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1. Introduction

This is the first lecture on magnetized plasmas. The behavior of plasmas in the presence
of strong magnetic fields is interesting because there is a great number of situations in
which the plasma is either confined by external magnetic fields (magnetic confinement
fusion, plasma thrusters...) or it generates its own strong magnetic field (plasma dynamos,
galaxy cluster plasmas...).

To understand the behavior of plasmas imbedded in strong magnetic fields, we first
study the motion of charged particles in strong magnetic fields. We start by solving the
simple problem of a particle in constant and uniform electromagnetic fields. We then use
what we learn from this simple problem to solve the more general problem in a useful
limit.

2. Constant and uniform E and B fields

We first solve the motion of a charged particle under the action of E and B fields that
do not depend on time and do not vary spatially. The equations of motion are

dr

dt
= v (2.1)

and
dv

dt
=
Ze

m
(E + v ×B), (2.2)

where r and v are the position and velocity of the particle, Ze and m are the charge and
mass of the particle, and e is the proton charge.

The velocity v appears by itself in equation (2.2). Thus, we can use this equation to
solve for v(t) and then use (2.1) to find r(t). There are many different ways to solve
(2.2). We choose to solve it by using the unit vector in the direction of the magnetic

field, b̂ = B/B, to split the velocity into the component parallel to the magnetic field,

v‖ = v · b̂, and the components perpendicular to the magnetic field, v⊥ = v − v‖b̂. The
component of (2.2) parallel to the magnetic field is

dv‖
dt

=
Ze

m
E‖, (2.3)

where E‖ = E · b̂. This equation can be directly integrated in time to give

v‖(t) = v‖0 +
Ze

m
E‖t, (2.4)

where v‖0 is a constant of integration.
The components of (2.2) perpendicular to the magnetic field are

dv⊥
dt
− Ωv⊥ × b̂ =

Ze

m
E⊥, (2.5)
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Figure 1. Local orthonormal basis {ê1, ê2, b̂} for the velocity. Note that the vectors ê1 and ê2

are defined up to a rotation. In the sketch we give two possible bases, {ê1, ê2, b̂} and {ê′
1, ê

′
2, b̂},

rotated an angle ∆ϕ with respect to each other.

where Ω = ZeB/m is the gyrofrequency, and E⊥ = E−E‖b̂. This is an inhomogeneous
linear system of equations with constant coefficients that one can solve using the usual,
well-known techniques. With the relative velocity

w = v − vE , (2.6)

where

vE =
1

B
E× b̂ (2.7)

is known as E×B drift, we rewrite equation (2.5) as

dw⊥
dt
− Ωw⊥ × b̂ = 0. (2.8)

This system of equations is linear and homogeneous. Its solution is

w⊥(t) = w⊥[cos(Ωt+ α) ê1 − sin(Ωt+ α) ê2], (2.9)

leading to

v⊥(t) = vE + w⊥[cos(Ωt+ α) ê1 − sin(Ωt+ α) ê2], (2.10)

where w⊥ and α are constants of integration, and ê1 and ê2 are two unit vectors per-
pendicular to each other and perpendicular to b̂ that satisfy ê1 × ê2 = b̂ (see figure 1).

Combining (2.4) and (2.10), we obtain

v(t) =

(
v‖0 +

Ze

m
E‖t

)
b̂ + vE + w⊥[cos(Ωt+ α) ê1 − sin(Ωt+ α) ê2]. (2.11)

Integrating this equation in time once, we obtain the position,

r(t) = r0 +

(
v‖0t+

Ze

2m
E‖t

2

)
b̂ + vEt+ ρ[sin(Ωt+ α) ê1 + cos(Ωt+ α) ê2], (2.12)

where r0 is a constant of integration, and

ρ =
w⊥
Ω

(2.13)

is the gyroradius or Larmor radius.
The motion described by equations (2.11) and (2.12) is known as Larmor motion. The

particle can move freely along the magnetic field (it can be accelerated or decelerated
by the parallel electric field), but its motion in the plane perpendicular to the magnetic
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Figure 2. Sketch of the Larmor motion in the plane perpendicular to B. The magnetic field B
is pointing to the reader. The motion is diamagnetic because it produces a current that tends
to oppose the background magnetic field B. The E×B drift is the result of the particle gaining
kinetic energy in the region where ZeE · v > 0 and losing kinetic energy in the region where
ZeE ·v < 0. The part of the orbit where the kinetic energy is high has a larger radius of gyration
than the part of the orbit with less kinetic energy, leading to the E×B drift.

field is the composition of a constant drift, vE , and a circular motion. See Figure 2 for a
sketch of the motion in the perpendicular plane and a simple physical picture to explain
the E×B drift.

3. Magnetized particles in general electromagnetic fields

The Larmor motion is analytically solvable because E and B are assumed constant in
time and uniform in space. This solution can be extended to more general electromagnetic
fields that are approximately constant and uniform in the time and length scales of the
Larmor motion, Ω−1 and ρ. We consider a system of size L with a characteristic frequency

ω ∼ vt
L
, (3.1)

where vt is the thermal speed of the particles. The size and frequency of the system
manifest themselves as the sizes of the derivatives of the electromagnetic fields,

∇E ∼ E

L
, ∇B ∼ B

L
,

∂E

∂t
∼ ωE,

∂B

∂t
∼ ωB. (3.2)

If the magnetic field is sufficiently strong,

ρ∗ =
ρ

L
=

mvt
ZeBL

� 1,
ω

Ω
=

mω

ZeB
∼ ρ∗ � 1. (3.3)

Note that we have defined the useful small parameter ρ∗ � 1. In the limit described by
(3.3), the particles must follow trajectories similar to the ones in equations (2.11) and
(2.12) because the particle does not see appreciable changes in the electromagnetic fields
in the characteristic time scales of its motion. We proceed to calculate the differences
between the Larmor motion in (2.11) and (2.12) and the motion of a particle satisfying
(3.3) in a general electromagnetic field.
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Before starting the calculation, we need to order the electric field with respect to the
magnetic field. The electric field along the magnetic field must be such that it balances
the inertia of the particles in the plasma, that is, ZeE‖ ∼ mωvt ∼ mv2

t /L. This estimate
gives

E‖ ∼
mv2

t

ZeL
. (3.4)

Conversely, the perpendicular magnetic field must be able to compete with the magnetic
force, giving

E⊥ ∼ vtB ∼
1

ρ∗

mv2
t

ZeL
� E‖. (3.5)

The perpendicular electric field can be much larger than the parallel electric field because
in the directions perpendicular to the magnetic field, the strong magnetic field can balance
large forces. We must consider equation (3.5) as an upper limit for the perpendicular
electric field. In many applications, the perpendicular electric field is of the order of E‖.

The equations that we need to solve are

dr

dt
= v (3.6)

and
dv

dt
=
Ze

m
[E(r, t) + v ×B(r, t)] . (3.7)

Note that in these equations, unlike in (2.1) and (2.2), E and B depend on time and
space.

To solve equations (3.6) and (3.7) under the assumptions (3.2), (3.3), (3.4) and (3.5),
we first propose a set of coordinates to separate the two time scales of the problem,
Ω−1 and ω−1 ∼ L/vt, to lowest order in ρ∗. This calculation can be organized in many
different ways, but the final results are always the same (see, for example, Hazeltine &
Meiss 2003; Goldston & Rutherford 1995; Cary & Brizard 2009).

3.1. New phase space coordinates

We use the Larmor motion in (2.11) and (2.12) to propose a new set of convenient
phase space coordinates that separate the fast time scale Ω−1 from the slow time scale
ω−1 ∼ L/vt.

The time evolution of the position of the particle is mostly dominated by the slow
time scale. Recalling that E‖ and E⊥ are ordered as in (3.4) and (3.5), equation (2.12)
becomes

r(t) = r0︸︷︷︸
∼L

+

(
v‖0t︸︷︷︸
∼vtt

+
Ze

2m
E‖t

2︸ ︷︷ ︸
∼v2t t2/L

)
b̂ + vEt︸︷︷︸

∼vtt

+ ρ[sin(Ωt+ α) ê1 + cos(Ωt+ α)ê2]︸ ︷︷ ︸
∼ρ∗L�L

. (3.8)

These estimates show that only a small piece of order ρ∗L � L changes appreciably in
the fast time scale Ω−1 � L/vt, and that it takes a time t ∼ L/vt for the particle to move
a distance L. Thus, we assume that r(t) is mostly dominated by the slow time scale, and
we use r = (x, y, z) as the spatial coordinates for our equations.

For the velocity, equation (2.11) gives

v(t) =

(
v‖0︸︷︷︸
∼vt

+
Ze

m
E‖t︸ ︷︷ ︸

∼v2t t/L

)
b̂ + vE︸︷︷︸

∼vt

+w⊥[cos(Ωt+ α) ê1 − sin(Ωt+ α) ê2]︸ ︷︷ ︸
∼vt

. (3.9)
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The velocity has two different time scales. On the one hand, we have the fast gyration
with a characteristic time scale Ω−1 (see the cosine and sine terms). On the other hand, it
takes a time of the order of L/vt � Ω−1 for the parallel velocity to change by an amount
of order vt. Since the fast time scale appears inside cosines and sines, it is convenient to
describe it using a phase ϕ(t) ∼ Ωt that we call gyrophase. In (2.11), we will replace

Ωt+ α→ ϕ(t). (3.10)

We expect the parallel velocity v‖(t) and the perpendicular velocity w⊥(t) to change in
the slow time scale L/vt. In (2.12), we will replace

v‖0 +
Ze

m
E‖t→ v‖(t) (3.11)

and

w⊥ → w⊥(t). (3.12)

Using the substitutions (3.10), (3.11) and (3.12) in (2.11), we find the desired form for
v(t),

v(t) = v‖(t)b̂(r(t), t)︸ ︷︷ ︸
∼vt

+ vE(r(t), t)︸ ︷︷ ︸
∼vt

+w⊥(t) ê⊥(r(t), ϕ(t), t)︸ ︷︷ ︸
∼vt

, (3.13)

where we have made it explicit that many terms depend on the particle position because
E and B are not uniform in space. We have also defined the useful function

ê⊥(r, ϕ, t) = cosϕ ê1(r, t)− sinϕ ê2(r, t). (3.14)

The vectors ê1(r, t) and ê2(r, t) are defined as for the Larmor motion, that is, they form

a local, right-handed, orthonormal basis with b̂(r, t) at every position r and every time t
(see figure 1). The plane formed by the vectors ê1 and ê2 is well defined (it is the plane

perpendicular to b̂), but the vectors themselves are only defined up to a rotation within
this plane, as shown in figure 1. Obviously, this arbitrary rotation of the basis will not
affect the motion of the particle, as we will see to lowest order in ρ∗ � 1.

Since we want to determine the functions v‖(t), w⊥(t) and ϕ(t), it will be convenient
to write them as functions of v and r, quantities for which we know the time evolution
equations (see (3.6) and (3.7)). We can invert relation (3.13) to find

v‖ = v · b̂(r, t), (3.15)

w⊥ =

√
|v − vE |2 − [v · b̂(r, t)]2, (3.16)

ϕ = − arctan

(
(v − vE(r, t)) · ê2(r, t)

(v − vE(r, t)) · ê1(r, t)

)
. (3.17)

Note that the end result is that we have changed from the phase space coordinates

X = (X1, X2, X3, X4, X5, X6) = (r,v) (3.18)

to the new phase space coordinates

Q = (Q1, Q2, Q3, Q4, Q5, Q6) = (r, v‖, w⊥, ϕ). (3.19)

3.2. Evolution equations for {r, v‖, w⊥, ϕ}
We proceed to calculate the evolution equations

dQ

dt
= Q̇(Q, t). (3.20)
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Note the distinction between

dQ

dt
=

(
dr

dt
,

dv‖
dt

,
dw⊥
dt

,
dϕ

dt

)
, (3.21)

and

Q̇ = (ṙ, v̇‖, ẇ⊥, ϕ̇) : (3.22)

the set of differential equations (3.20) can be written as dQ/dt = f(Q), where dQ/dt is
the time derivative of the vector Q, and Q̇ is the function f(Q).

To find the time derivative of any of the new phase space coordinates, we use the
transformations Qi(r,v, t) for i = 1, 2, 3, 4, 5, 6, given by (3.15), (3.16) and (3.17). Dif-
ferentiating with respect to time and using the chain rule, we find

dQi
dt

=
∂Qi
∂t

+
dr

dt
· ∇Qi +

dv

dt
· ∇vQi. (3.23)

Using (3.6) and (3.7), this equation becomes

Q̇i =
∂Qi
∂t︸︷︷︸

∼Qivt/L

+ v · ∇Qi︸ ︷︷ ︸
∼Qivt/L

+
Ze

m
(E + v ×B) · ∇vQi︸ ︷︷ ︸
∼QiΩ∼Qiρ

−1
∗ vt/L

. (3.24)

This expression gives Q̇i as a function of X = (r,v). With the expression v(v‖, w⊥, ϕ)

in (3.13), we get Q̇i as a function of Q = (r, v‖, w⊥, ϕ).
Applying (3.24) to {r, v‖, w⊥, ϕ}, and after several vector manipulations (see Ap-

pendix A), we obtain

ṙ = v‖b̂ + vE + w⊥ê⊥ = O(vt), (3.25)

v̇‖ = w⊥

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)
· ê⊥ + w2

⊥ê⊥ · ∇b̂ · ê⊥ + w⊥ê⊥ · ∇b̂ · vE

+
Ze

m
E ·
[
b̂ +

1

Ω
b̂×

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)]
= O

(
v2
t

L

)
, (3.26)

ẇ⊥ = −v‖
[
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

]
· ê⊥ −

[
∂vE
∂t

+ (v‖b̂ + vE) · ∇vE

]
· ê⊥

− w⊥ê⊥ · (v‖∇b̂ +∇vE) · ê⊥ = O

(
v2
t

L

)
, (3.27)

ϕ̇ = Ω +

[
∂ê1

∂t
+ (v‖b̂ + vE) · ∇ê1

]
· ê2 + w⊥ê⊥ · ∇ê1 · ê2

+
v‖
w⊥

[
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

]
· (b̂× ê⊥)

+
1

w⊥

[
∂vE
∂t

+ (v‖b̂ + vE) · ∇vE

]
· (b̂× ê⊥)

+ ê⊥ · (v‖∇b̂ +∇vE) · (b̂× ê⊥) = Ω +O
(vt
L

)
. (3.28)

The particular form of ṙ, v̇‖, ẇ⊥ and ϕ̇ is not relevant to understand the expansion in
ρ∗. There are two important points to emphasize:
• To lowest order, our choice of phase space coordinates has separated the slow and

fast time scales. The coordinate ϕ is the only coordinate with a very large time derivative,
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of order Ω. Hence, it is the only coordinate that changes an amount of order unity in the
fast time scale Ω−1.
• However, the time scale separation is not completely successful. The gyrophase ϕ

appears in sines and cosines inside the function ê⊥(r, ϕ, t). This is a crucial observation
because it means that even though the gyrophase ϕ is the only coordinate that changes
by order unity in the fast time scale, the other coordinates, r, v‖ and w⊥, have small
oscillations with frequency Ω due to the sines and cosines of ϕ appearing in (3.25), (3.26)
and (3.27). It is desirable to eliminate those oscillations. We do so to lowest order in ρ∗
in the next subsection.

3.3. Integrating the motion to lowest order in ρ∗
We need to integrate equations (3.20),

Qi(t) =

∫ t

Q̇i(r(t′), v‖(t
′), w⊥(t′), ϕ(t′), t′) dt′. (3.29)

To calculate this integral, we first split it into time intervals ∆t of the order of several
gyroperiods, ∆t ∼ Ω−1,

Qi(t) =
∑
j

∫ tj+∆t

tj

Q̇i(r(t′), v‖(t
′), w⊥(t′), ϕ(t′), t′) dt′, (3.30)

where tj + ∆t = tj+1. In each short time interval ∆t, the changes of r, v‖ and w⊥ are
small because the order of magnitude estimates in (3.25), (3.26) and (3.27) imply that∫ tj+∆t

tj

ṙ(t′) dt′ ∼ ρ∗L� L, (3.31)∫ tj+∆t

tj

v̇‖(t
′) dt′ ∼ ρ∗vt � vt, (3.32)∫ tj+∆t

tj

ẇ⊥(t′) dt′ ∼ ρ∗vt � vt. (3.33)

Using equation (3.28) and the fact that the position of the particle barely changes, we
find that the change of the gyrophase in a time interval ∆t is∫ tj+∆t

tj

ϕ̇(t′) dt′ '
∫ tj+∆t

tj

Ω(r(t′), t′) dt′ ' Ω(r(tj), tj)∆t. (3.34)

Thus, the changes of r, v‖ and w⊥ in a time interval ∆t can be written as∫ tj+∆t

tj

Q̇i(r(t′), v‖(t
′), w⊥(t′), ϕ(t′), t′) dt′

'
∫ tj+∆t

tj

Q̇i(r(tj), v‖(tj), w⊥(tj), ϕ(tj) + Ω(r(tj), tj)(t
′ − tj), tj) dt′. (3.35)

To calculate the integral (3.35), we define the gyroaverage of a function f ,

〈f〉ϕ =
1

2π

∫ 2π

0

f(r, v‖, w⊥, ϕ, t) dϕ, (3.36)

as the average over a period of ϕ holding r, v‖, w⊥ and t fixed. With this average, we split

the function Q̇i into a gyrophase independent piece, 〈Q̇i〉ϕ, and a gyrophase dependent



8 Felix I. Parra

piece, ˜̇Qi = Q̇i − 〈Q̇i〉ϕ. (3.37)

With the separation in 〈Q̇i〉ϕ and ˜̇Qi, equation (3.35) becomes∫ tj+∆t

tj

Q̇i(r(t′), v‖(t
′), w⊥(t′), ϕ(t′), t′) dt′

'〈Q̇i〉ϕ(r(tj), v‖(tj), w⊥(tj), tj)∆t

+
1

Ω(r(tj), tj)

∫ ϕ(tj+∆t)

ϕ(tj)

˜̇Qi(r(tj), v‖(tj), w⊥(tj), ϕ
′, tj) dϕ′. (3.38)

where we have use the change of variable ϕ′ = ϕ(tj) + Ω(r(tj), tj)(t
′ − tj) and the

approximation ϕ(tj + ∆t) ' ϕ(tj) + Ω(r(tj), tj)∆t in the second integral. Substituting
(3.38) into equation (3.30), we find

Qi(t) '
∑
j

〈Q̇i〉ϕ(r(tj), v‖(tj), w⊥(tj), tj)∆t

+
∑
j

1

Ω(r(tj), tj)

∫ ϕ(tj+∆t)

ϕ(tj)

˜̇Qi(r(tj), v‖(tj), w⊥(tj), ϕ
′, tj) dϕ′. (3.39)

Since ∆t ∼ Ω−1 � t ∼ L/vt, the first term in the right side of (3.39) can be approximated
by an integral in time. Recalling that ϕ(tj+∆t) = ϕ(tj+1) and ignoring the slow variation
in time of r, v‖ and w⊥, we can sum all the integrals in the second term in the right side
of (3.39) to obtain one integral in ϕ from the initial value of ϕ to the final value of ϕ.
Thus, equation (3.39) can be written as

Qi(t) '
∫ t

〈Q̇i〉ϕ(r(t′), v‖(t
′), w⊥(t′), t′) dt′ + Q̃i(t), (3.40)

where

Q̃i(t) '
1

Ω(r(t), t)

∫ ϕ(t) ˜̇Qi(r(t), v‖(t), w⊥(t), ϕ′, t) dϕ′. (3.41)

As an example of Q̃i, we calculate the small correction to the position r̃. Equation (3.41)
for r gives

r̃ ' 1

Ω

∫ ϕ ˜̇r(ϕ′) dϕ′ =
1

Ω

∫ ϕ

w⊥ê⊥(ϕ′) dϕ′ =
1

Ω

∫ ϕ

w⊥(cosϕ′ ê1 − sinϕ′ ê2) dϕ′

=
w⊥
Ω

(sinϕ ê1 + cosϕ ê2) =
w⊥
Ω

b̂× ê⊥. (3.42)

The integral r̃ represents the Larmor gyration. To see this, compare this term to the
term proportional to ρ in (2.12).

The validity of approximation (3.40) can be checked by differentiating it to determine

whether dQi/dt is equal to Q̇i. By differentiating (3.40), we find dQi/dt = 〈Q̇i〉ϕ+dQ̃i/dt.

To calculate the derivative of Q̃i, we use

dQ̃i
dt

=
∂Q̃i
∂t

+ ṙ · ∇Q̃i + v̇‖
∂Q̃i
∂v‖

+ ẇ⊥
∂Q̃i
∂w⊥

+ ϕ̇
∂Q̃i
∂ϕ

= Ω
∂Q̃i
∂ϕ

+O
(vt
L
Q̃i

)
. (3.43)

where we have used the order of magnitude estimates in equations (3.25), (3.26), (3.27)

and (3.28). Hence, dQ̃i/dt ' ˜̇Qi, and as a result dQi/dt ' 〈Q̇i〉ϕ + ˜̇Qi = Q̇i as expected.
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From the order of magnitude estimates in equations (3.25), (3.26) and (3.27), we find˜̇Qi = O
(vt
L
Qi

)
, (3.44)

and hence

Q̃i ∼ ρ∗Qi � Qi. (3.45)

For example, r̃ in (3.42) is of order ρ∗L. The piece Q̃i is small in size because the highly

oscillatory time derivative ˜̇Qi averages to zero, giving only a small contribution to Qi(t).
Using the estimate in (3.45), equation (3.40) becomes to lowest order

Qi(t) =

∫ t

〈Q̇i〉ϕ(r(t′), v‖(t
′), w⊥(t′), t′) dt′ +O(ρ∗Qi). (3.46)

Ignoring the corrections small in ρ∗, it is tempting to write equation (3.46) as

dQi
dt
' 〈Q̇i〉ϕ. (3.47)

This expression is correct in the sense that once integrated in time, it gives the value
of Qi up to a correction small in ρ∗. However, it is obvious that (3.47) is different to
the lowest order expression dQi/dt = Q̇i. The reason for this difference is that the small

correction Q̃i, of order ρ∗ (see (3.41)), has a large time derivative that competes with the
slow time derivative of the largest piece of Qi. For example, the oscillation in position
given in (3.42) has instantaneous velocities of order vt, but its average velocity is almost
zero, contributing a very small piece to the total displacement r. We will use (3.47) with
the understanding that it is only valid when integrated in time.

Using (3.25), (3.26) and (3.27),∇·B = 0 and Faraday’s induction law∇×E = −∂B/∂t
(see Appendix B), equation (3.47) gives

dr

dt
' 〈ṙ〉ϕ = v‖b̂ + vE ,

dv‖
dt
' 〈v̇‖〉ϕ =

Ze

m

(
b̂ +

1

Ω
b̂× db̂

dt

)
·E− w2

⊥
2B

b̂ · ∇B,

dw⊥
dt
' 〈ẇ⊥〉ϕ =

w⊥
2B

dB

dt
,

(3.48)

(3.49)

(3.50)

where

db̂

dt
=
∂b̂

∂t
+

dr

dt
· ∇b̂ ' ∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂ (3.51)

and
dB

dt
=
∂B

∂t
+

dr

dt
· ∇B ' ∂B

∂t
+ (v‖b̂ + vE) · ∇B. (3.52)

We do not need to consider dϕ/dt because ϕ does not appear in equations (3.48), (3.49)
and (3.50).

4. Summary: guiding center equations

The set of differential equations (3.48), (3.49) and (3.50) determines the average po-
sition of the particle, its average parallel velocity and its average perpendicular velocity.
These equations ignore the small oscillations that happen at time scales of order Ω−1.
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Positive	ion

B

Inductive	E due	
to increasing	 B

Figure 3. Inductive electric field due to dB/dt > 0 that accelerates the gyration of a positive
ion and increases w⊥. In this sketch, B is pointing to the the reader. Electrons are accelerated
by dB/dt > 0 as well.

The position r is in fact the guiding center position and not the particle position. Keeping
the correction (3.42), the position of the particle can be written as

r(t) ' R(t) +
w⊥(t)

Ω(r(t), t)
b̂(r(t), t)× ê⊥(r(t), ϕ(t), t), (4.1)

with

R(t) =

∫ t

[v‖(t
′)b̂(r(t′), t′) + vE(r(t′), t′)]dt′. (4.2)

We see that equation (3.48) gives the motion of the center R around which the particle
gyrates. Similarly, equations (3.49) and (3.50) for v‖ and w⊥ neglect small oscillations of
order ρ∗ with a characteristic frequency of order Ω.

The gyrophase ϕ(t) does not enter in the guiding center motion. Once r(t), v‖(t) and
w⊥(t) are known, we can calculate the gyrophase using

dϕ

dt
= Ω(r(t), t) +O(vt/L). (4.3)

To find ϕ accurately, we need the terms of ϕ̇ of order vt/L given in (3.28). These cor-
rections of order vt/L give a change in the gyrophase of order unity in a time of order
L/vt.

Equations (3.48), (3.49) and (3.50) give the position and the velocity of the guiding
center accurately for times of order L/vt. These equations are missing terms small by

a factor of ρ∗ � 1. The oscillatory rates ˜̇r, ˜̇v‖ and ˜̇w⊥ only average to zero to lowest
order. They contribute to the particle motion a non-zero correction of order ρ∗. These
missing terms will lead to order unity corrections after times of order ρ−1

∗ L/vt. These
corrections can be obtained from very tedious calculations. To minimize the number of
such calculations in this course, we will talk about these terms in the next lecture, when
we will need them to describe the statistics of magnetized plasmas.

There are other forms of the guiding center equations that prove useful. In particular,
it is common to replace w⊥ by another convenient variable. According to (3.50), the
velocity of the gyration changes in time when B changes. The reason for this is the
inductive electric field created by the time varying magnetic field (see figure 3). The
effect of this inductive electric field is to keep constant the magnetic moment

µ =
w2
⊥

2B(r, t)
. (4.4)
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Positive	ion	
gyromotion seen	
from	the	side

Magnetic	
field	 lines

Net	parallel	
force

w?

F = Zew? ⇥ B

F = Zew? ⇥ B

w?

b̂ · rB > 0

Figure 4. Net parallel force due to the magnetic force Zew⊥ ×B in a converging magnetic
field.

Using (3.50), we find that its time derivative is

dµ

dt
=
w⊥
B

dw⊥
dt
− w2

⊥
2B2

dB

dt
' 0. (4.5)

The magnetic moment µ is then approximately constant in time. Physically, the magnetic
moment is proportional to the magnetic flux through the gyromotion. The area of the
circle enclosed by the gyromotion is Ag = πρ2 = πw2

⊥/Ω
2 = (πm2/Z2e2)(w2

⊥/B
2).

Thus, the total magnetic flux through the area enclosed by the gyromotion is AgB =
(2πm2/Z2e2)µ. Note that the magnetic moment is not a constant of the motion, but
an adiabatic invariant (see, for example, Landau & Lifshitz 1976, for a discussion of
adiabatic invariants).

Using the magnetic moment, the equations for the guiding center motion become

dr

dt
' v‖b̂ + vE ,

dv‖
dt
' Ze

m

(
b̂ +

1

Ω
b̂× db̂

dt

)
·E− µb̂ · ∇B.

(4.6)

(4.7)

We finish by giving some examples of guiding center motion.

4.1. Motion with small E⊥: low flow regime

So far, we have considered that the perpendicular electric field E⊥ is as large as we have
ordered it in (3.5), making the E×B drift of order the thermal speed vt. This is known
as the high flow regime. There are cases in which the perpendicular electric field is much
smaller, of order

E⊥ ∼
mv2

t

ZeL
. (4.8)

In this regime, the E×B drift is of order ρ∗vti. This is the low flow regime or drift ordering.
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When vE ∼ ρ∗vti, the guiding center equations (4.6) and (4.7) become to lowest order

dr

dt
' v‖b̂, (4.9)

dv‖
dt
' Ze

m
E‖ − µb̂ · ∇B. (4.10)

Thus, the particle only moves along the magnetic field line (note that it does not separate
from it even if the magnetic field lines curve). The parallel velocity can be accelerated
or decelerated by the parallel electric field and, unexpectedly, by the magnetic field. The
magnetic field does not exert a force parallel to itself, but the direction of the magnetic
field changes slightly with the position of the particle in its gyration around the guiding
center, and the direction of the magnetic field at the particle position is different from
the direction of the magnetic field at the guiding center. When b̂ ·∇B 6= 0, the magnetic
field lines have to converge or diverge due to ∇ ·B = 0. This divergence or convergence
causes the parallel acceleration −µb̂ · ∇B of the guiding center, as shown in figure 4.
This parallel acceleration causes what is known as magnetic bottling.

To explain magnetic bottling, we consider a steady state plasma. In steady state,
the electric field is well described by an electrostatic potential φ, E = −∇φ. With an
electrostatic magnetic field, the total energy

E =
1

2
mv2
‖ +mµB(r) + Zeφ(r) (4.11)

is conserved. Indeed, using E = −∇φ, (4.9) and (4.10), we find

dE
dt

= mv‖
dv‖
dt

+mµ
dr

dt
· ∇B + Ze

dr

dt
· ∇φ ' 0. (4.12)

Equation (4.9) implies that the motion is along the magnetic field line. Then, limiting
ourselves to a magnetic field line, and using the length along the line l as a coordinate,
we obtain the equation of motion

dl

dt
= v‖ = ±

√
2

m
[E −mµB(l)− Zeφ(l)], (4.13)

where we have used equation (4.11) to solve for v‖ as a function of the constants E and µ.
The particle motion is controlled by the effective potential mµB(l)+Zeφ(l). If E and µ are
such that E > mµB(l) +Zeφ(l) for all l, the particle moves uninterruptedly in the same
direction it started. Conversely, if there is a location l0 in which E = mµB(l0) +Zeφ(l0),
the particle will stop and bounce at l0. In figure 5, we consider a situation in which
φ(l) = 0 and the magnetic field magnitude has a shape that leads to bounces for certain
particles. Since φ(l) = 0, the bounce points are determined by B(l0) = E/mµ.

4.2. Motion with large E⊥: high flow regime

In the high flow regime, we have to use equations (4.6) and (4.7). Particles move off
magnetic field lines due to the large E × B drifts. The parallel velocity is not only
affected by the magnetic bottling force and the parallel electric field. There is an extra
term,

Ze

mΩ

(
b̂× db̂

dt

)
·E. (4.14)
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B

l
Figure 5. Sketch of B along a magnetic field line. Particles with E/mµ smaller than the

maximum in B(l) will have a bounce point.

r
✓

z

E = Ez ẑ

B = B✓✓̂

Figure 6. Cylindrical configuration with azimuthal magnetic field Bθ and axial electric field
Ez.

This force came from the parallel component of the time derivative of the E×B drift,

Ze

mΩ

(
b̂× db̂

dt

)
·E = −dvE

dt
· b̂ (4.15)

The acceleration that results from a change of direction of the E×B drift is a result of a
combination of electromagnetic forces and a change in the momentum of the particle in
the direction parallel to the magnetic field. This term represents the change in parallel
momentum.

To show the importance of the term in (4.14), we study the simple cylindrical configu-
ration in figure 6. The system is azimuthally symmetric. There is an azimuthal magnetic
field B = Bθθ̂ and an axial electric field E = Ez ẑ. In the cylindrical coordinates {r, θ, z},
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equation (4.6) becomes

dr

dt
= −Ez

Bθ
, (4.16)

dθ

dt
=
v‖
r
, (4.17)

dz

dt
= 0, (4.18)

that is, guiding centers rotate azimuthally due to their parallel velocity, and move radially
inwards due to the E×B drift. Equation (4.7) gives

dv‖
dt

=
Ze

mΩ

[
b̂×

(
dr

dt
· ∇b̂

)]
·E =

Ezv‖
Bθ

[
θ̂ × (θ̂ · ∇θ̂)

]
· ẑ. (4.19)

Since θ̂ · ∇θ̂ = −r̂/r, we finally obtain

dv‖
dt

=
Ezv‖
rBθ

= −v‖
r

dr

dt
, (4.20)

where we have used (4.16). Using equation (4.20), we can show that the azimuthal angular
momentum rv‖ is conserved,

d

dt
(rv‖) = r

dv‖
dt

+ v‖
dr

dt
= 0. (4.21)

Thus, as particles move radially inwards due to the E × B drift, their parallel velocity
accelerates because v‖ ∝ 1/r.
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Appendix A. Derivation of ṙ, v̇‖, ẇ⊥ and ϕ̇

In this appendix we show how to derive equations (3.25), (3.26), (3.27) and (3.28).
Applying the operator in (3.24) to r, we obtain ṙ = v. Using (3.13), we rewrite this

equation in the coordinates Q = (r, v‖, w⊥, ϕ), obtaining (3.25).
To apply the operator in (3.24) to v‖, we need ∂v‖/∂t, ∇v‖ and ∇vv‖. Using the

definition of v‖ in (3.15), we obtain

∂v‖
∂t

=
∂b̂

∂t
· v, (A 1)

∇v‖ = ∇b̂ · v, (A 2)

and

∇vv‖ = b̂. (A 3)

To obtain final expressions for ∂v‖/∂t and ∇v‖, we use (3.13), finding

∂v‖
∂t

=
∂b̂

∂t
· (vE + w⊥ê⊥) (A 4)

and

∇v‖ = ∇b̂ · (vE + w⊥ê⊥). (A 5)

Here, we have differentiated b̂ · b̂ = 1 with respect to time and space to find (∂b̂/∂t) · b̂ =

0 = ∇b̂ · b̂. With equations (A 3) , (A 4) and (A 5), we obtain (3.26).
To apply the operator in (3.24) to w⊥, we need ∂w⊥/∂t, ∇w⊥ and ∇vw⊥. Using the

definition of w⊥ in (3.16), we obtain

∂w⊥
∂t

= − 1√
|v − vE |2 − (v · b̂)2

[
(v · b̂)

∂b̂

∂t
· v +

∂vE
∂t
· (v − vE)

]

= −
(
v‖
∂b̂

∂t
+
∂vE
∂t

)
· ê⊥ −

v‖
w⊥

∂

∂t
��

���:0
(b̂ · vE), (A 6)

∇w⊥ = −
(
v‖∇b̂ +∇vE

)
· ê⊥, (A 7)

and

∇vw⊥ =
v − vE − (v · b̂)b̂√
|v − vE |2 − (v · b̂)2

= ê⊥. (A 8)

With equations (A 6), (A 7), (A 8) and (3.13), and using

(E + v ×B) · ê⊥ = [E⊥ + (w⊥ê⊥ + vE)×B] · ê⊥ = w⊥(ê⊥ ×B) · ê⊥ = 0, (A 9)

we obtain (3.27).
To apply the operator in (3.24) to ϕ, we need ∂ϕ/∂t, ∇ϕ and ∇vϕ. We start with the

derivative of ϕ, defined in (3.17), with respect to time,

∂ϕ

∂t
=− 1

[(v − vE) · ê1]2 + [(v − vE) · ê2]2

[
(v − vE) · ê1

∂

∂t
[(v − vE) · ê2]

− (v − vE) · ê2
∂

∂t
[(v − vE) · ê1]

]
, (A 10)
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where
∂

∂t
[(v − vE) · êi] = (v − vE) · ∂êi

∂t
− êi ·

∂vE
∂t

(A 11)

for i = 1, 2. Using (3.13), expression (A 10) becomes

∂ϕ

∂t
=

[
− cos2 ϕ

(
∂ê2

∂t
· ê1

)
+ sin2 ϕ

(
∂ê1

∂t
· ê2

)]
+ sinϕ cosϕ

(
∂ê2

∂t
· ê2 −

∂ê1

∂t
· ê1

)
− v‖
w⊥

[
cosϕ

(
∂ê2

∂t
· b̂
)

+ sinϕ

(
∂ê1

∂t
· b̂
)]

+
1

w⊥
(sinϕ ê1 + cosϕ ê2) · ∂vE

∂t
. (A 12)

Differentiating the expressions ê1 · ê1 = 1 = ê2 · ê2 and ê1 · ê2 = 0 = ê1 · b̂ = ê2 · b̂ with
respect to time, we obtain (∂ê1/∂t) · ê1 = 0 = (∂ê2/∂t) · ê2, (∂ê2/∂t) · ê1 = −(∂ê1/∂t) · ê2,

(∂ê1/∂t) · b̂ = −(∂b̂/∂t) · ê1 and (∂ê2/∂t) · b̂ = −(∂b̂/∂t) · ê2. Using these identities in
(A 12), we obtain

∂ϕ

∂t
=
∂ê1

∂t
· ê2 +

1

w⊥

(
v‖
∂b̂

∂t
+
∂vE
∂t

)
· (sinϕ ê1 + cosϕ ê2) . (A 13)

Using the function ê⊥ in (3.14), we can rewrite this expression as

∂ϕ

∂t
=
∂ê1

∂t
· ê2 +

1

w⊥

(
v‖
∂b̂

∂t
+
∂vE
∂t

)
· (b̂× ê⊥). (A 14)

Treating ∇ϕ in the same way as ∂ϕ/∂t, we obtain

∇ϕ = ∇ê1 · ê2 +
1

w⊥
(v‖∇b̂ +∇vE) · (b̂× ê⊥). (A 15)

Finally, the derivative with respect to v of ϕ gives

∇vϕ = − 1

[(v − vE) · ê1]2 + [(v − vE) · ê2]2
[(

(v − vE) · ê1

)
ê2 −

(
(v − vE) · ê2

)
ê1

]
= − 1

w⊥
(sinϕ ê1 + cosϕ ê2) =

1

w⊥
(ê⊥ × b̂). (A 16)

With equations (A 14), (A 15), (A 16) and (3.13), and using

(E+v×B)·(ê⊥×b̂) = [E⊥+(w⊥ê⊥+vE)×B]·(ê⊥×b̂) = w⊥B|ê⊥×b̂|2 = w⊥B, (A 17)

we obtain (3.28).

Appendix B. Derivation of dr/dt, dv‖/dt and dw⊥/dt

In this appendix, we derive equations (3.48), (3.49) and (3.50).
From equation (3.25), it is obvious that

〈ṙ〉ϕ = v‖b̂ + vE (B 1)

because ê⊥, defined in (3.14), satisfies 〈ê⊥〉ϕ = 0.
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From equation (3.26), we find

〈v̇‖〉ϕ = w2
⊥〈ê⊥ê⊥〉ϕ : ∇b̂ +

Ze

m
E ·
[
b̂ +

1

Ω
b̂×

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)]
. (B 2)

In Einstein’s index notation, the double contraction of any two matrices M and N is

M : N = MijNji. (B 3)

We need the average 〈ê⊥ê⊥〉ϕ. Using (3.14), we find

ê⊥ê⊥ = cos2 ϕ ê1ê1 − sinϕ cosϕ(ê1ê2 + ê2ê1) + sin2 ϕ ê2ê2. (B 4)

In the orthonormal basis {ê1, ê2, b̂}, this tensor becomes the matrix

ê⊥ê⊥ =

 cos2 ϕ − sinϕ cosϕ 0
− sinϕ cosϕ sin2 ϕ 0

0 0 0

 . (B 5)

Taking the gyroaverage, we obtain

〈ê⊥ê⊥〉ϕ =
1

2
(ê1ê1 + ê2ê2) =

1

2

 1 0 0
0 1 0
0 0 0

 . (B 6)

Since the unit matrix I can be written as I = ê1ê1 + ê2ê2 + b̂b̂, we finally get

〈ê⊥ê⊥〉ϕ =
1

2
(I− b̂b̂). (B 7)

Using (B 7) and employing I : ∇b̂ = ∇ · b̂, equation (B 2) becomes

〈v̇‖〉ϕ =
w2
⊥
2
∇ · b̂ +

Ze

m
E ·
[
b̂ +

1

Ω
b̂×

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)]
. (B 8)

We can simplify this equation further by using ∇ ·B = 0 to write

B∇ · b̂ = −b̂ · ∇B. (B 9)

Using (B 9) in (B 8), we obtain

〈v̇‖〉ϕ =
Ze

m

[
b̂ +

1

Ω
b̂×

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)]
·E− w2

⊥
2B

b̂ · ∇B. (B 10)

Finally, from (3.27), we obtain

〈ẇ⊥〉ϕ = −v‖w⊥〈ê⊥ê⊥〉ϕ : ∇b̂− w⊥〈ê⊥ê⊥〉ϕ : ∇vE . (B 11)

Using (B 7), I : ∇b̂ = ∇ · b̂ and I : ∇vE = ∇ · vE , equation (B 11) becomes

〈ẇ⊥〉ϕ = −v‖w⊥
2
∇ · b̂− w⊥

2
(∇ · vE − b̂ · ∇vE · b̂). (B 12)

To simplify this equation, we use the fact that the orderings (3.4) and (3.5) imply

E + vE ×B = E‖b̂ ' 0. (B 13)

Taking the curl of this equation, we obtain

∇×E +∇× (vE ×B) ' 0. (B 14)
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Using Faraday’s induction law ∇×E = −∂B/∂t, and

∇× (vE ×B) = B · ∇vE − (∇ · vE)B− vE · ∇B, (B 15)

equation (B 14) becomes

B · ∇vE − (∇ · vE)B ' ∂B

∂t
+ vE · ∇B. (B 16)

Projecting this equation on b̂, and using (∂B/∂t) · b̂ = ∂B/∂t and ∇B · b̂ = ∇B, we
finally get

b̂ · ∇vE · b̂−∇ · vE '
1

B

(
∂B

∂t
+ vE · ∇B

)
. (B 17)

Using this expression and (B 9) in (B 12), we obtain

〈ẇ⊥〉ϕ =
w⊥
2B

[
∂B

∂t
+ (v‖b̂ + vE) · ∇B

]
. (B 18)

Equations (B 1), (B 10) and (B 18) give equations (3.48), (3.49) and (3.50).


