what kind of matrix A this scenario occurs. All vectors must be
eigenvectors, so we must have

∀
(
x
y

)
,

(
a− λ b

c d− λ

)
·
(
x
y

)
= 0 ⇒ b = c = 0, a = d = λ ⇒ A =

(
λ 0
0 λ

)
.

(8.18)
Thus, stars are a bit boring. Are they also irrelevant, requiring b = c = 0 and thus potentially
sensitive to nonlinear perturbations?

It turns out that it is possible to find classes of fnl such that a star will stay a star (i.e.,
trajectories will still approach the fixed point at all angles) or will look more like a node (with
trajectories hugging one direction) or a focus (§8.1.6).50 In particular, a star stays a star if the
nonlinearity is quadratic or higher-order.

Let us see now what happens in the arguably more generic situation when bc 6= 0, i.e., when
A is allowed to have off-diagonal terms. It is then not diagonalisable, but, as we know from
Schur’s theorem (§6.3.1), it can be turned into a triangular form by a unitary transformation.
The matrix of this transformation is U = (vw), where v is the sole available eigenvector and w
is any vector orthogonal to it (see §6.3.2). Then(

x
y

)
= U ·

(
ξ
η

)
= ξv + ηw ⇒

{
ξ̇ = λξ + αη,
η̇ = λη,

(8.19)

where we can always have α > 0 (by reversing the sign of w if not). In order to sketch the phase

50Q5.2(ii) is an example of the latter scenario.
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(a) (b)

Figure 39. (a) A stable focus (λ1,2 = Γ±iΩ, Γ < 0) in the basis {v,w}, where A is transformed
according to (8.22). (b) A stable focus in the original Cartesian basis. An unstable focus (Γ > 0)
looks the same but with arrows reversed.

portrait of this system, let us observe that

dη

dξ
=

(
ξ

η
+
α

λ

)−1

→


0, when η = 0, ξ finite,
λ

α
, when ξ = 0, η finite,

∞, when η = −λ
α
ξ.

(8.20)

This is enough to piece together a phase portrait: when λ > 0, phase trajectories run away
from the fixed point along the one available eigendirection before executing a partial U-turn
(at η/ξ = −λ/α, where dη/dξ = ∞) and taking off to infinity (Fig. 38b); when λ < 0, they
do the same thing in reverse and in mirror reflection (Fig. 38c). These are unstable and stable
degenerate (or improper) nodes. An example of this kind of behaviour was the critically damped
oscillator (§5.1.2).

Like the stars, the degenerate nodes qualitatively survive the effect of quadratic or higher-
order nonlinear terms, but for gentler nonlinearities, they are liable to change, roughly speaking
in the direction of looking more like spirals converging into or coming out of foci (§8.1.6)—not,
perhaps, surprising as they are a case that sits at the boundary in the (T,D) space separating
nodes and foci.

Note that the method that I have used to figure out the phase portraits in Figs. 38(b,c) is
representative of the sort of thing you might generally have to resort to when in doubt: work
out the phase-velocity field (ξ̇, η̇) [or (ẋ, ẏ)] on some special curves in phase space and try to
make the phase portrait consistent with these scraps of information. The most obvious special
curves are the axes of whatever coordinate system you choose to work in (here ξ = 0 and η = 0)

and the null-clines, which are the curves where ξ̇ = 0 or η̇ = 0 (equivalently, dη/dξ =∞ or 0),
i.e., where the “phase flow” is either vertical or horizontal.

8.1.6. Foci: 4D > T 2 > 0

In this case, we have two different complex eigenvalues that are conjugates of each
other:

λ1,2 = Γ ± iΩ , where Γ =
T

2
, Ω =

√
D − T 2

4
. (8.21)

An example of such a system is the underdamped oscillator (5.10), or, equivalently, the
θ = 0 equilibrium of the damped mathematical pendulum (§3.5.4, Fig. 16). It is instantly
clear what will happen qualitatively: the trajectories will wind around the fixed point
with the period 2π/Ω (this is the 2D representation of an oscillation) and spiral either
in or out of it, depending on the sign of Γ (Fig. 39). Fixed points of this type are called
stable or unstable foci (or spirals). They turn out to be robust to any nonlinear meddling:
close enough to the fixed point, a spiral stays a spiral, regardless of what the nonlinearity
does (this makes intuitive sense).
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(a) (b)

Figure 40. (a) A centre (λ1,2 = ±iΩ) in the basis {v,w}, where A is transformed according to
(8.22). (b) A centre in the original Cartesian basis. The basis {e1, e2} is one where the energy
has the form (8.34); the basis vectors determine the directions of the semi-major and semi-minor
axes of the elliptic trajectories.

In the interest of show-casing some nice mathematical tricks, let me demonstrate explicitly that
phase trajectories are indeed spirals. Since the two eigenvalues are different, there will be two
linearly independent eigenvectors, complex conjugates of each other: v and v∗ [see (6.24)]. If we
denote v = u + iw, where u and w are both real, we can make a matrix S = (wu) and ask
what it will do to A: since A is real,

A · S = (A ·w A · u) = (Im(A · v) Re(A · v)) = (Im(λv) Re(λv))

= (Γw +Ωu Γu−Ωw) = S ·
(
Γ −Ω
Ω Γ

)
⇒ A = S ·

(
Γ −Ω
Ω Γ

)
· S−1. (8.22)

If we apply this decomposition to our equation (8.5), we get

ẏ = S ·
(
Γ −Ω
Ω Γ

)
· S−1 · y ⇒ ξ̇ =

(
Γ −Ω
Ω Γ

)
· ξ, where ξ = S−1 · y ≡

(
ξ
η

)
. (8.23)

Now let ζ = ξ + iη. Then

ζ̇ = ξ̇ + iη̇ = Γξ −Ωη + iΩξ + iΓη = (Γ + iΩ)ζ ⇒ ζ = r0e
Γt+i(Ωt+φ0), (8.24)

where r0 =
√
ξ2
0 + η2

0 and φ0 are the radius and phase of the initial condition. In the (ξ, η)

plane, this is an anticlockwise logarithmic spiral with period 2π/Ω and radius r = r0e
Γt =

r0e
(Γ/Ω)(φ−φ0). When transformed back into the (x, y), this is still a spiral, if possibly somewhat

squashed (u and w are not necessarily orthogonal). Whether it is still anticlockwise depends on
whether the {u,w} basis has the same handedness as the Cartesian one.

Note that we have discovered the usefulness of the transformation to polar coordinates: for
(ξ, η)→ (r, φ), our original equation (8.5) becomes just{

ṙ = Γr,

φ̇ = Ω.
(8.25)

It is often a good idea to manipulate even your nonlinear system into these coordinates and think
of the 2D dynamics in terms of distance from the origin and phase and of the nonlinearities as
making the effective growth/damping rate Γ and frequency Ω depend on r and φ (see, e.g.,
Glendinning 1994, §5.2).

8.1.7. Centres: 4D > T 2 = 0

In this case, the eigenvalues are purely imaginary:

λ = ±iΩ . (8.26)

From the above analysis, it is instantly clear that phase trajectories will circle around
the fixed point (Fig. 40), rather than spiralling in or out. These trajectories are ellipses,
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as I will prove in §8.1.8. A fixed point of this type is called a centre. An example is the
θ = 0 equlibrium of an undamped pendulum (§3.5.1, Fig. 13).

In principle, this is again a pathological case and you might imagine (and would be
correct in many cases) that a small nonlinearity that provides a damping or a growth of
perturbations will turn a centre into a focus.

8.1.8. Conservative Systems

However, the case of centres is rather important because it describes a situation in
which there is a conservation law: the closed trajectories are level sets of some function
that, throughout the system’s evolution, stays the same as it was initially. We shall call
this function energy. In many physical settings, energy conservation is a fundamental
principle that governs both linear and nonlinear dynamics—in which case, the energy of
the linearised system is an approximate version of the energy of the nonlinear system, so
the nonlinearity conspires in making the system conservative. The phase trajectories must
then stay on surfaces of constant energy. In such situations, a centre remains resilient to
nonlinear perturbations.

We have seen an example of this in the nonlinear, undamped pendulum (§3.5.2,
Fig. 15; a host of other such systems was studied in §7). A slight generalisation of this
example is as follows. Consider a 1D system subject to a potential force:

ẍ = −U ′(x), or

{
ẋ = y
ẏ = −U ′(x).

(8.27)

This conserves energy:

E =
y2

2
+ U(x) ⇒ Ė = 0. (8.28)

At the fixed point, assumed to be at the origin, U ′(0) = 0, so, in its vicinity,{
ẋ = y,
ẏ = −U ′′(0)x

and E =
y2

2
+ U(0) + U ′′(0)

x2

2
. (8.29)

If U ′′(0) > 0, the trajectories are ellipses y2 +U ′′(0)x2 = const, and the energy conserved
by the linear system is just the true energy (8.28) approximated near the fixed point.
The phase trajectories of the full nonlinear system are level sets of E = const and so
will also be closed curves, at least as long as E is sufficiently close to U(0). Thus, the
qualitative nature of the centre is not destroyed by nonlinearity.

It is not hard to figure out what the conserved energy for the linearised system (8.5) is:51 it is
clear that it should be quadratic in x and y and so we may let

E = αx2 + 2βxy + γy2. (8.30)

Since, ∀x and y, we must have

Ė = 2αxẋ+2β(ẋy+xẏ)+γyẏ = 2(αa+βc)x2+2(αb+βa+βd+γc)xy+2(βb+γd)y2 = 0, (8.31)

setting to zero the coefficients of x2, y2 and xy gives us three linear equations for α, β and γ:a c 0
b a+ d c
0 b d

 ·
αβ
γ

 = 0. (8.32)

These equations are readily seen to be solvable when T = a+d = 0, as indeed we assumed when

51This somewhat more laborious procedure than that described in §7.2.1 is needed because here
we are dealing with with a matrix that is not necessarily symmetric.
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Figure 41. Classification of 2D equilibria based on the values of T = trA and D = detA.

we embarked on studying the case of two imaginary eigenvalues. This gives us52

E = −1

2
cx2 + axy +

1

2
by2 = y · B · y, where B =

1

2

(
−c a
a b

)
. (8.33)

Since B is a symmetric matrix, it has two real eigenvalues Λ1 and Λ2 and two orthonormal
eigenvectors e1 and e2, which, once combined into the orthogonal matrix R = (e1 e2), rotate
our plane into the coordinates in which B is diagonal:

E = y · R ·
(
Λ1 0

0 Λ2

)
· RT · y = Λ1X

2 + Λ2Y
2, where

(
X
Y

)
= RT ·

(
x
y

)
. (8.34)

Since Λ1Λ2 = detB = −(bc+ a2)/4 = D/4 > 0 by the founding assumption of this section, the
eigenvalues have the same sign, which can be assumed positive (otherwise, redefine E → −E ).
Thus, the integral curves of our equation (8.5) are ellipses E = const with semi-major and

semi-minor axes (E /Λ1)1/2 and (E /Λ2)1/2 (assuming Λ1 6 Λ2). Their orientation is given by e1

and e2, respectively.53

This is it: we have covered all possible 2D equilibria. This is sometimes called the
Poincaré classification. In Fig. 41, all the different cases (12 of them: saddles, sta-
ble/unstable nodes, degenerate nodes, stars, stripes, foci, and centres) are placed in their
applicability regions of the (T,D) plane.

The way forward now is to identify the fixed points of nonlinear systems, work out
local phase portraits and then “connect the dots” (Fig. 42). This works surprisingly well
for many (simple) systems,54 especially if one is willing to be assisted by some additional
tricks like looking at the null-clines (see discussion at the end of §8.1.5). However, before
we can do this with a modicum of confidence, we have to learn about one other possible

52Another way to get this result is to notice that, in view of (8.24), E = ξ2+η2 = y·(S−1)T ·S−1·y,

so B = (S−1)T · S−1 (up to an arbitrary multiplicative constant because if E is conserved, so is
any multiple of it). Working out the eigenvector v = u + iw, hence S = (wu), and hence B,
should get you (8.33). Yet another, and the quickest, way of getting (8.33) is to find E = H(x, y)
from (8.35).
53A somewhat quicker, but less satisfying to linear-algebra aficionados, way to pin down these
ellipses is to notice that the phase-space points at the ends of the major and minor axes must
satisfy y · ẏ = 0 (the phase velocity at these points is perpendicular to the radius vector; see
Fig. 40b). This gives y ·A ·y = 0, whence one gets a quadratic equation for y/x, its two solutions

giving the orientations of the axes of the ellipses. Their lengths are then given by (x2 + y2)1/2.
54A nice, carefully worked example (Fig. 42b) can be found in Strogatz (1994, §6.4) or in
Glendinning (1994, §5.3, the same example).
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(a) (b)

Figure 42. Simple examples of phase portraits. (a) An abstract system with an unstable
focus and a saddle: ẋ = x− y, ẏ = x2 − 4 (as an exercise, check that this is indeed the phase
portrait). (b) A Lotka–Volterra population model (“rabbits and sheep” competing for the same
grass) with three nodes and a saddle: ẋ = x(3− x− 2y), ẏ = y(2− x− y); see Strogatz (1994,
§6.4) or Glendinning (1994, §5.3). The one interesting qualitative feature here is that, depending
on which side of the stable manifold (the separatrix going into the saddle; see §8.1.2) you start,
you will end up in a different long-term equilibrium.

feature of 2D systems that can also describe their long-time behaviour and that certainly
affects the look of their phase portraits: limit cycles.

Exercise 8.4. Strogatz’s Classification of Love Affairs. It might amuse you to recast the
classification of 2D equilibria in terms of the dynamics of a relationship between two lovers
whose feelings for one another depend on the other’s response: see Strogatz (1994, §5.3 and its
accompanying exercises). Thinking about romantic interpretations and implifications of different
parameter regimes might help you master the material. #oxlove

Exercise 8.5. Classify the 3D equilibria of linear ODEs (Arnold 2006, §21.1 lets you have a
glimpse of the answer but leaves some space for creativity).

8.2. (Nonlinear) Digression: Hamiltonian Systems and Adiabatic Invariants

[Literature: Landau & Lifshitz (1976, §49)]

This topic does not strictly belong here, but there is nothing wrong with taking a quick peek
at more advanced material when the context is begging for it.55

The context in question is that of conservative systems, whose phase portraits locally look
like centres and remain robust to nonlinearity because there is a conserved energy—the centres
are the minima of this energy and its level sets are the phase trajectories of the system. Such
systems of ODEs in mechanics are known as Hamiltonian systems (§I.6). They have the general
form 

ẋ =
∂H

∂y
,

ẏ = −∂H
∂x

,

(8.35)

where H(x, y) is a function, known as the Hamiltonian, which turns out to be the energy of the
system: indeed, defining

E (t) = H(x(t), y(t)), (8.36)

55I am grateful to Radek Grabarczyk for getting me to include this material.

https://www.facebook.com/theoxlove/
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(a) (b)

Figure 43. (a) Pendulum with slowly changing length. (b) Conserved adibatic invariant (8.48)
is the area of phase space enclosed by a closed phase trajectory (which is a level set of the
Hamiltonian).

where (x(t), y(t)) is the phase trajectory, we find immediately, using (8.35), that56

Ė =
∂H

∂x
ẋ+

∂H

∂y
ẏ = 0. (8.37)

Going back to §3.5.2, you might recall that equations of motion for the undamped pendulum
could indeed be written in the form (8.35) [see (3.22)]. The same is very obviously true for the
slightly more general case (8.27) and also for the general 2D linearised system (8.5) with d = −a
and the energy (8.33).

Now let me venture slightly outside my declared remit of studying only autonomous systems
and show you how sometimes one can get somewhere with certain non-autonomous ones. Imagine
that some parameter of our system, which I will call Λ(t), is changing very slowly.57 “Slowly”
means that, for a system following closed trajectories around a centre, the parameter changes
little over one period T of the motion: formally,

TΛ̇� Λ. (8.38)

In the new, non-autonomous system that such a situation engenders, x and y still satisfy (8.35),
but the Hamiltonian function now depends on time via Λ, viz., H = H(x, y, Λ(t)). A good
example of such a situation is again our pendulum, whose length is now slowly changing: e.g.,
the rope on which the mass hangs could be slowly pulled up (Fig. 43a), i.e., the slow-changing
parameter is Λ = l(t). Then{

ẋ = y,
ẏ = −ω2

0(t)x
⇒ H =

y2

2
+ ω2

0(t)
x2

2
, where ω0(t) =

√
g

l(t)
. (8.39)

The energy is no longer conserved:

Ė =
∂H

∂x
ẋ+

∂H

∂y
ẏ +

∂H

∂Λ
Λ̇ =

∂H

∂Λ
Λ̇. (8.40)

It turns out, however, that there is another quantity that is conserved—more robustly than
energy, even if only approximately. This quantity is called the adiabatic invariant and is equal
to the area of the region of the phase space enclosed by the trajectory followed by the system
in each oscillation. I am going to derive this result now.

Let us average (8.40) over the period T of oscillations:

〈Ė 〉 = Λ̇

〈
∂H

∂Λ

〉
= Λ̇

1

T

∫ t+T

t

dt′
∂H

∂Λ
(x(t′), y(t′), Λ). (8.41)

56Recalling the definition (1.17) of a parametric solution of the first-order ODE (1.14), let us
observe that the phase trajectories of (8.35) are the integral curves of (1.14) with P = ∂H/∂x
and Q = ∂H/∂y, which is then just dH = 0, an equation in full differentials (cf. §2.1). The
Hamiltonian system (8.35) is integrable.
57I dealt with the opposite situation, that of rapid change, in §5.4.
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Here Λ̇ has been pulled outside the averaging because, by the assumption (8.38), Λ(t) changes
little over one period. Let us change the integration variable in the time integral:∫ t+T

t

dt′
∂H

∂Λ
=

∮
dx

dt′

dx

∂H

∂Λ
=

∮
dx

(
∂H

∂y

)−1
∂H

∂Λ
, (8.42)

where the first of the equations (8.35) has been used for dx/dt′. The integral is now over a closed
phase trajectory described by (8.35), or, equivalently, over a level set of the Hamiltonian with a
given fixed energy:

H(x, y, Λ) = E = const. (8.43)

If we treat x as the independent variable (over which we integrate), then y = y(x,Λ, E ). Let us
differentiate (8.43) with respect to Λ:

∂H

∂Λ
+
∂H

∂y

∂y

∂Λ
= 0. (8.44)

From here, we can substitute ∂H/∂Λ into (8.42):∫ t+T

t

dt′
∂H

∂Λ
= −

∮
dx

∂y

∂Λ
. (8.45)

This goes into (8.41), which also contains the period of the motion T . We can calculate it by
the same change-of-integration-variable trick as in (8.42):

T =

∫ t+T

t

dt′ =

∫ t′=t+T

t′=t

dt′

dx
dx =

∮
dx

(
∂H

∂y

)−1

=

∮
dx

∂y

∂E
. (8.46)

Using (8.45) and (8.46), we now deduce from (8.41):

〈Ė 〉 = −Λ̇

∮
dx

∂y

∂Λ∮
dx

∂y

∂E

⇒ 0 =

∮
dx

(
∂y

∂E
〈Ė 〉+

∂y

∂Λ
Λ̇

)
=

〈
d

dt

∮
y dx

〉
. (8.47)

Thus, we have a quantity, the adiabatic invariant, that does not change on average, even though
both E and Λ do (i.e., it changes even more slowly than they do):

〈İ〉 = 0, where I =

∮
y dx . (8.48)

But I is nothing but the area inside the closed phase trajectory (Fig. 43b), as I promised.

Let us return to our example (8.39) of a linear oscillator with a slowly changing length, and
ask how the amplitude of the oscillations will change as the mass is slowly pulled up. For any
given value of energy, the phase trajectory is an ellipse:

y2

2
+ ω2

0
x2

2
= E , (8.49)

with semi-axes
√

2E and
√

2E /ω0. The adiabatic invariant (8.48) is the area of this ellipse:

I =
2πE

ω0
. (8.50)

Since this must stay constant as the frequency increases (as l gets smaller, ω0 gets larger), the
energy of the oscillations will increase proportionally to it.

Thus, armed with adiabatic invariance, we can trace the time evolution of the phase portrait
of a non-autonomous system and thus predict the system’s behaviour.

Exercise 8.6. What will happen to the mean square amplitude of the oscillations and to their
mean square velocity? Sketch how the phase portrait of the pendulum will change with time.
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(a) (b)

Figure 44. Trapping regions: (a) with a fixed point inside, (b) with no fixed points and a
limit cycle inside.

8.3. Limit Cycles

[Literature: Strogatz (1994, §7), Glendinning (1994, §5.8)]

Apart from fixed points, limit cycles are the only other non-boring type of phase
trajectories in 2D (see the classification before Exercise 8.2)—the closed trajectories.58

Physically, they represent a nonlinear phenomenon known as auto-oscillations, which are
instances of periodic (but not usually sinusoidal) behaviour that can happen in dissipative
systems at finite amplitude59 and are an interesting example of a natural tendency for
things to go back and forth.

As I noted before, the 2D world is quite restrictive for phase trajectories because they
must wonder on a plane without ever intersecting each other or themselves. Imagine, e.g.,
that we can identify a region R of phase space, called a trapping region, that trajectories
can enter but not exit: this can be done by tracing a closed curve C in the (x, y) plane
and showing that everywhere on C the phase-velocity feld (ẋ, ẏ) either points inwards or
is tangent to C .60 What kind of future does a trajectory have if it enters such a region?
One obvious possibility is that there is a stable fixed point inside it, perhaps a node
(§8.1.1) or a focus (§8.1.6), into which all trajectories eventually converge (Fig. 44a).
What, however, if there are no fixed points there or if there are but they are unstable?
It is not hard to imagine how to construct the latter situation. Let us say that we have a
nonlinear system whose linearisation around a fixed point identifies that fixed point as a
stable node or focus and whose global nonlinear behaviour is such that phase trajectories
from far away drift towards that fixed point (i.e., there is a trapping region R enclosing
the fixed point). Now imagine that we change some parameter of the system in such a
way as to render the fixed point unstable (say, turn it into an unstable focus) without
necessarily changing very much the far-away nonlinear behaviour of phase trajectories,
so the trapping region still exists. Then we can easily draw a small circle enclosing our

58I mean isolated closed trajectories, i.e., ones in whose immediate vicinity the phase trajectories
are not closed. In conservative systems, the whole phase space can be foliated into level sets of
a conserved energy, many of which are closed trajectories (§8.1.7), but, having spent quite a lot
of time on them (see §§3.5.2, 8.1.7, 8.2, Q3.9, Q5.1), I am not interested in them anymore.
59Unlike the good old linear oscillations at infinitesimal amplitude, studied in exhausting detail
in §§5.1.1, 5.3 and 7.
60The latter case corresponds to a situation in which some part of C coincides with one of the
phase trajectories. This sometimes proves to be a useful trick in identifying uncrossable borders
in phase space (try this in Q5.4).



Oxford Physics Lectures: Ordinary Differential Equations 103

(a) Poincaré (b) Bendixson

Figure 45. (a) Jules Henri Poincaré (1854-1912), great French mathematician and polymath,
responsible for too many foundational results and insights to give him justice in a caption.
Neither modern mathematics nor physics would have been the same without him. A case in
point for Landau’s observation that ability in science is measured on a log scale. (b) Ivar Otto
Bendixson (1861-1935), Swedish mathematician, who was also a politician interested in the
plight of poor students. He is famous mostly for dotting the i’s and crossing the t’s on Poincaré’s
theorem.

Figure 46. Poincaré–Bendixson theorem: trajectory C wonders into trapping region R, never
leaves, ends up on the limit cycle.

unstable fixed point in such a way that all phase trajectories cross this circle in the
outward direction. Thus, we now have an annular trapping region (Fig. 44b), with no
fixed points inside and with phase trajectories rushing in from both outside and inside
the annulus. It is perhaps intuitive that they will not be able to wonder around there
aimlessly forever but instead eventually converge onto a closed trajectory, a limit cycle.

8.3.1. Poincaré–Bendixson Theorem

This narrative is formally confirmed by the following Poincaré–Bendixson theorem
(Fig. 45).
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(a) (b)

Figure 47. Phase portraits for Odell’s model of population dynamics (Q5.4): (a) when there
is a stable focus, (b) when there is an unstable focus and a limit cycle (the bold curve).

Theorem 6. Suppose that

(a) the phase velocity field of the ODE

ẏ = f(y) (8.51)

is continuously differentiable in some open domain D ⊂ R2;

(b) there exists a phase trajectory C of (8.51) that enters and never leaves some closed,
bounded region R ⊂ D , which contains no fixed points of (8.51).

Then R contains at least one closed, periodic phase trajectory of (8.51) and the trajectory
C converges to it as t→∞ (Fig. 46).

You will find a readable proof of this result in, e.g., Glendinning (1994, §5.8).

While, formally speaking, you only need one phase trajectory trapped in R, the
practical strategy for applying the Poincaré–Bendixson theorem is to go for overkill and
find R, a trapping region, such that no trajectories can leave and some definitely enter.
Practical tips for constructing R are:

—look for curves in phase space that phase trajectories can cross in one direction only;

—where opportune, complete the boundary of R with pieces of phase trajectories
(which other phase trajectories cannot cross);

—more often than not, limit cycles enclose unstable fixed points,61 as envisioned above,
in which case R will have “holes” surrounding those fixed points.

An excellent example of all this is Q5.4 (Fig. 47), dealing with a model of population dynamics.

61That is because they are often “born” as some parameter is changed and a stable fixed point
becomes unstable—this is called a Hopf bifurcation (see Strogatz 1994, §8.2 or, for a somewhat
more detailed treatment, Glendinning 1994, §8.8). This happens, e.g., in Q5.4: Fig. 47 shows
the phase portraits of the system considered there with a stable focus (a) and with an unstable
focus and a limit cycle (b); a Hopf bifurcation happened between (a) and (b). Eberhard Hopf
(1902-1983) was an Austrian-German-American mathematician, student of Schur (Fig. 27), a
founding father of the bifurcation theory and the ergodic theory. In a feat of bad judgment
(or even worse politics), he managed to move to Nazi Germany from the US in 1936, where he
proceeded to have a successful professorial career all through the lifetime of the Third Reich—and
ended up back in the US after the war!
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(a) van der Pol (b) Liénard

Figure 48. (a) Balthasar van der Pol (1889-1959), a Dutch radio engineer, famous for his
oscillator, which was a model of an electrical circuit—do investigate further if our department’s
pedagogical efforts have made you a fan of analogue electronics. (b) Alfred-Marie Liénard
(1869-1958), French mining and electrical engineer, inventor of the Liénard–Wiechert retarded
potentials for a moving point charge—and of Theorem 7.

Models of population dynamics, sometimes referred to as Lotka–Volterra62 equations, are a
prolific field of application of the theory of dynamical systems. They typically involve two species
that multiply and die at some rates related to their number and to the availability of food, and
whose numbers are coupled to each other either because they compete for the same food supply
(e.g., Fig. 42b) or because one of them is the food supply of the other (in which case we are
dealing with a predator-prey model; e.g., Fig. 47).

If you followed the advice of footnote 54, you have already encountered one such model. In
that example, there were a number of fixed points but no limit cycles. In fact, limit cycles
are an endemic feature of predator-prey models. This makes sense: what they describe is a
basic sequence of events in which the predators eat the prey, get happy and numerous, eat ever
more prey, drive it near extinction, the situation becomes unsustainable, food shortages ensue,
predator numbers start dwindling, prey gets a respite, starts procreating with renewed vigour,
its numbers recover, at which point predators perk up at the increased food supply and the cycle
repeats itself. Regrettable perhaps, but such is the (limit) cycle of life.

8.4. Auto-Oscillations

Since fixation on oscillators has been a hallmark of our course, let me discuss the
circumstances in which limit cycles make an appearance in this context. Physically, they
represent a situation in which a system undergoes sustained oscillations with a fixed
period and finite amplitude (so they are a nonlinear phenomenon). This comes about
when there is an energy source and an energy sink and the system finds a regime in
which it can periodically draw energy from the source, then dissipate it, then draw
more, dissipate again, etc. Your heart is a nonlinear oscillator of this kind, as is your
grandfather’s clock (if you thought that its pendulum was an example of the boring,
linear oscillations that we discussed in §§3.5 and §5, do investigate the matter more
thoroughly!).

The simplest, best known example of such a system is van der Pol’s oscillator

62Alfred James Lotka (1880-1949), American chemist and statistician. Vito Volterra (1860-1940),
Italian mathematician best known for his theory of integral equations. He was a senator of the
Italian Kingdom, an enthusiastic participant of World War I, and an opponent of Mussolini, who
kicked him out of his job and, in the end, Italy (Volterra was philosophical about it: “Muoiono
gl’imperi, ma i teoremi d’Euclide conservano eterna giovinezza”).
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(a) (b)

Figure 49. Typical phase portraits of (a) van der Pol’s oscillator (8.52), (b) the easy
case (8.53). The limit cycles are shown as bold curves.

(Fig. 48a):

ẍ+ γ(x2 − 1)ẋ+ x = 0 , γ > 0. (8.52)

When x � 1, this looks like the usual linear oscillator (5.11) (time rescaled to make
ω0 = 1), but with the sign of friction reversed: now γ represents an instability, i.e., any
small oscillation initially triggered in the system will grow exponentially at the rate γ.
This is the energy source in the system. Since small initial perturbations grow, they must
eventually stop being small, x reaching order-unity amplitude. At that point the γx2ẋ
term switches on, representing nonlinear friction: finite displacements are dissipated by
the system—this is the energy sink.

Intuitively, it is perhaps clear that this should lead to a limit cycle: the instability
amplifies perturbations, they get to a finite amplitude, overshoot (x > 1), nonlinear
friction kicks in, perturbations decay, x drops below unity, instability turns on again, etc.
Mathematically, it is not an elementary task either to prove that there is a limit cycle or
to work out its shape—there is, in fact, a sizeable body of literature dedicated solely to
van der Pol’s oscillator, which has proved an inspiration to nonlinear dynamicists.

In order to show you a solvable example of a limit cycle (there will be another in
§8.4.2), let me consider a modified version of van der Pol’s equation (Anosov 2016),
which, as far as I know, does not describe anything real,63 but is easy to analyse:

ẍ+ γ(x2 + ẋ2 − 1)ẋ+ x = 0. (8.53)

Recasting (8.53) as a 2D dynamical system, we make it into{
ẋ = y,
ẏ = −x+ γ(1− x2 − y2)y.

(8.54)

Let us go to polar coordinates, x = r cosφ, y = r sinφ, or, equivalently, to make
calculations even more compact, turn our R2 plane into C: z = x+ iy = reiφ. Then

ż = ṙeiφ + iφ̇ reiφ = y − ix︸ ︷︷ ︸
= −iz

= −ireiφ

+ iγ(1− r2)r sinφ. (8.55)

63Although it is not necessarily unphysical: there is nonlinear friction here that is due to finite
displacement and finite velocity. Why not! The reason everyone prefers van der Pol’s equation
(8.52) is that it is much harder and wonderfully nontrivial, with a whimsically shaped limit cycle
(Fig. 49a; see also §8.4.2).
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Dividing through by eiφ and requiring the real and imaginary parts of the resulting
equation to be satisfied separately, we get{

ṙ = γr(1− r2) sin2 φ,

φ̇ = −1 + γr(1− r2) sinφ cosφ.
(8.56)

There is an unstable focus at the origin and a stable cycle at r = 1, which phase
trajectories approach clockwise both from inside and outside (Fig. 49b). There is, of
course, a trapping region: this can be, e.g., any annulus r1 < r < r2 with r1 < 1 and
r2 > 1. All trajectories cross these circular boundaries inwards except on the x axis
(sinφ = 0), but that is OK: they slip up or down the circle tangentially and then turn
inwards anyway.

8.4.1. Liénard’s Theorem

[Literature: Strogatz (1994, §7.4)]

There is a rigorous mathematical result that guarantees a limit cycle for van der Pol’s equation
as well as for a family of similar systems:

ẍ+ f(x)ẋ+ g(x) = 0 , (8.57)

where f(x) and g(x) are continuously differentiable functions. For such systems, we have the
following Liénard’s theorem (Fig. 48b).

Theorem 7. Suppose that

(a) g(x) is an odd function, g(x) > 0 for x > 0;

(b) f(x) is an even function;

(c) the function F (x) =
∫ x

0
dx′f(x′), which is odd, has a single zero at x > 0, viz., F (x0) = 0,

F (x) < 0 at 0 < x < x0, F (x) > 0 and F ′(x) > 0 at x > x0, and F (x→∞)→∞.

Then the system (8.57) has a unique, stable limit cycle enclosing the origin.

I am not going to prove this result, but perhaps I can convince you that it makes sense. Observe
that Ḟ = f(x)ẋ. Let us define new phase-space coordinates (known as Liénard’s coordinates) to
be x and y = ẋ+ F (x). In these coordinates, (8.57) becomes{

ẋ = y − F (x),
ẏ = ẍ+ f(x)ẋ = −g(x).

(8.58)

The condition (a) of Theorem 7 implies that g(x) is the usual kind of restoring force accelerating
the system in the direction opposing displacement. The conditions (c) on F (x) imply that the
nonlinear friction is negative (pushes x to larger values) at low x and positive (tries to reduce
x) at high x. This is a general description of the basic physical situation that I posited in the
context of van der Pol’s equation (8.52).

Using the latter as our working example, we see that for it,

g(x) = x, f(x) = γ(x2 − 1), F (x) = γx

(
x2

3
− 1

)
, (8.59)

so Theorem 7 applies: there is a unique, stable limit cycle (Fig. 49a). Hurrah.

8.4.2. Relaxation Oscillations

[Literature: Strogatz (1994, §7.5)]

There is a parameter regime in which it is relatively easy to see that van der Pol’s
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(a) (b)

Figure 50. Overdamped van der Pol’s oscillator: (8.52) with γ � 1. (a) A typical trajectory’s
journey onto the limit cycle in the Liénard’s phase plane [see (8.60)]. (b) Relaxation oscillations:
x vs. t. The long, slow bits taking x from ±2 to ±1 correspond to the phase trajectory crawling
along the cubic y = F (y); they last for a time ∼ γ � 1. The quick transitions are the mad
dashes from the extrema of the cubic to its opposite brach; they take a time ∼ γ−1 � 1.

equation (8.52) exhibits a limit cycle—and that limit cycle has quite pleasingly nontrivial
and physically interesting behaviour. This is the case of γ � 1, a kind of “overdamped”
nonlinear oscillator (cf. §5.1.1).

Let us use Liénard’s variables [see (8.58)] for (8.52), except also rescale everything with
γ:

y = γ−1ẋ+ F (x), where F (x) = x

(
x2

3
− 1

)
⇒

{
ẋ = γ[y − F (x)],
ẏ = −γ−1x. (8.60)

The salient property of this system (not unlike a regular overdamped oscillator in that
respect; see §5.1.1) is the presence of two disparate time scales: generally speaking, x
changes very fast, at the rate ẋ ∼ γ � 1, while y changes slowly, at the rate ẏ ∼ γ−1 �
1.64 The presence of a large coefficient γ in the equation for ẋ means that, in any generic
place on the phase plane, the system will have a very large horizontal velocity towards a
state in which the expression multiplied by γ is small, i.e., towards the null-cline where
ẋ = 0. This is the cubic curve y = F (x): see Fig. 50(a). When y > F (x), ẋ > 0 pushes the
system right, towards the upward-pointing branch of the cubic; when y < F (x), ẋ < 0
and the system moves left, towards the downward-pointing branch. Once the system’s
trajectory hits this cubic, it is forced to stay in its vicinity, because were it to try and
run away, it would be pushed right back by increased ẋ. In the vicinity of the cubic,
y − F (x) ∼ γ−2, ẋ and ẏ are comparable and slow (∼ γ−1). At x > 0 (x < 0), we have
ẏ < 0 (ẏ > 0), so the system will crawl slowly down (up) along the cubic, until it reaches
its minimum (maximum), can dash across to the other branch of the cubic and resume
the crawling (Fig. 50a). This describes a cyclic auto-oscillation, consisting of slow crawls
and mad dashes (or, if you like, gradual build-ups and fast releases).

It is possible to calculate approximately the period of these oscillations. Clearly, most
of the time, the system is crawling (Fig. 50b), so all we need to know is the duration of
a crawl. Since the crawl happens along the null-cline,

y ≈ F (x) ⇒ ẏ ≈ F ′(x)ẋ. (8.61)

64Since the frequency of the oscillator is 1, this means time scales much shorter and much longer,
respectively, than the period of the oscillator.
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But, since, also ẏ = −γ−1x, we find

F ′(x)ẋ ≈ −γ−1x ⇒ dt

dx
= −γF

′(x)

x
= −γ x

2 − 1

x
. (8.62)

The crawl occurs between the maximum (or minumum) of the cubic at x = ±1 and the
point that is the final destination of each dash, where F (x) = F (∓1) = ±2/3, which is
x = ±2. Therefore, the period is

T = 2γ

∫ 2

1

dx
x2 − 1

x
= (3− 2 ln 2)γ. (8.63)

It is always nice to be able to solve something.

One can solve a lot more than this. For example, the case of weak damping, γ � 1, is
begging to be analysed by some suitable approximate method (see Strogatz 1994, §7.6).
One could also ask what happens if you force these kinds of oscillators (they can go
chaotic!). You are now fully (or, at least, somewhat) equipped both to ask such questions
and to work through the answers to them contained in the literature. Enjoy.

Exercise 8.7. Sketch roughly the phase portrait of van der Pol’s oscillator (8.52) with γ � 1
in the usual phase plane (x, ẋ).

8.5. Outlook: Attractors, Dissipative Chaos, and Many Degrees of Freedom

Let me say a few words about where it all leads from here—as usual, all the really
exciting stuff is for the future!

[to be finished up. . . ]
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Figure 51. Sir William Rowan Hamilton (1805-65), a great Irish mathematician. He became
Professor of Astronomy at Trinity College Dublin while still an undergraduate there. The sky
is the limit to a clever undergraduate’s career prospects!

Appendix: Introduction to Lagrangian and Hamiltonian Mechanics
This is not a course on Theoretical Mechanics, but we brush so close against the subject in

so many places that it seems opportune to explain some of it, to get it over with.

I.1. Hamilton’s Action Principle

[Literature: Landau & Lifshitz (1976, §2), Arnold (1997, §§12-13)]

Have you asked yourselves what physics starts with and why? In the standard school cur-
riculum, it starts, effectively, with Newton’s Second Law, relating the acceleration of point
masses to something called forces, acting on those masses. Because one is taught all that at an
unquestioning age, one comes to regard this starting point as “natural”.

Theoretical physics (as codified by, obviously, Landau & Lifshitz 1976, and the subsequent
volumes) comes as a culture shock to many because that is not where it starts at all. It starts
with the notion that “systems”, whatever they are, live in “phase space”, parametrised by some
generalised coordinates q and their time derivatives q̇. These can be the displacements of the
kind that I have, in the above, called y (or sometimes x), or they can be the “eigencoordinates”
ξ, or something else—at this point in the argument, it does not matter which, as long as they
have the right number of dimensions to capture all of the system’s degrees of freedom. As time
(whatever that is) advances, systems move along trajectories in their phase space, q(t). Doing
physics is about predicting these trajectories.

The starting point for that is Hamilton’s action principle (Fig. 51): the postulate that systems
always follow trajectories that minimise something called action, which is an integral over
something else called a Lagrangian, L(t, q, q̇), a scalar function of t, q and q̇:

S[t, q] =

∫ t

0

dt′L(t′, q(t′), q̇(t′))→ min . (I.1)

Action is a functional, meaning that it depends on the entire phase-space trajectory q(t′) from
t′ = 0 to t′ = t. To minimise action associated with getting from some place q(0) to some other
place q(t), one allows small perturbations of the phase-space trajectory connecting these points,
q(t)→ q(t)+δq(t), holding the start and end points of the evolution fixed, i.e., δq(0) = δq(t) = 0.
To find the minimum (or, to be precise, the extremum) point of S, one sets the variation of the
action to zero:

0 = δS ≡ S[t, q + δq]− S[t, q] ≈
∫ t

0

dt′
(
∂L

∂q
· δq +

∂L

∂q̇
· δq̇
)

(t′)

=

∫ t

0

dt′δq(t′) ·
(
∂L

∂q
− d

dt′
∂L

∂q̇

)
(t′). (I.2)
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The last step involves integration by parts; boundary terms vanish because δq(0) = δq(t) = 0.
As δS has to vanish for any (infinitesimal) variation δq(t′) of the phase-space trajectory q(t′),
it must be the case for the optimal trajectory that

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (I.3)

This is called the Euler–Lagrange equation (Figs. 22 and 8), a differential equation connecting
q, q̇, and t that describes the system’s peregrinations in phase space, but is not very useful until
we know what L is.

To work out what it is, we do not have much to fall back on apart from some very basic
principles.

I.2. Lagrangian of a Point Mass

[Literature: Landau & Lifshitz (1976, §4)]

Consider a point mass in an otherwise empty space. Both space and time are homogeneous
and isotropic, i.e., there are no special points or directions in either. Therefore, if q = r, the
point mass’s position, and q̇ = v its velocity, its Lagrangian can only depend on v2:

L = L(v2) ⇒ d

dt

∂L

∂v
= 0 ⇒ ∂L

∂v
= const ⇒ v = const , (I.4)

the last step following from the fact that ∂L/∂v = 2v∂L/∂v2 is a function only of v. This is
called the principle of inertia—free point masses move at constant velocities.

Let us now postulate Galilean invariance of the laws of physics: action must not change under
a Galilean transformation,

r′ = r + ut, t′ = t, (I.5)

where u is a constant. Let us consider the particular case of u being infinitesimal and work out
what happens to the Lagrangian of a free point mass under this transformation:

L(v′2) = L(v2 + 2v · u+ u2) ≈ L(v2) +
∂L

∂v2
2v · u. (I.6)

Now we notice that, as far as action is concerned, you can add to the Lagrangian a full time
derivative of any function f(t, q, q̇) without affecting the value of the integral (I.1) between two
fixed phase-space points. Therefore, it must be the case that, for some f ,

L(v′2)− L(v2) =
∂L

∂v2
2

dr

dt
· u =

df

dt
⇒ ∂L

∂v2
= const ≡ m

2
⇒ L =

mv2

2
, (I.7)

where mass, by definition, is (twice) the constant of proportionality between v2 and L. Mass
must be positive, because otherwise the action associated with a free particle would be negative
and minimised at infinite velocities.

Exercise I.1. Show that, with the Lagrangian (I.7), action is invariant with respect to the
Galilean transformation (I.5) with finite u.

I.3. Lagrangian of a System of Point Masses

[Literature: Landau & Lifshitz (1976, §5)]

It is not much fun for a point mass to be alone in the world, so let us give it company. The
Lagrangian of a system of point masses with positions and velocities {ri,vi} is

L =
∑
i

miv
2
i

2
− U(r1, r2, . . . ) , (I.8)

where U is some function of positions, called potential energy. The first term is called kinetic
energy—I will call it K. The rationale for (I.8) is as follows.
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First, if we want to cook up a Lagrangian for a number of particles or systems that do not
interact with each other, it needs to be such that the Euler–Lagrange equation (I.3) for each of
them does not contain any quantities associated with the rest. It then makes sense that their
combined Lagrangian just be a sum of the Lagrangians of each individual system. Hence the
sum of single-particle Lagrangians in (I.8).

Secondly, we shall simply postulate that if these particles interact in some way, either with
some “external” system(s)65 or with other particles in the same population, those interactions
shall be encoded by some function −U of the particles’ spatial coordinates, which is to be added
to the Lagrangian. Then the Euler–Lagrange equation (I.3) for a system of particles is

miv̇i = − ∂U
∂ri

. (I.9)

The gradients of −U with respect to particle positions that appear in the right-hand side of
this equation are called forces. This is a “derivation” of Newton’s (Fig. 11) second law for any
potential (conservative) forces in a nonrelativistic setting. What used to be the starting point
has now become a corollary of the Lagrangian formulation of mechanics.

I.4. Momentum

[Literature: Landau & Lifshitz (1976, §7)]

Now consider a closed system of particles (no external forces). Such a system must be
translationally invariant, in particular, invariant with respect to a constant infinitesimal shift of
all spatial coordinates ri → ri+δr. Therefore, no such transformation can be allowed to change
the Lagrangian:

δL =
∑
i

∂L

∂ri
· δr = 0 ∀δr ⇒

∑
i

∂L

∂ri
= 0. (I.10)

The Euler–Lagrange equation (I.3) then implies

d

dt

∑
i

∂L

∂vi
=
∑
i

∂L

∂ri
= 0. (I.11)

This is the law of conservation of momentum, which leads to the general definition of momentum
associated with the phase-space coordinate q:

p =
∂L

∂q̇
. (I.12)

For a point particle (q = r, q̇ = v), we get what we expect to get based on the familiar, more
mundane definition of momentum: p = mv.

I.5. Energy

[Literature: Landau & Lifshitz (1976, §6)]

65An “external” system is a system whose dynamics are assumed to be known (i.e., when
we minimise action to find the motion of the system under scrutiny, we do not vary the
phase trajectories of the systems external to it). Then, in general, if we have a system
described by some phase-space variables q, to be determined, and “external” system(s)
described by qext(t), which are known functions of time, then the combined Lagrangian is
L = Ksys(q, q̇) + Kext(qext(t), q̇ext(t)) − U(q, qext(t)). Since the kinetic energy Kext of the
external system(s) is a known, fixed function only of time, it is a full time derivative of some
other function, and so can be dropped from the Lagrangian. We are left with the Lagrangian
Lsys = Ksys(q, q̇)−Usys(q, t), where Usys(q, t) = U(q, qext(t)), i.e., the same as (I.8), but allowing
U to depend on time explicitly [if it does not, our system is autonomous; see (8.1)]. An example
of an external system is planet Earth whose known dynamics is to sit there and exert a constant
gravitational force on us. But of course as far as Earth itself is concerned, it moves under the
influence of another external system, the Sun, slaved to the latter’s gravitational pull. And so on.
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In a similar vein, homogeneity of time implies that the Lagrangian of a closed system must
not depend explicitly on time:

L = L(q, q̇) ⇒ dL

dt
= q̇ · ∂L

∂q
+ q̈ · ∂L

∂q̇
= q̇ ·

(
d

dt

∂L

∂q̇

)
+ q̈ · ∂L

∂q̇
=

d

dt

(
q̇ · ∂L

∂q̇

)
⇒ d

dt

(
q̇ · ∂L

∂q̇
− L

)
= 0. (I.13)

The Euler–Lagrange equation (I.3) was used in the first line above. Thus, we have found another
conserved quantity associated with the Lagrangian, which is called energy:

E = q̇ · ∂L
∂q̇
− L . (I.14)

It is immediately obvious that, for the Lagrangian (I.8), E = K + U . Note that, here and in
what follows, we can think of the vector q as having the number of components equal to the
number of coordinates for all the particles in the system, i.e., the number of particles N times 3,
e.g., q = (r1, . . . , rN ).

I.6. Hamilton’s Equations of Motion

[Literature: Landau & Lifshitz (1976, §40), Arnold (1997, §15)]

The emergence of momentum (I.12) and energy (I.14) as interesting and, since conserved,
physically relevant quantities, motivates us to change our phase-space variables (t, q, q̇) →
(t, q,p) and introduce a new function, called the Hamiltonian:

H(t,p, q) = q̇(t,p, q) · p− L(t, q, q̇(t,p, q)). (I.15)

Let us observe that

∂H

∂p
= q̇+

�
�
�∂q̇

∂p
· p−

�
��
�∂L

∂q̇
· ∂q̇
∂p

= q̇,
∂H

∂q
=
�
�
�∂q̇

∂q
· p− ∂L

∂q
−
��

��∂L

∂q̇
· ∂q̇
∂q

= − d

dt

∂L

∂q̇
= −ṗ, (I.16)

where the Euler–Lagrange equation (I.3) was used at the penultimate equality. Thus, we can
now discard the Lagrangian and declare that if we have a Hamiltonian for a system, as a function
of its momenta and coordinates, then the system’s equations of motion are

ṗ = −∂H
∂q

,

q̇ =
∂H

∂p
.

(I.17)

The energy of the system is just E (t) = H(t,p(t), q(t)), so

Ė =
∂H

∂t
+
�
�
��∂H

∂p
· ṗ +

�
�
��∂H

∂q
· q̇ =

∂H

∂t
, (I.18)

where cancellation is achieved by means of Hamilton’s equations (I.17). If a Hamiltonian system
is autonomous, i.e., H = H(p, q) does not depend explicitly on time, then the energy is
conserved.

This is the starting point of the Hamiltonian mechanics—an alternative formulation both to
Newton’s and to Hamilton’s own that was based on the action principle. This new formulation is
the ultimate expression of the “follow the energy” principle: start with some physically and/or
mathematically motivated expression for a system’s energy (the Hamiltonian) and hence derive
the phase-space dynamics via (I.17).66 This is, manifestly, a system of first-order ODEs in a

66Example. Under this scheme, for the two coupled pendula that were our workhorse example
of §7, you would start by writing the system’s energy as (7.27), then turning it into a Hamiltonian
(with pi = mẏi, qi = yi) and using that to derive the governing equations (7.1) via (I.17).
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Figure 52. Evolution of a phase volume with time.

phase space whose dimensionality is the number of particles N times 2 times the dimension of
position space (3), so, in general, 6N .

Because autonomous Hamiltonian systems have a conserved energy, their trajectories always
lie on hypersurfaces in phase space described by H(p, q) = E = const, i.e., on the level sets of
the Hamiltonian. If we are dealing with a 1D space of displacements for a single particles and,
therefore, a 2D phase space, this hypersurfaces is actually just a curve, so H(p, q) = E is the
actual trajectory—the corresponding system of ODEs is fully integrable. Our first and main
example of this was the mathematical pendulum, linear and nonlinear (§3.5.2; see also §8.1.8
and Q5.1).

I.7. Liouville’s Theorem

[Literature: Landau & Lifshitz (1976, §46), Arnold (1997, §16)]

The fact that phase-space trajectories of Hamiltonian systems have to stick to surfaces of
constant H gives them a certain “incompressible” quality. Here is what I mean by this.

Consider a generic autonomous ODE,

ẏ = f(y). (I.19)

From each point y in its phase space springs a trajectory—the solution of the Cauchy problem
for this ODE with that point as the initial condition. We can think of these trajectories as paths
along which a kind of “phase fluid” flows, with f(y) representing its velocity field at every point
in phase space. Let us now take some volume in phase space and evolve it in time with this
flow, i.e., let a trajectory start at time zero from every point in the volume and then consider
the phase-space volume formed by the set of points to which these trajectories arrive at time t.
It turns out that, for a Hamiltonian system, in the process of evolution defined in this way, the
phase volume stays constant, even if its shape can change. In other words, the “phase fluid” is
incompressible—a statement known as Liouville’s Theorem (Fig. 18a).

Here is an elementary proof. Consider an infinitesimal cube in phase space,

δΓ =

3N∏
i=1

δpiδqi, (I.20)

where δpi and δqi are increments of the phase-space coordinates of a Hamiltonian system (I.17).
Let us now evolve this volume with time, i.e., follow the system’s trajectories originating from it
(Fig. 52):

dδΓ

dt
=

3N∑
i=1

(
δṗi
δpi

+
δq̇i
δqi

)
δΓ =

3N∑
i=1

(
∂ṗi
∂pi

+
∂q̇i
∂qi

)
δΓ =

3N∑
i=1

(
− ∂H

∂pi∂qi
+

∂H

∂qi∂pi

)
δΓ = 0.

(I.21)
Finite volumes can be constructed out of infinitesimal ones, so phase-space volumes are con-
served, q.e.d.

Note that, by the same token, for a general ODE (I.19), the phase volume δΓ =
∏
i δyi evolves
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according to

dδΓ

dt
=
∑
i

δẏi
δyi

δΓ =
∑
i

∂ẏi
∂yi

δΓ = (∇ · f) δΓ, (I.22)

i.e., the compressibility of phase volumes is related to the divergence of the phase velocity f—
in exactly the same way as, in fluid dynamics, the compressibility of a fluid is related to the
divergence of its velocity field. The Hamiltonian phase velocity (−∂H/∂q, ∂H/∂p) is divergence-
free. In contrast, for dissipative systems, it is intuitive that phase volumes should generally tend
to be compressed with time, as the system’s trajectories converge towards an equilibrium point
(see, e.g., §3.5.4), a limit cycle (§8.3), or, in three or more dimensions, to a strange attractor
(§8.5)—all objects whose phase volume is zero.

IUCUNDI ACTI LABORES
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(a) Pontryagin (b) Arnold

Figure 53. (a) Lev Pontryagin (1908-1988), eminent Soviet mathematician with an impressive
story of achievement in the face of adversity (he was blind); he was not, however, a nice guy
and allegedly took some opportunities to behave disgracefully presented by the Soviet regime.
(b) Vladimir Arnold (1937-2010), great Soviet/Russian mathematician, unbeloved by the Soviet
government, student of Kolmogorov, author of cult texts, educator and superhero. Depending
on how hard-core a mathematician you prove to be, you might continue from his ODE book to
the sequels: Arnold (1997), Arnold (2004) and Arnold (1989), although perhaps not in your first
year.

Sources and Further Reading

In preparing this course, I have drawn inspiration from a number of sources. The main
ones were

—the previous set of Oxford Physics’ ODE lectures, for which very concise,
prescription-style notes are available (Yeomans 2014)—this may well be all you need to
pass your exam; another worthwhile read is the earlier version of the Oxford course by
Binney (2002), written in his signature lucid and idiosyncratic style;67

—for the material of §7, which formally belongs to a different Oxford course, “Wave
Motion”, the status quo ante is codified in the very detailed notes by Jarvis (2016) and
a handout by Palmer (2019);

—the textbook by Romanko (2001), with an attendant gigantic collection of problems
(Romanko et al. 2011; Ipatova et al. 2012), reflecting many decades of experience of
teaching ODEs at MIPT (I took this course as an undergraduate there in the early
1990s, when it was taught by A. A. Abramov, whose lectures, as recorded by me then,
have proved useful again, after all these years);68

—the celebrated (if slightly dated) and very lucid lectures by the famous blind mathe-
matician Pontryagin (1962, in English) (Fig. 53a)—this is a traditional exposition of the
subject par excellence; assuming you do not read Russian and assuming also that you are
interested in learning the subject rather than in obtaining only the minimum training
required for your exam, this is the book that I recommend to you as a more thorough
undergraduate course than I can offer within the existing time constraints;

—the classic cult text by the great Arnold (2006) (Fig. 53b), which exists in English

67Both sets of notes have many examples of how to solve standard Oxford home-
work/collection/exam-style questions.
68Other, somewhat older, Russian books that I have consulted were Fedoryuk (1985), an MIPT
classic, and the rival couse from MSU, Tikhonov et al. (1985, in English), which, I hate to admit,
is also quite good, and rather more concise.
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and which I recommend as further reading to those of you who have a taste for intellectual
challenge; Arnold will not teach you how to solve ODEs, but he will teach you how to
think about them and much else besides.

Two old, affordable (in Dover editions) and, on first inspection, entirely adequate
undergraduate textbooks from this side of the Iron Curtain are Tenenbaum & Pollard
(1986) (written in a cheerfully spoon-feeding style, with a huge number of worked
examples, but of fairly limited scope overall) and Coddington (1990) (a more formal,
although still undergraduate, text, focusing primarily on a thorough treatment of linear
equations and the existence theorems; looks dull but solid to me; its “adult” version is
Coddington & Levinson 1955). Oxford’s own official textbook (from the Mathematical
Institute) appears to be Collins (2006), although it does not belong to the affordable
category and, at any rate, seems to view ODEs as a trivial footnote to PDEs. Hirsch
et al. (2013) is (I am told) a famous, classic textbook worshipped by many generations of
American undergraduates; it covers most of what I cover (including the extracurricular
topics on dynamical systems), and much more, in great spoon-feeding detail, which can
get a bit irritating, but is also likely to prove very helpful to beginners. Another American
textbook on both ODEs and dynamical systems, with careful explanations and lots of
examples, but perhaps a bit more mathsy, is Perko (2001). Yet another recent (possibly
the most recent) American textbook is Schaeffer & Cain (2016), which looks quite civilised
to me—it quickly gets to much more advanced topics than my course ever could, but
is written in a friendly style and may be suitable as further reading on the modern
mathematical theory of ODEs.

Another direction for further reading is asymptotic methods. These are for those who
like doing stuff. There are elements here of dark arts and black magic. Much of it has
gone from the world, but it is still possible to learn from the masters of old: I have given
several references in the text (see, e.g., §1.1 and Q2.9), but if you have to pick one, pick
Bender & Orszag (1999), which is a wild, exuberant ride. It is a graduate-level book,69

supposedly, but, after you have done Complex Analysis (and maybe some Mathematical
Methods), you will know everything you need to know to attack all of it—and quite a bit
of it you can, in fact, attack right away (this said, I cannot promise you definite success
as it depends on whether the Force is strong with you).

Finally, §8 is the tip of a large iceberg that is the theory of dynamical systems,
chaos, and nonlinear oscillations. Some good books on these topics, in the order of
increasing difficulty, are Strogatz (1994), Glendinning (1994), and Guckenheimer &
Holmes (1983).70 The last of these is a classic, serious, graduate-level text that is not
always easy to read even for graduates, whereas the other two are undergraduate lecture
courses—both are good but in rather different ways: the first, American one (from MIT
and Cornell), is cheerful, friendly, spoon-feeding (especially at first), eclectic, effusive, and
mindful of a student audience of potentially variable mathematical ability; the second,

69In fact, its §1 is a pretty good introduction to the main methods for solving ODEs and can
be read as a short (33 pages), to-the-point, example-rich text for the present course.
70Those who read Russian might also like Karlov & Kirichenko (2003) (which also covers
oscillations and waves extremely well, in an engaging, lecture-notes style) and, on Hamiltonian
chaos, Zaslavsky & Sagdeev (1988) (or, in English, a shorter, somewhat narrower in scope, but,
in my view, better written little book by Zaslavsky et al. 1991). Note that both Perko (2001)
and Schaeffer & Cain (2016), already mentioned above, also deal with the theory of dynamical
systems—but, being mathematicians, they think of it more as a brunch of the general theory
of ODEs than of nonlinear physics. In contrast, Hirsch et al. (2013), while also mathematicians
(and famous ones, too), are very keen on all manner of applications.
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British (from Cambridge and Warwick), is more relaxed about stretching those who
have not been properly introduced (to basic maths), but is unfailingly nice, polite, and
gracefully informal in its style of exposition.
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Problem Sets

For each topic, a “Minimal Set” of exercises is offered first, followed by “Supplementary
Questions”. The latter are not necessarily any more difficult than the former: “supplementary”
just means that you can get by without them if you choose to do as little as possible. If you are
struggling with time, you might want to do some of these during the vacation. Questions that
I consider slightly more challenging are marked with a star. Finally, there are “Extracurricular
Questions”, which are extracurricular (but not necessarily hard or surplus to requirements for
a proper education). Some of these will require independent study of material that may or may
not be covered in small font in my lecture notes.

Most of these exercises came from the problem sets that were passed on to me by Julia Yeomans
(see Yeomans 2014), via Michael Barnes, both of whom lectured this course before me. Those
are marked [JY]; [JY+] means that I have amended the question in some (usually minor) way.
Quite a few of these questions appear to originate from Binney (2002). Those are marked
[JB]. Similarly, the questions about “masses on springs” are adapted from what I inherited
from Christopher Palmer and marked [CP+] (I did tinker with most of them). There are some
questions that I have inherited from past tutors, at Merton and elsewhere; who invented them
can no longer be traced. Those are marked [Ox]. There are some questions that I borrowed from
elsewhere but left unattributed because the original source contains solutions.

All “§” references below are to my lecture notes, see http://www-thphys.physics.ox.ac.uk/
people/AlexanderSchekochihin/ODE/2018/ODELectureNotes.pdf.

Problem Set 1: First-Order ODEs

Minimal Set

1.1. [JY+] Determine the order of the following differential equations and whether they
are linear or nonlinear. Rewrite them as systems of 1st-order ODEs.

(i) y′′ + k2y = f(x), (1.1)

(ii) y′′′ + 2yy′ = sinx, (1.2)

(iii) y′ + y2 = yx. (1.3)

1.2. [JB/JY+] Solve the following differential equations using the method stated.

(a) Full differential (§2.1):

y′ =
(3x2 + 2xy + y2) sinx− 2(3x+ y) cosx

2(x+ y) cosx
. (1.4)

(b) Integrating factor (§2.1.1):

y2dx− (xy + x3)dy = 0. (1.5)

(c) Separable (§2.2):

(i) y′ =
xey

1 + x2
, y = 0 at x = 0, (1.6)

(ii) y′ =
2xy2 + x

x2y − y
. (1.7)

(d) Reducible to separable by change of variables (§2.2.2):

y′ = 2(2x+ y)2. (1.8)

http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/ODE/2018/ODELectureNotes.pdf
http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/ODE/2018/ODELectureNotes.pdf
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(e) Homogeneous (§2.3):

2y′ =
xy + y2

x2
. (1.9)

(f) Reducible to homogeneous by change of variables (§2.3.1):

y′ =
x+ y − 1

x− y − 2
. (1.10)

(g) Linear (§2.4):

(i) y′ +
y

x
= 3, x = 0 at y = 0, (1.11)

(ii) y′ + y cosx = sin 2x. (1.12)

(h) Bernoulli (§2.5):

y′ + y = xy2/3. (1.13)

1.3. [JB/JY+] Solve the following 1st-order differential equations:

(i) y′ =
x− y cosx

sinx
, (1.14)

(ii) (3x+ x2)y′ = 5y − 8, (1.15)

(iii) y′ +
2x

y
= 3, (1.16)

(iv) y′ +
y

x
= 2x3/2y1/2, (1.17)

(v) 2y′ =
y

x
+
y3

x3
, (1.18)

(vi) xyy′ − y2 = (x+ y)2e−y/x, (1.19)

(vii) x(x− 1)y′ + y = x(x− 1)2, (1.20)

(viii) 2xy′ − y = x2, (1.21)

(ix) y′ = cos(y + x), y =
π

2
at x = 0, (1.22)

(x) y′ =
x− y

x− y + 1
, (1.23)

(xi) y′ = cos 2x− y cotx, y =
1

2
at x =

π

2
, (1.24)

(xii) y′ + ky = yn sinx, n 6= 1. (1.25)

Supplementary Questions

1.4. [JB+] By introducing a new variable z = 4y − x, or otherwise, find all solutions of
the ODE

y′ − 16y2 + 8xy = x2. (1.26)

You should find this solution:

y =
x

4
− 1

8
tanh(2x+ C). (1.27)

Are there any others? Hint: if you divide by zero too recklessly, you may lose some
solutions.
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1.5. Full Differentials. Solve the following equations, which can be reduced to
equations in full differentials.

(a)

2
(
x− y4

)
dy = y dx, (1.28)

Hint: look for an integrating factor (§2.1.1) in the form Λ(y).

(b∗)

y (2y dx− xdy) + x2 (y dx+ 2xdy) = 0. (1.29)

Hint: identify within the equation combinations that are full differentials of some func-
tions of x and y and then use those functions to introduce a change of variables that will
allow you to separate (the new) variables and integrate.

1.6. Sometimes an ODE can be turned into a homogeneous one (§2.3) by the change of
variables y = zn. Solve the following system by this method:

y dx+ x (2xy + 1) dy = 0. (1.30)

Hint: you will need to find n such that the equation does become homogeneous; once you
have done this, remember that sometimes it is more convenient to look for a solution in
the form x = x(y), rather than y = y(x).

1.7. Quasi-homogeneous Equations. (a) An ODE y′ = f(x, y) is called quasi-
homogeneous if ∀λ and some α 6= 0, β 6= 0,

f(λαx, λβy) = λβ−αf(x, y). (1.31)

Show that the change of variables y = xβ/αz reduces a quasi-homogeneous equation to
a separable one.

(b) Solve the resulting equation in quadratures. Show that if ∃z0 satisfying f(1, z0) =
βz0/α, then y = z0x

β/α is also a solution of the equation. Under what condition are
composite solutions (§2.2.1) possible?

You can learn more about quasi-homogeneous equations from Arnold (2006, §§6.4-6.5).

Extracurricular Questions

1.8. Integral Curves and Orthogonal Curves. (a) If a famlily of curves on the
plane (x, y) is specified in the form

f(x, y, C) = 0, (1.32)

where C is a parameter, then one can find a first-order ODE for which these curves are
integral curves by taking the differential of (1.32) and then substituting C = C(x, y)
extracted from (1.32).

By this method, find the ODE whose integral curves are

y = tan [ln(Cx)] . (1.33)

(b) Show that the curves that are orthogonal to the integral curves of the ODE

F (x, y, y′) = 0 (1.34)

are integral curves of the ODE

F

(
x, y,− 1

y′

)
= 0. (1.35)
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Figure 54. Alexis Claude Clairaut FRS (1713-1765), French mathematician, astronomer,
Arctic explorer and womaniser.

The explicit expression for these orthogonal curves can then be found by integrat-
ing (1.35).

(c) Find the curves orthogonal to the family (1.33). Check your answer:

3x2 + 2y3 + 6y = C. (1.36)

1.9. Riccati equations. (a) By the method of §2.6, solve the following Riccati equation

y′ = y2 − 2exy + e2x + ex. (1.37)

(b) The equation in Q1.4 is also a Riccati equation. Solve it again, but now using the
method of §2.6.

1.10.∗ Lagrange’s and Clairaut’s Equations. (a) Lagrange’s equation (Fig. 8) is

y = a(y′)x+ b(y′), (1.38)

where a(p) and b(p) are some given continuously differentiable functions. As suggested
in §2.7.2, introduce p = y′ and rewrite this equation as a first-order ODE with respect
to p and x. Find the solution in quadratures, in the form x(p), assuming a(p) 6= p.

(b) What if ∃p0 such that a(p0) = p0? Can you find a special solution of (1.38) that
exists in this case?

(c) Now suppose that a(p) = p ∀p. Then (1.38) is called Clairaut’s equation (Fig. 54):

y = xy′ + b(y′). (1.39)

Find all possible solutions of this equation, commenting on the number of continuous
derivatives that b(p) must have in order for these solutions to be valid.

(d) Sketch the integral curves of (1.39) if b(p) = p2. They will turn out to be a family
of lines hugging a certain envelope. Find the curve that describes this envelope.

(e) Does the solution of (1.39) with b(p) = p2 that passes through the point (x0, y0)
exist ∀(x0, y0) ∈ R2? If not, for which (x0, y0) does it exist? Given some (x0, y0) for which
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it does exist, is it unique? If not, is the solution unique in the vicinity of (x0, y0) if we
also specify y′(x0) = p0? How many legitimate options for p0 are there at each point?
How far can such a solution be continued uniquely? Show graphically using the result of
(d) how an infinite number of composite solutions (§2.2.1) can be constructed.

If you are intrigued by Clairaut’s equation, you will find a number of interesting facts,
examples and applications in Arnold (2006, §8.5) and Tenenbaum & Pollard (1986, §61).

1.11. Equations unresolved with respect to derivative. Solve the following ODEs
via introduction of parameter (§2.7.2):

(i) (y′)2 − 2xy′ = x2 − 4y, (1.40)

(ii) y′ = exy
′/y, (1.41)

(iii∗) y′ = y e−xy
′/y, (1.42)

(iv∗) y′ = y2e−xy
′/y. (1.43)

Are p-discriminant curves [see (2.81) in §2.7.1] of these equations also their integral
curves? What does this imply?

1.12.∗ Parametric Solutions. Consider an equation formed by y′ and x lying on the
“folium of Descartes”:

(y′)3 + x3 = xy′. (1.44)

Try y′ = p = xu, work out a parametrisation of the curve (x, y′), and then find a
parametric solution of (1.44) in the form x = x(u) and y = y(u). In what range of values
of u (and, therefore, of x and y) is your solution valid?
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Problem Set 2: Second-Order ODEs, Part I

Minimal Set

2.1. [JY] Homogeneous ODEs. Solve these equations:

(i) y′′ + 2y′ − 15y = 0, (2.1)

(ii) y′′ − 6y′ + 9y = 0, y = 0, y′ = 1 at x = 0, (2.2)

(iii) y′′ − 4y′ + 13y = 0, (2.3)

(iv) y′′′ + 7y′′ + 7y′ − 15y = 0. (2.4)

In (iii), write the solution both in terms of complex exponentials and in terms of sines
and cosines.

2.2. [JY] Damped Oscillator. A damped harmonic oscillator is displaced by a distance
y0 and released at time t = 0. Show that the subsequent motion is described by the
differential equation

mÿ +mγẏ +mω2
0y = 0 with y = y0, ẏ = 0 at t = 0, (2.5)

explaining the physical meaning of the parameters m, γ and ω0.

(a) Find and sketch solutions for (i) overdamping, (ii) critical damping, and (iii)
underdamping. (iv) What happens for γ = 0?

(b) For a lightly damped oscillator (γ � ω0), the quality factor, or Q-factor, is
defined as

Q = 2π
energy stored

energy lost per period of oscillation
. (2.6)

Show that Q = ω0/γ.

2.3. [JB] Verify that y = x+ 1 is a solution of

(x2 − 1)y′′ + (x+ 1)y′ − y = 0. (2.7)

Hence find the general solution of this equation. Check your answer:

y = C1(x+ 1) + C2

(
x+ 1

4
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣+
1

2

)
. (2.8)

2.4. Nonlinear ODEs. All of this problem set so far has been a drill in solving linear,
second-order ODEs. There are few general methods for solving nonlinear ones (and most
of them cannot be integrated in quadratures anyway). Still, there are a few tricks, which
you now have an opportunity to practice. All of them, naturally, are based on methods
for lowering the order of the equation down to first.

(a)[JY] If bits of the equation can be manipulated into full derivatives of some
expressions, the equation’s order can sometimes be lowered by direct integration. Practice
this by solving the ODE

1 + yy′′ + (y′)2 = 0. (2.9)

(b)[Ox] If the equation does not contain y, only its derivatives, the order is lowered by
treating the lowest-order derivative that does appear as the new function. Practice this
by solving the ODE

xy′′ = y′ + (y′)3. (2.10)
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(c) If the equation does not contain x, you can lower its order by letting p = y′ and
looking for solutions in the form p = p(y). Note that then, by the chain rule, y′′ = pp′.
Solve by this method (plus other appropriate changes of variable) the ODE

y′′(y − 1) + y′(y − 1)2 = (y′)2. (2.11)

In Q2.6, you will learn two other methods for solving nonlinear ODEs.

Supplementary Questions

2.5.∗ Consider the differential equation

9xy′′ + (6 + x)y′ + λy = 0. (2.12)

There are several values of λ for which this can be solved via reduction to a 1st-order
equation. For at least one of them, it is possible to find a solution that

(i) satisfies y(x→ ±∞)→ 0, but is not zero everywhere,

(ii) is continuous at x = 0.

Experiment with solutions corresponding to various tractable values of λ and find one
for which the above two properties are satisfied. The solution you find may, but does not
have to, be

y = C e−x/9
∫ x

−∞
dz

ez/9

|z|2/3
. (2.13)

2.6. Homogeneous Nonlinear ODEs. Continuing from Q2.4, here are some more
methods for lowering the order of nonlinear ODEs.

(a) An equation is called homogeneous with respect to y if it does not change under
the rescaling y → λy ∀λ 6= 0 (i.e., every term contains the same number of powers of y
or its derivatives). For such an equation, one can lower the order by introducing a new
function z(x) via y′ = yz. Then y′′ = y(z′ + z2), so the second derivative is expressible
in terms of the first; powers of y will cancel because the equation is homogeneous.

Solve by this method the following ODE:

xyy′′ + x(y′)2 = 3yy′. (2.14)

Check your answer: y2 = Ax4 +B.

(b∗) This equation can also be solved by the method that you practiced in Q2.4(a), if
you can spot the full derivatives. Do it.

(c) A generalised version of (a) is an equation that does not change under the rescaling
x → λx, y → λαy ∀λ 6= 0 and for some α (the linear version of this with α = 0 is
Euler’s equation, §5.1.4; you encountered the first-order case in Q1.7). This is solved by
letting x = et when x > 0, x = −et when x < 0, and y = z(t)eαt. The result will be an
equation for z in which t does not appear explicitly, so you can use the method practiced
in Q2.4(c).

Consider the following ODE:

x2(y′′ + 2yy′) + 2xy2 − 2y = 0, x > 0 (2.15)

and establish for what value of α it has the invariance property described above. Then
solve the equation by the proposed method.



viii A. A. Schekochihin

(a) Airy (b) D’Alembert (c) Frobenius (d) Bessel

Figure 55. (a) Sir George Biddell Airy KCB FRS (1801-1892) was Astronomer Royal and put
the Prime Meridian at Greenwich. (b) Jean-Baptiste le Rond d’Alembert (1717-1783), great
French mathematician, physicist, philosopher, musical theorist, Diderot’s fellow encyclopedist
and full-time admirer of Mme de Lespinasse. (c) Ferdinand Georg Frobenius (1849-1917),
German mathematician, student of Weierstrass. (d) Friedrich Wilhelm Bessel (1784-1846), a
fairly boring German mathematician and astronomer. Bessel’s functions were in fact discovered
by Daniel Bernoulli, nephew of Jacob Bernoulli of Bernoulli’s equation (Fig. 9).

Extracurricular Questions

2.7. [JY+] Boundary-Value Problem. (a) Solve the ODE

y′′ + k2y = 0. (2.16)

(b) Consider the above equation on the interval x ∈ [0, L]. Are there solutions that are
not identically zero everywhere but have y(0) = y(L) = 0? For which values of k do such
solutions exist? Find these solutions and explain in terms of linear algebra the meaning
of what you have done.

(c∗) Can any function that is defined in the interval [0, L] and vanishes at its ends be
represented as a linear combination of solutions of (2.16) with different k’s? Work out
how to do it.

The full theory of boundary-value problems is not covered in this course. Read up on
the topic or wait till the Mathematical Methods course in your 2nd year (see Eßler 2009,
§25 and Lukas 2019, §5)—although you will, in fact, need to solve (2.16) many times
in CP4 (Parra 2021).

2.8. Higher-Order Linear ODEs with Constant Coefficients. Solve the following
ODEs

(i) y′′′′ − 6y′′′ + 8y′′ + 6y′ − 9y = 0, (2.17)

(ii) y′′′′ + 4y′′ + 4y = 0. (2.18)

Hint: in (i), you will need to guess some roots of a 4th-order polynomial and then
factorise it.

2.9.∗ Series Solution of Linear ODEs. ODEs (usually second order) that cannot be
solved in quadratures can sometimes be solved in terms of series. One can then give
these solutions names and establish all their properties, thus expanding the library of
functions that we know how to handle. Such functions are called special functions (a
classic textbook on them is Lebedev 1972).
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Consider Airy’s equation (Fig. 55a)

y′′ + xy = 0. (2.19)

This equation cannot, alas, be solved in quadratures. Seek its solution in the form of a
power series

y(x) =

∞∑
n=0

cnx
n. (2.20)

(a) Without worrying about convergence of this series or about the legitimacy of
differentiating it term by term, work out what equations the coefficients cn must satisfy
in order for (2.20) to be a solution of (2.19).

(b) Find two linearly independent such series solutions (remember that if they are
linearly independent at one point, they are linearly independent everywhere; see §4.3).
Use d’Alembert’s Ratio Test (Fig. 55b) to show that both series converge. What is the
general solution of (2.19)?

If you are having a difficulty with these derivations, you will find the solution in, e.g.,
Tikhonov et al. (1985, §3.8).

Certain linear combinations of the solutions that you have found are called Airy
functions, an example of special functions. Entire books are written about them (Vallée
& Soares 2004).

(c) Find the general solution of (2.16) of Q2.7 (with k = 1 for simplicity) by the
same method and convince yourself that the series that you have obtained are sines and
cosines. These functions too were once special.

Note that the method presented above is a generalisation of (4.60) in §4.6.1, where the series was
able to be truncated at the n-th coefficient. But even the Taylor series (2.20) is not a universal
panacea. It is not always possible to find solutions in this form. For example, the equation

x2y′′ + xp(x)y′ + q(x)y = 0, (2.21)

where p(x) and q(x) are representable as convergent Taylor series, is only guaranteed to have
one solution in the form of a Frobenius series (Fig. 55c)

y(x) = xα
∞∑
n=0

cnx
n, (2.22)

where α is not, in general, a (positive) integer; you can always get the second solution via
the “buy one get one free” scheme (§4.6). You will encounter the Frobenius method in the
Mathematical Methods course (see Eßler 2009, §23 or Lukas 2019, §5.3 for some examples; if
you want to learn the general method, see, e.g., White 2010, §4 or Bender & Orszag 1999, §3;
see also Coddington 1990, Ch. 4). However, no one stops you from getting intrigued now and
at least convincing yourself that (2.22) works for (2.21) and that (2.20) in general does not. A
good example of (2.21) to play with is Bessel’s equation (Fig. 55d):

x2y′′ + xy′ + (x2 − ν2)y = 0, (2.23)

where ν is a real number (interesting things happen depending on whether it is an integer). On
Bessel functions too, there are entire books in the library (short and elementary: Bowman 2003;
long and comprehensive: Watson 1944).
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Problem Set 3: Second-Order ODEs, Part II

Minimal Set

3.1. [JY] Inhomogeneous ODEs. Consider the equation

y′′ − 3y′ + 2y = f(x). (3.1)

What is the general form (in terms of functions and constants) of its particular solution for

f(x) = (i) x2, (3.2)

(ii) e4x, (3.3)

(iii) ex, (3.4)

(iv) sinhx, (3.5)

(v) sinx, (3.6)

(vi) x sinx, (3.7)

(vii) e2x + cos2 x. (3.8)

If you dislike unfinished business, work out the constants.

3.2. [JB/JY+] Inhomogeneous ODEs. Solve these equations:

(i) 5y′′ + 2y′ + y = 2x+ 3, y = −1, y′ = 0 at x = 0, (3.9)

(ii) y′′ − y′ − 2y = e2x, (3.10)

(iii) 4y′′ − 4y′ + y = 8ex/2, y = 0, y′ = 1 at x = 0, (3.11)

(iv) y′′ + 3y′ + 2y = xe−x, (3.12)

(v) y′′ − 4y′ + 3y = 10 cosx, (3.13)

(vi) y′′ + 4y = x+ cos 2x, y = 0 when x = 0, (3.14)

(vii) y′′ − 2y′ + 2y = ex(1 + sinx), y = 0 at x = 0 and at x =
π

2
, (3.15)

(viii) y′′ + 2y′ + y = 2e−x + x3 + 2 cosx, (3.16)

(ix) y′′ − 2y′ + y = 3ex, y = 3, y′ = 0 at x = 0, (3.17)

(x) x2y′′ + xy′ + y = x. (3.18)

3.3. [JB] Forced Oscillator. When a varying couple I cosωt is applied to a torsional
pendulum with natural period 2π/ω0 and moment of inertia I, the angle of the pendulum
obeys the equation of motion

θ̈ + ω2
0θ = cosωt. (3.19)

The couple is first applied at time t = 0 when the pendulum is at rest in equilibrium.

(a) Show that, in the subsequent motion, the root-mean-square angular displacement is

〈θ2〉1/2 =
1

|ω2
0 − ω2|

, (3.20)

where the average is taken over a time large compared to 1/|ω0 − ω|.

(b) Discuss the motion as |ω0 − ω| → 0.

3.4. [JY] Forced and Damped Oscillator. Consider the damped oscillator of Q2.2



Oxford Physics Lectures: Ordinary Differential Equations xi

subject to an oscillatory driving force:

mÿ +mγẏ +mω2
0y = F cosωt. (3.21)

(i) Explain what is meant by the stationary solution of this equation, and calculate this
solution for the displacement y(t) and the velocity ẏ(t).

(ii) Sketch the amplitude and phase of y(t) and ẏ(t) as a function of ω.

(iii) Determine the resonant frequency for both the displacement and the velocity.

(iv) Defining ∆ω as the full width at half maximum of the resonance peak calculate
∆ω/ω0 to leading order in γ/ω0.

(v) For a lightly damped, driven oscillator near resonance, calculate the energy stored
and the power supplied to the system. Hence confirm that Q = ω0/γ as in Q2.2. How is
Q related to the width of the resonance peak?

3.5. [JY+] Consider the differential equation

x(x+ 1)y′′ + (2− x2)y′ − (2 + x)y = (x+ 1)2. (3.22)

(a) One of its homogeneous solutions is y1(x) = 1/x. Find the general solution.

(b) Now pretend that you do not know that 1/x is a homogeneous solution, but know
the second homogeneous solution, y2(x), that you found in (a) (in fact, if you stare at
the equation for a few seconds, or minutes, you will see that you could have guessed that
solution). Use the knowledge of y2(x) to find both y1(x) and the general solution of the
equation.

Supplementary Questions

3.6. [JB] Solve the differential equation

y′′ − 2y′ + (k2 + 1)y = ex sin2 x (3.23)

for general values of the real parameter k. Identify any special values of k for which your
solution fails and solve the equation also for those values.

3.7. [Ox] Find the continuous solution with continuous first derivative of the equation

y′′ + 2y′ + 2y = sinx+ f(x), where f(x) =

{
0, x 6 0,
x2, x > 0,

(3.24)

subject to y(−π/2) = y(π) = 0. Hint: obtain a general solution for each of the cases
x < 0 and x > 0 and then determine any loose constants by making these solutions agree
at x = 0.

3.8. [JB+] Oscillator with Modulated Force. A mass m is constrained to move in a
straight line and is attached to a spring of strength mω2

0 and a dashpot which produces
a retarding force mγv, where v is the velocity of the mass and γ � ω0. An amplitude-
modulated periodic force mA cosσt sinωt with σ � ω and ω = ω0 is applied to the mass.
Show that, in the long-time limit, the displacement is an amplitude-modulated wave

y = −A sin(σt+ φ) cosωt

2ω
√
σ2 + γ2/4

, tanφ =
γ

2σ
. (3.25)
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Extracurricular Questions

3.9. Wiggly Pendulum. Consider a nonlinear pendulum whose point of supension
rapidly oscillates in the horizontal direction as a cosωt (see Fig. 26b of §5.4), where
ω �

√
g/l and a� l (l is the length of the pendulum, g is the acceleration of gravity).

Determine its equilibria and the conditions under which they are stable. Sketch the phase
portrait for the pendulum’s motion averaged over the rapid oscillations.
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Problem Set 4: Systems of Linear ODEs

Minimal Set

4.1. [JY] Solve the coupled differential equations{
ẋ+ ax− by = f,
ẏ + ay − bx = 0,

(4.1)

where a, b, and f are constants.

4.2. [JB] Solve the coupled differential equations{
y′ + 2z′ + 4y + 10z − 2 = 0,
y′ + z′ + y − z + 3 = 0,

(4.2)

where y = 0 and z = −2 at x = 0.

4.3. Find the general, real solutions of the following homogeneous systems of ODEs

(i)

 ẋ = −2y + 2z,
ẏ = x− y + z,
ż = y − z,

(4.3)

(ii)

 ẋ = 4x− y − z,
ẏ = x+ 2y − z,
ż = x− y + 2z.

(4.4)

4.4. Find the general, real solutions of the following inhomogeneous systems of ODEs

(i)

 ẋ = 4x+ 3y − 3z,
ẏ = −3x− 2y + 3z,
ż = 3x+ 3y − 2z + 2e−t,

(4.5)

(ii)

 ẋ = −5x+ y − 2z + cosh t,
ẏ = −x− y + 2 sinh t+ cosh t,
ż = 6x− 2y + 2z − 2 cosh t.

(4.6)

Supplementary Questions

4.5. [JB] Solve the coupled differential equations{
2y′′ − 3y′ + 2z′ + 3y + z = e2x,
y′′ − 3y′ + z′ + 2y − z = 0.

(4.7)

Is it possible to have a solution to these equations for which y = z = 0 at x = 0? What
is wrong with this system?

4.6. Charged Particle in Electromagnetic Field. A particle of mass m and charge
q is placed, initially at rest, in straight, constant electric E and magnetic B fields, which
are neither perpendicular nor parallel to each other. It will experience the Lorentz force

F = q

(
E +

v ×B
c

)
, (4.8)

where v is the particle’s velocity. Find v(t) and sketch the particle’s motion.
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Extracurricular Questions

4.7. Non-diagonalisable systems. Find the general solutions of the following homo-
geneous systems of ODEs

(i)

{
ẋ = 2x+ y,
ẏ = 4y − x, (4.9)

(ii)

 ẋ = x− 2y,
ẏ = −x− y − 2z,
ż = y + z,

(4.10)

(iii)

 ẋ = 2x− 5y − 8z,
ẏ = 7x− 11y − 17z,
ż = −3x+ 4y + 6z.

(4.11)

You can find solutions by triangulation (§6.3.1) or via Jordan’s basis (§6.3.3), whichever
you prefer.
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Problem Set 5: Systems of Nonlinear ODEs

Extracurricular Questions

In the following questions, especially Q5.1 and Q5.4, you might gain interesting insight
(and a useful preview of the answer) by plotting phase portraits on the computer (using,

e.g., Mathematica, Python or something of the sort).

5.1. Duffing’s71 Oscillator. Consider the following nonlinear oscillator:

ẍ+ γẋ+ x+ αx2 + βx3 = 0. (5.1)

With α = 0, this describes a (damped) oscillator whose restoring force strengthens (β >
0) or weakens (β < 0) with amplitude—these are called the cases of hardening spring
or softening spring. When α 6= 0, there is another amplitude-dependent force, which
pushes/pulls at the oscillator differently depending on the direction of the displacement.

Sketch the phase portraits of this system for the following cases:

(i) γ = 0, α = 0, β > 0, (5.2)

(ii) γ = 0, α = 0, β < 0, (5.3)

(iii) γ = 0, 0 < α�
√
|β|, β < 0. (5.4)

Having done that, deduce what happens in each of these cases when 0 < γ � 1. The
name of the game is to get a qualitatively adequate sketch with as little work as possible.

Sketch the functional form of the potential energy. If you think of (5.1) as describing a
particle moving in this potential, what do your phase portraits say about this particle’s
motion?

If you liked this so much that you want to play a bit more, look at the case when
the sign of the x term is reversed (i.e., linearly, instead of a restoring force, there is an
instability).

You can read more about this kind of nonlinear oscillators in Strogatz (1994, §§7.6,
12.5), Landau & Lifshitz (1976, §29) and Glendinning (1994, §7.2).

5.2. How Nonlinearity Takes Over. Consider the nonlinear systems

(i)

{
ẋ = −y + αx(x2 + y2),
ẏ = x+ αy(x2 + y2),

(5.5)

(ii)


ẋ = −x− αy

ln(x2 + y2)
,

ẏ = −y +
αx

ln(x2 + y2)
,

(5.6)

where α is a (real) parameter. Determine the nature of the fixed point at (x, y) = 0. Does
the answer survive the restoration of the nonlinearity? Solve the nonlinear equations
exactly and determine the nature of the fixed point depending on the value of α.

Hint. Going to the complex plane in the vein of (8.25) (§8.1.6) and (8.56) (§8.4) might
help shorten calculations.

71Georg Duffing (1861-1944), a German engineer, famous for his oscillator, which, with the sign
of the x term reversed and with a periodic external force added, is one of the simplest known
systems that can exhibit chaotic behaviour.
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5.3. Limit Cycles. Consider the nonlinear systems

(i)

{
ẋ = x− (x− y)

√
x2 + y2,

ẏ = y − (x+ y)
√
x2 + y2,

(5.7)

(ii)


ẋ = y +

1

4
x(1− 2x2 − 2y2),

ẏ = −x+
1

2
y(1− x2 − y2).

(5.8)

Sketch their phase portraits. Show, in particular, that there is a stable limit cycle in both
cases. In (i), you should be able to derive the cycle explicitly. In (ii), you will need to
construct a trapping region.

5.4. [Ox] Odell’s Predator-Prey Model. Consider the following system of nonlinear,
coupled ODEs: {

ẋ = x[x(1− x)− y],
ẏ = y(x− a),

(5.9)

where a > 0 is a parameter (Odell 1980). This model describes a vegetarian species x, who
are omnigamous (birth rate ∝ x2), limited by the availability of food (death rate ∝ x3),
and are eaten by a predator species y at the rate proportional to the latter’s population
size; the predators are monogamous but procreate conditionally on the availability of
prey, at a rate proportional to x, and have a death rate controlled by the parameter a.
The population sizes x and y are normalised in some appropriate way (x to its value
corresponding to the equilibrium in the absence of predator).

Determine the equilibria (fixed points) of the system and their nature depending on
the value of the parameter a. Sketch the phase portrait for each qualitatively different
parameter regime. What is the condition for a limit cycle to exist? Interpret your
qualitative solutions in terms of population dynamics.

A preview of some of the answers is Fig. 47 (§8.3.1). Before doing this problem, you
may wish to practice sketching phase portraits by reproducing ones given in Fig. 42.
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(a) (b)

Figure 56. Hanging masses: (a) equal, on identical strings (Q6.2); (b) unequal, on different
springs (Q6.5).

Problem Set 6: Masses on Springs and Other Things

Minimal Set

6.1. [CP+] Coupled Pendula. Consider the two-pendula system in Fig. 29. Assume
that at t = 0, both pendula are at their equilibrium positions, the first is stationary,
while the second is instantaneously imparted an initial velocity v.

(a) Calculate their displacements y1(t) and y2(t) at all t > 0 [the notation is the same
as in §7.1].

(b) Taking k/m = 2εg/l, where ε� 1, sketch these displacements as functions of time.
Do they show a precise beat pattern, i.e., one where a higher-frequency oscillation is
modulated by a sinuisoidal envelope with frequency ∆ = (Ω2 −Ω1)/2?

(c∗) If not, is there such a pattern approximately? If so, show that the minimal
amplitude of the oscillations is O(ε). Every how many high-frequency oscillations do
the pendula return to this minimal amplitude?

6.2. [CP+] Hanging Masses. Two equal masses m are connected with each other and
the ceiling with two idential springs, whose stiffness is k (Fig. 56a).

(a) Considering only vertical motion of the masses, obtain the system of equations that
govern this motion.

(b) What are the normal modes and their frequencies for this system? Why do they
not depend on the acceleration of gravity?

(c) At t = 0, the lower mass is pulled down a distance 2a and then released. Show that
this corresponds to the intitial displacements from equilibrium position (y1, y2) = (a, 2a)
and find (y1, y2) at t > 0.

(d) Show that the total energy of the system that has been set in motion by the initial
displacement described in (c) is ka2 (obviously!—why obviously?) and that it is divided
between the two normal modes of the system in the ratio approximately 95 : 5 (but do
calculate it exactly).

6.3. Sliding Masses. Two equal masses m are connected to each other by a spring of
stiffness k1 and to the walls on either side by two springs of stiffness k0 and able to slide
horizontally left and right, without friction (Fig. 57a).
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(a) (b)

(c)

Figure 57. Masses sliding (a) horizontally (Q6.3); (b) unboundedly (Q6.4);
(c) transversely (Q6.6).

(a) [Ox+] If the mass on the right is clamped, the other mass oscillates with fre-
quency Ω0. When both masses are free to oscillate, the frequency of the lower-frequency
normal mode is Ω1. Imagining you have measured, and thus know, Ω0 and Ω1, but
nothing else, determine the ratio k1/k0 and the frequency Ω2 of the higher-frequency
normal mode.

(b) [Ox] What is the nature of the two normal-mode oscillations? Explain qualitatively
the difference between their frequencies.

(c) Now immerse the whole contraption into some viscous medium and let the moving
masses be resisted by it with the damping coefficient γ. Derive the equations that govern
this dynamics and their general solution.

(d∗) Consider the unusual limit
√
k0/m � γ �

√
k1/m. If at t = 0, the first mass is

displaced by a distance a, while the other mass is at its equilibrium position, and neither
is moving, what will be the subsequent evolution of the system? Sketch it and discuss
why it is that, physically.

(e) In the case with damping, assume now γ �
√
k0/m and imagine that one of the

walls (say, the one the right) oscillates horizontally as y0 = a sinΩ2t. Determine the
long-time behaviour of the displacements of both masses.

6.4. Sliding Masses Unbound. Consider two masses m1 and m2, not necessarily
equal,72 able to slide frictionlessly along a 1D horizontal track and connected to each by
a spring of stiffness k (Fig. 57b).

(a) [CP+] Determine the general form of the solution of this system, i.e., the masses’
coordinates as functions of time. What are the normal modes and why? How many
oscillatory degrees of freedom does this system have?

(b) At t = 0, the first (left) mass is set in motion with velocity v, while the other is at
rest. Determine the subsequent evolution of the system.

(c) What is the energy of the motion obtained in (b)? How is it distributed between
the two normal modes?

72Although it is useful throughout this question to keep checking what happens when m1 = m2

and convincing yourself that your answers make sense in this case.
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Supplementary Questions

6.5.∗ Unequal Hanging Masses. Consider again the system of two hanging masses
but assume now that the two springs, still of equal length, have different stiffnesses, k1
(upper spring) and k2 (lower spring), and the masses are unequal (m1 upper, m2 lower):
see Fig. 56(b).

(a) Determine the frequencies and normal modes of this system when m1 � m2 (check
that they are orthogonal in the appropriate sense). [NB: be careful with your expansions
in small m1/m2, don’t take zero for an answer!]

(b) Explain the physical nature of each of the normal modes. Comment on the limit
of m1 = 0, i.e., when there is just one mass m2 hanging on two different springs tied
together.

(c) What will be the subsequent motion of the system if you pull down the second
(lower) mass a distance a, then let go?

(d) Show that if you instead hold the second mass in place but displace the first (upper)
mass by a distance a, the subsequent displacement of the second (lower) mass will be

y2(t) ≈ a m1k2
m2(k1 + k2)

[
cos

(√
k1k2

m2(k1 + k2)
t

)
− cos

(√
k1 + k2
m1

t

)]
. (6.1)

Show also that this prediction is strictly valid only for t� m2(k1 + k2)3/2/
√
m1k

2
2.

6.6. [CP+] Transversely Sliding Masses. Consider again the system of two equal
masses m connected to each other and the side walls by three identical springs of
stiffness k and length l. Assume the natural length of the springs to be l0 < l, i.e.,
in equilibrium, the springs have finite tension T = k(l − l0) > 0. Consider transverse
sliding motions of the masses (Fig. 57c).

(a) Derive a linear system of evolution equations for small transverse displacements
of the masses. What do the displacements need to be small compared to, and why, in
order for these equations to be valid? What is the nature of the restoring force and does
it depend on the fact that displacements lead to springs being stretched longer than l?

(b) Find the normal modes and their frequencies for this system. Describe these
motions physically.

(c) Now generalise to the case of N masses and N +1 springs (all identical), connected
to the side walls at the ends. Find the normal modes and frequencies of this system.

(d) Describe what happens in the limit N →∞. What quantities is it sensible to hold
fixed when taking this limit? What physical system does such a limit describe?
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